1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
#[cfg(feature = "dim3")] use crate::geometry::PolyhedronFace; use crate::geometry::{Cuboid, CuboidFeature, CuboidFeatureFace}; use crate::math::{Point, Vector}; use crate::utils::WSign; pub fn local_support_point(cube: &Cuboid, local_dir: Vector<f32>) -> Point<f32> { local_dir.copy_sign_to(cube.half_extents).into() } // #[cfg(feature = "dim2")] // pub fn polygon_ref( // cuboid: Cuboid, // out_vertices: &mut [Point<f32>; 4], // out_normals: &mut [Vector<f32>; 4], // ) -> PolygonRef { // *out_vertices = [ // Point::new(cuboid.half_extents.x, -cuboid.half_extents.y), // Point::new(cuboid.half_extents.x, cuboid.half_extents.y), // Point::new(-cuboid.half_extents.x, cuboid.half_extents.y), // Point::new(-cuboid.half_extents.x, -cuboid.half_extents.y), // ]; // *out_normals = [Vector::x(), Vector::y(), -Vector::x(), -Vector::y()]; // // PolygonRef { // vertices: &out_vertices[..], // normals: &out_normals[..], // } // } #[cfg(feature = "dim2")] pub fn vertex_feature_id(vertex: Point<f32>) -> u8 { ((vertex.x.to_bits() >> 31) & 0b001 | (vertex.y.to_bits() >> 30) & 0b010) as u8 } // #[cfg(feature = "dim3")] // pub fn vertex_feature_id(vertex: Point<f32>) -> u8 { // ((vertex.x.to_bits() >> 31) & 0b001 // | (vertex.y.to_bits() >> 30) & 0b010 // | (vertex.z.to_bits() >> 29) & 0b100) as u8 // } #[cfg(feature = "dim3")] pub fn polyhedron_support_face(cube: &Cuboid, local_dir: Vector<f32>) -> PolyhedronFace { support_face(cube, local_dir).into() } #[cfg(feature = "dim2")] pub(crate) fn support_feature(cube: &Cuboid, local_dir: Vector<f32>) -> CuboidFeature { // In 2D, it is best for stability to always return a face. // It won't have any notable impact on performances anyway. CuboidFeature::Face(support_face(cube, local_dir)) /* let amax = local_dir.amax(); const MAX_DOT_THRESHOLD: f32 = 0.98480775301; // 10 degrees. if amax > MAX_DOT_THRESHOLD { // Support face. CuboidFeature::Face(cube.support_face(local_dir)) } else { // Support vertex CuboidFeature::Vertex(cube.support_vertex(local_dir)) } */ } #[cfg(feature = "dim3")] pub(crate) fn support_feature(cube: &Cuboid, local_dir: Vector<f32>) -> CuboidFeature { CuboidFeature::Face(support_face(cube, local_dir)) /* const MAX_DOT_THRESHOLD: f32 = crate::utils::COS_10_DEGREES; const MIN_DOT_THRESHOLD: f32 = 1.0 - MAX_DOT_THRESHOLD; let amax = local_dir.amax(); let amin = local_dir.amin(); if amax > MAX_DOT_THRESHOLD { // Support face. CuboidFeature::Face(support_face(cube, local_dir)) } else if amin < MIN_DOT_THRESHOLD { // Support edge. CuboidFeature::Edge(support_edge(cube, local_dir)) } else { // Support vertex. CuboidFeature::Vertex(support_vertex(cube, local_dir)) } */ } // #[cfg(feature = "dim3")] // pub(crate) fn support_vertex(cube: &Cuboid, local_dir: Vector<f32>) -> CuboidFeatureVertex { // let vertex = local_support_point(cube, local_dir); // let vid = vertex_feature_id(vertex); // // CuboidFeatureVertex { vertex, vid } // } // #[cfg(feature = "dim3")] // pub(crate) fn support_edge(cube: &Cuboid, local_dir: Vector<f32>) -> CuboidFeatureEdge { // let he = cube.half_extents; // let i = local_dir.iamin(); // let j = (i + 1) % 3; // let k = (i + 2) % 3; // let mut a = Point::origin(); // a[i] = he[i]; // a[j] = local_dir[j].copy_sign_to(he[j]); // a[k] = local_dir[k].copy_sign_to(he[k]); // // let mut b = a; // b[i] = -he[i]; // // let vid1 = vertex_feature_id(a); // let vid2 = vertex_feature_id(b); // let eid = (vid1.max(vid2) << 3) | vid1.min(vid2) | 0b11_000_000; // // CuboidFeatureEdge { // vertices: [a, b], // vids: [vid1, vid2], // eid, // } // } #[cfg(feature = "dim2")] pub fn support_face(cube: &Cuboid, local_dir: Vector<f32>) -> CuboidFeatureFace { let he = cube.half_extents; let i = local_dir.iamin(); let j = (i + 1) % 2; let mut a = Point::origin(); a[i] = he[i]; a[j] = local_dir[j].copy_sign_to(he[j]); let mut b = a; b[i] = -he[i]; let vid1 = vertex_feature_id(a); let vid2 = vertex_feature_id(b); let fid = (vid1.max(vid2) << 2) | vid1.min(vid2) | 0b11_00_00; CuboidFeatureFace { vertices: [a, b], vids: [vid1, vid2], fid, } } #[cfg(feature = "dim3")] pub(crate) fn support_face(cube: &Cuboid, local_dir: Vector<f32>) -> CuboidFeatureFace { // NOTE: can we use the orthonormal basis of local_dir // to make this AoSoA friendly? let he = cube.half_extents; let iamax = local_dir.iamax(); let sign = local_dir[iamax].copy_sign_to(1.0); let vertices = match iamax { 0 => [ Point::new(he.x * sign, he.y, he.z), Point::new(he.x * sign, -he.y, he.z), Point::new(he.x * sign, -he.y, -he.z), Point::new(he.x * sign, he.y, -he.z), ], 1 => [ Point::new(he.x, he.y * sign, he.z), Point::new(-he.x, he.y * sign, he.z), Point::new(-he.x, he.y * sign, -he.z), Point::new(he.x, he.y * sign, -he.z), ], 2 => [ Point::new(he.x, he.y, he.z * sign), Point::new(he.x, -he.y, he.z * sign), Point::new(-he.x, -he.y, he.z * sign), Point::new(-he.x, he.y, he.z * sign), ], _ => unreachable!(), }; pub fn vid(i: u8) -> u8 { // Each vertex has an even feature id. i * 2 } let sign_index = ((sign as i8 + 1) / 2) as usize; // The vertex id as numbered depending on the sign of the vertex // component. A + sign means the corresponding bit is 0 while a - // sign means the corresponding bit is 1. // For exampl the vertex [2.0, -1.0, -3.0] has the id 0b011 let vids = match iamax { 0 => [ [vid(0b000), vid(0b010), vid(0b011), vid(0b001)], [vid(0b100), vid(0b110), vid(0b111), vid(0b101)], ][sign_index], 1 => [ [vid(0b000), vid(0b100), vid(0b101), vid(0b001)], [vid(0b010), vid(0b110), vid(0b111), vid(0b011)], ][sign_index], 2 => [ [vid(0b000), vid(0b010), vid(0b110), vid(0b100)], [vid(0b001), vid(0b011), vid(0b111), vid(0b101)], ][sign_index], _ => unreachable!(), }; // The feature ids of edges is obtained from the vertex ids // of their endpoints. // Assuming vid1 > vid2, we do: (vid1 << 3) | vid2 | 0b11000000 // let eids = match iamax { 0 => [ [0b11_010_000, 0b11_011_010, 0b11_011_001, 0b11_001_000], [0b11_110_100, 0b11_111_110, 0b11_111_101, 0b11_101_100], ][sign_index], 1 => [ [0b11_100_000, 0b11_101_100, 0b11_101_001, 0b11_001_000], [0b11_110_010, 0b11_111_110, 0b11_111_011, 0b11_011_010], ][sign_index], 2 => [ [0b11_010_000, 0b11_110_010, 0b11_110_100, 0b11_100_000], [0b11_011_001, 0b11_111_011, 0b11_111_101, 0b11_101_001], ][sign_index], _ => unreachable!(), }; // The face with normals [x, y, z] are numbered [10, 11, 12]. // The face with negated normals are numbered [13, 14, 15]. let fid = iamax + sign_index * 3 + 10; CuboidFeatureFace { vertices, vids, eids, fid: fid as u8, } }