rangeset 0.2.0

Integer collection backed by ranges with set operation support.
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
#![doc = include_str!("../README.md")]

mod cover;
mod difference;
mod index;
mod intersection;
mod subset;
mod symmetric_difference;
mod union;

pub use cover::Cover;
pub use difference::{Difference, DifferenceMut};
pub use index::IndexRanges;
pub use intersection::Intersection;
pub use subset::Subset;
pub use symmetric_difference::{SymmetricDifference, SymmetricDifferenceMut};
pub use union::{Union, UnionMut};

use std::ops::{Add, Range, Sub};

/// A set of values represented using ranges.
///
/// A `RangeSet` is similar to any other kind of set, such as `HashSet`, with the difference being that the
/// values in the set are represented using ranges rather than storing each value individually.
///
/// # Invariants
///
/// `RangeSet` enforces the following invariants on the ranges it contains:
///
/// - The ranges are sorted.
/// - The ranges are non-adjacent.
/// - The ranges are non-intersecting.
/// - The ranges are non-empty.
///
/// This is enforced in the constructor, and guaranteed to hold after applying any operation on a range or set.
///
/// # Examples
///
/// ```
/// use rangeset::*;
///
/// let a = 10..20;
///
/// // Difference
/// assert_eq!(a.difference(&(15..25)), RangeSet::from([10..15]));
/// assert_eq!(a.difference(&(12..15)), RangeSet::from([(10..12), (15..20)]));
///
/// // Union
/// assert_eq!(a.union(&(15..25)), RangeSet::from([10..25]));
/// assert_eq!(a.union(&(0..0)), RangeSet::from([10..20]));
///
/// // Comparison
/// assert!(a.is_subset(&(0..30)));
/// assert!(a.is_disjoint(&(0..10)));
/// assert_eq!(a.clone(), RangeSet::from(a));
/// ```
#[derive(Debug, Clone, Hash, PartialEq, Eq)]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(
    feature = "serde",
    serde(
        bound = "for<'a> T: serde::Serialize + serde::de::Deserialize<'a> + Copy + Ord",
        from = "Vec<Range<T>>",
        into = "Vec<Range<T>>"
    )
)]
pub struct RangeSet<T> {
    /// The ranges of the set.
    ///
    /// The ranges *MUST* be sorted, non-adjacent, non-intersecting, and non-empty.
    ranges: Vec<Range<T>>,
}

impl<T: Copy + Ord> From<Vec<Range<T>>> for RangeSet<T> {
    fn from(ranges: Vec<Range<T>>) -> Self {
        Self::new(&ranges)
    }
}

impl<T> From<RangeSet<T>> for Vec<Range<T>> {
    fn from(ranges: RangeSet<T>) -> Self {
        ranges.into_inner()
    }
}

impl<T: Copy + Ord> Default for RangeSet<T> {
    fn default() -> Self {
        Self {
            ranges: Default::default(),
        }
    }
}

impl<T> RangeSet<T> {
    /// Returns the ranges of the set.
    pub fn into_inner(self) -> Vec<Range<T>> {
        self.ranges
    }

    /// Returns `true` if the set is empty.
    pub fn is_empty(&self) -> bool {
        self.ranges.is_empty()
    }

    /// Returns the number of ranges in the set.
    pub fn len_ranges(&self) -> usize {
        self.ranges.len()
    }

    /// Clears the set, removing all ranges.
    pub fn clear(&mut self) {
        self.ranges.clear();
    }
}

impl<T: Copy + Ord> RangeSet<T> {
    /// Returns a new `RangeSet` from the given ranges.
    ///
    /// The `RangeSet` is constructed by computing the union of the given ranges.
    pub fn new(ranges: &[Range<T>]) -> Self
    where
        Self: Union<Range<T>, Output = Self>,
    {
        let mut set = Self::default();

        for range in ranges {
            set = set.union(range);
        }

        set
    }

    /// Returns an iterator over the values in the set.
    pub fn iter(&self) -> RangeSetIter<'_, T> {
        RangeSetIter {
            iter: self.ranges.iter(),
            current: None,
        }
    }

    /// Returns an iterator over the ranges in the set.
    pub fn iter_ranges(&self) -> RangeIter<'_, T> {
        RangeIter {
            iter: self.ranges.iter(),
        }
    }

    /// Returns `true` if the set contains the given value.
    pub fn contains(&self, value: &T) -> bool {
        self.ranges.iter().any(|range| range.contains(value))
    }

    /// Returns the minimum value in the set, or `None` if the set is empty.
    pub fn min(&self) -> Option<T> {
        self.ranges.first().map(|range| range.start)
    }

    /// Returns the end of right-most range in the set, or `None` if the set is empty.
    ///
    /// # Note
    ///
    /// This is the *non-inclusive* bound of the right-most range. See `RangeSet::max` for the
    /// maximum value in the set.
    pub fn end(&self) -> Option<T> {
        self.ranges.last().map(|range| range.end)
    }
}

impl<T: Copy + Ord + Step + Sub<Output = T>> RangeSet<T> {
    /// Returns the maximum value in the set, or `None` if the set is empty.
    pub fn max(&self) -> Option<T> {
        // This should never underflow because of the invariant that a set
        // never contains empty ranges.
        self.ranges
            .last()
            .map(|range| Step::backward(range.end, 1).expect("set is not empty"))
    }

    /// Splits the set into two at the provided value.
    ///
    /// Returns a new set containing all the existing elements `>= at`. After the call,
    /// the original set will be left containing the elements `< at`.
    ///
    /// # Panics
    ///
    /// Panics if `at` is not in the set.
    pub fn split_off(&mut self, at: &T) -> Self {
        // Find the index of the range containing `at`
        let idx = self
            .ranges
            .iter()
            .position(|range| range.contains(at))
            .expect("`at` is in the set");

        // Split off the range containing `at` and all the ranges to the right.
        let mut split_ranges = self.ranges.split_off(idx);

        // If the first range starts before `at` we have to push those values back
        // into the existing set and truncate.
        if *at > split_ranges[0].start {
            self.ranges.push(Range {
                start: split_ranges[0].start,
                end: *at,
            });
            split_ranges[0].start = *at;
        }

        Self {
            ranges: split_ranges,
        }
    }
}

impl<T: Copy + Ord + Sub<Output = T>> RangeSet<T> {
    /// Shifts every range in the set to the left by the provided offset.
    ///
    /// # Panics
    ///
    /// Panics if the shift causes an underflow.
    pub fn shift_left(&mut self, offset: &T) {
        self.ranges.iter_mut().for_each(|range| {
            range.start = range.start - *offset;
            range.end = range.end - *offset;
        });
    }
}

impl<T: Copy + Ord + Add<Output = T>> RangeSet<T> {
    /// Shifts every range in the set to the right by the provided offset.
    ///
    /// # Panics
    ///
    /// Panics if the the shift causes an overflow.
    pub fn shift_right(&mut self, offset: &T) {
        self.ranges.iter_mut().for_each(|range| {
            range.start = range.start + *offset;
            range.end = range.end + *offset;
        });
    }
}

impl<T: Copy + Ord> RangeSet<T>
where
    Range<T>: ExactSizeIterator<Item = T>,
{
    /// Returns the number of values in the set.
    #[must_use]
    pub fn len(&self) -> usize {
        self.ranges.iter().map(|range| range.len()).sum()
    }
}

impl<T: Copy + Ord> TryFrom<RangeSet<T>> for Range<T> {
    type Error = RangeSet<T>;

    /// Attempts to convert a `RangeSet` into a single `Range`, returning the set if it
    /// does not contain exactly one range.
    fn try_from(set: RangeSet<T>) -> Result<Self, Self::Error> {
        if set.len_ranges() == 1 {
            Ok(set.ranges.into_iter().next().unwrap())
        } else {
            Err(set)
        }
    }
}

impl<T: Copy + Ord> From<Range<T>> for RangeSet<T> {
    fn from(range: Range<T>) -> Self {
        if range.is_empty() {
            return Self::default();
        }

        Self {
            ranges: Vec::from([range]),
        }
    }
}

impl<const N: usize, T: Copy + Ord> From<[Range<T>; N]> for RangeSet<T> {
    fn from(ranges: [Range<T>; N]) -> Self {
        Self::new(&ranges)
    }
}

impl<T: Copy + Ord> From<&[Range<T>]> for RangeSet<T> {
    fn from(ranges: &[Range<T>]) -> Self {
        Self::new(ranges)
    }
}

impl<T: Copy + Ord> PartialEq<Range<T>> for RangeSet<T> {
    fn eq(&self, other: &Range<T>) -> bool {
        self.ranges.len() == 1 && self.ranges[0] == *other
    }
}

impl<T: Copy + Ord> PartialEq<Range<T>> for &RangeSet<T> {
    fn eq(&self, other: &Range<T>) -> bool {
        *self == other
    }
}

impl<T: Copy + Ord> PartialEq<RangeSet<T>> for Range<T> {
    fn eq(&self, other: &RangeSet<T>) -> bool {
        other == self
    }
}

impl<T: Copy + Ord> PartialEq<RangeSet<T>> for &Range<T> {
    fn eq(&self, other: &RangeSet<T>) -> bool {
        other == *self
    }
}

/// An iterator over the values in a `RangeSet`.
pub struct RangeSetIter<'a, T> {
    iter: std::slice::Iter<'a, Range<T>>,
    current: Option<Range<T>>,
}

impl<T> Iterator for RangeSetIter<'_, T>
where
    T: Copy + Ord,
    Range<T>: Iterator<Item = T>,
{
    type Item = T;

    fn next(&mut self) -> Option<Self::Item> {
        if let Some(range) = &mut self.current {
            if let Some(value) = range.next() {
                return Some(value);
            } else {
                self.current = None;
                return self.next();
            }
        }

        if let Some(range) = self.iter.next() {
            self.current = Some(range.clone());
            return self.next();
        }

        None
    }
}

/// An iterator over the ranges in a `RangeSet`.
pub struct RangeIter<'a, T> {
    iter: std::slice::Iter<'a, Range<T>>,
}

impl<T> Iterator for RangeIter<'_, T>
where
    T: Copy + Ord,
    Range<T>: Iterator<Item = T>,
{
    type Item = Range<T>;

    fn next(&mut self) -> Option<Self::Item> {
        self.iter.next().cloned()
    }
}

impl<T> ExactSizeIterator for RangeIter<'_, T>
where
    T: Copy + Ord,
    Range<T>: Iterator<Item = T>,
{
    fn len(&self) -> usize {
        self.iter.len()
    }
}

impl<T> DoubleEndedIterator for RangeIter<'_, T>
where
    T: Copy + Ord,
    Range<T>: Iterator<Item = T>,
{
    fn next_back(&mut self) -> Option<Self::Item> {
        self.iter.next_back().cloned()
    }
}

/// A type which has a corresponding range set.
pub trait ToRangeSet<T: Copy + Ord> {
    /// Returns a corresponding range set.
    fn to_range_set(&self) -> RangeSet<T>;
}

impl<T: Copy + Ord> ToRangeSet<T> for RangeSet<T> {
    fn to_range_set(&self) -> RangeSet<T> {
        self.clone()
    }
}

impl<T: Copy + Ord> ToRangeSet<T> for Range<T> {
    fn to_range_set(&self) -> RangeSet<T> {
        RangeSet::from(self.clone())
    }
}

pub trait Disjoint<Rhs> {
    /// Returns `true` if the range is disjoint with `other`.
    #[must_use]
    fn is_disjoint(&self, other: &Rhs) -> bool;
}

pub trait Contains<Rhs> {
    /// Returns `true` if `self` contains `other`.
    #[must_use]
    fn contains(&self, other: &Rhs) -> bool;
}

/// A type which successor and predecessor operations can be performed on.
///
/// Similar to `std::iter::Step`, but not nightly-only.
pub trait Step: Sized {
    /// Steps forwards by `count` elements.
    fn forward(start: Self, count: usize) -> Option<Self>;

    /// Steps backwards by `count` elements.
    fn backward(start: Self, count: usize) -> Option<Self>;
}

macro_rules! impl_step {
    ($($ty:ty),+) => {
        $(
            impl Step for $ty {
                fn forward(start: Self, count: usize) -> Option<Self> {
                    start.checked_add(count as Self)
                }

                fn backward(start: Self, count: usize) -> Option<Self> {
                    start.checked_sub(count as Self)
                }
            }
        )*
    };
}

impl_step!(
    u8, u16, u32, u64, u128, usize, i8, i16, i32, i64, i128, isize
);

impl<T: Copy + Ord> Disjoint<Range<T>> for Range<T> {
    fn is_disjoint(&self, other: &Range<T>) -> bool {
        self.start >= other.end || self.end <= other.start
    }
}

impl<T: Copy + Ord> Disjoint<RangeSet<T>> for Range<T> {
    fn is_disjoint(&self, other: &RangeSet<T>) -> bool {
        other.ranges.iter().all(|range| self.is_disjoint(range))
    }
}

impl<T: Copy + Ord> Disjoint<RangeSet<T>> for RangeSet<T> {
    fn is_disjoint(&self, other: &RangeSet<T>) -> bool {
        self.ranges.iter().all(|range| range.is_disjoint(other))
    }
}

impl<T: Copy + Ord> Disjoint<Range<T>> for RangeSet<T> {
    fn is_disjoint(&self, other: &Range<T>) -> bool {
        other.is_disjoint(self)
    }
}

/// Asserts that the ranges of the given set are sorted, non-adjacent, non-intersecting, and non-empty.
#[cfg(test)]
pub fn assert_invariants<T: Copy + Ord>(set: &RangeSet<T>) {
    assert!(set.ranges.windows(2).all(|w| w[0].start < w[1].start
        && w[0].end < w[1].start
        && w[0].start < w[0].end
        && w[1].start < w[1].end));
}

#[cfg(test)]
#[allow(clippy::all)]
mod tests {
    use super::*;
    use rstest::*;

    #[test]
    fn test_range_disjoint() {
        let a = 10..20;

        // rightward
        assert!(a.is_disjoint(&(20..30)));
        // rightward aligned
        assert!(!a.is_disjoint(&(19..25)));
        // leftward
        assert!(a.is_disjoint(&(0..10)));
        // leftward aligned
        assert!(!a.is_disjoint(&(5..11)));
        // rightward subset
        assert!(!a.is_disjoint(&(15..25)));
        // leftward subset
        assert!(!a.is_disjoint(&(5..15)));
        // superset
        assert!(!a.is_disjoint(&(5..25)));
        // equal
        assert!(!a.is_disjoint(&(10..20)));
    }

    #[test]
    fn test_range_set_iter() {
        let a = RangeSet::from([(10..20), (30..40), (50..60)]);

        let values = a.iter().collect::<Vec<_>>();
        let expected_values = (10..20).chain(30..40).chain(50..60).collect::<Vec<_>>();
        assert_eq!(values, expected_values);
    }

    #[test]
    fn test_range_iter() {
        let a = RangeSet::from([(10..20), (30..40), (50..60)]);

        let values = a.iter_ranges().collect::<Vec<_>>();
        let expected_values = vec![10..20, 30..40, 50..60];

        assert_eq!(values, expected_values);

        let reversed_values = a.iter_ranges().rev().collect::<Vec<_>>();
        let expected_reversed_values = vec![50..60, 30..40, 10..20];

        assert_eq!(reversed_values, expected_reversed_values);

        let mut iter = a.iter_ranges();
        assert_eq!(iter.len(), 3);
        _ = iter.next();
        assert_eq!(iter.len(), 2);
    }

    #[rstest]
    #[case(RangeSet::from([(0..1)]), 0)]
    #[case(RangeSet::from([(0..5)]), 1)]
    #[case(RangeSet::from([(0..5), (6..10)]), 4)]
    #[case(RangeSet::from([(0..5), (6..10)]), 6)]
    #[case(RangeSet::from([(0..5), (6..10)]), 9)]
    fn test_range_set_split_off(#[case] set: RangeSet<usize>, #[case] at: usize) {
        let mut a = set.clone();
        let b = a.split_off(&at);

        assert!(
            a.ranges
                .last()
                .map(|range| !range.is_empty())
                .unwrap_or(true)
        );
        assert!(
            b.ranges
                .first()
                .map(|range| !range.is_empty())
                .unwrap_or(true)
        );
        assert_eq!(a.len() + b.len(), set.len());
        assert!(a.iter().chain(b.iter()).eq(set.iter()));
    }

    #[test]
    #[should_panic = "`at` is in the set"]
    fn test_range_set_split_off_panic_not_in_set() {
        RangeSet::from([0..1]).split_off(&1);
    }

    #[test]
    fn test_range_set_shift_left() {
        let mut a = RangeSet::from([(1..5), (6..10)]);
        a.shift_left(&1);

        assert_eq!(a, RangeSet::from([(0..4), (5..9)]));
    }

    #[test]
    fn test_range_set_shift_right() {
        let mut a = RangeSet::from([(0..4), (5..9)]);
        a.shift_right(&1);

        assert_eq!(a, RangeSet::from([(1..5), (6..10)]));
    }

    #[test]
    fn test_range_set_max() {
        assert!(RangeSet::<u8>::default().max().is_none());
        assert_eq!(RangeSet::from([0..1]).max(), Some(0));
        assert_eq!(RangeSet::from([0..2]).max(), Some(1));
        assert_eq!(RangeSet::from([(0..5), (6..10)]).max(), Some(9));
    }
}