randomx4r-sys 0.1.1

FFI bindings for RandomX
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
/*
Copyright (c) 2018-2019, tevador <tevador@gmail.com>

All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
	* Redistributions of source code must retain the above copyright
	  notice, this list of conditions and the following disclaimer.
	* Redistributions in binary form must reproduce the above copyright
	  notice, this list of conditions and the following disclaimer in the
	  documentation and/or other materials provided with the distribution.
	* Neither the name of the copyright holder nor the
	  names of its contributors may be used to endorse or promote products
	  derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/

/* Original code from Argon2 reference source code package used under CC0 Licence
 * https://github.com/P-H-C/phc-winner-argon2
 * Copyright 2015
 * Daniel Dinu, Dmitry Khovratovich, Jean-Philippe Aumasson, and Samuel Neves
*/

 /*For memory wiping*/
#ifdef _MSC_VER
#include <windows.h>
#include <winbase.h> /* For SecureZeroMemory */
#endif
#if defined __STDC_LIB_EXT1__
#define __STDC_WANT_LIB_EXT1__ 1
#endif
#define VC_GE_2005(version) (version >= 1400)

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include "argon2_core.h"
#include "blake2/blake2.h"
#include "blake2/blake2-impl.h"

#ifdef GENKAT
#include "genkat.h"
#endif

#if defined(__clang__)
#if __has_attribute(optnone)
#define NOT_OPTIMIZED __attribute__((optnone))
#endif
#elif defined(__GNUC__)
#define GCC_VERSION                                                            \
    (__GNUC__ * 10000 + __GNUC_MINOR__ * 100 + __GNUC_PATCHLEVEL__)
#if GCC_VERSION >= 40400
#define NOT_OPTIMIZED __attribute__((optimize("O0")))
#endif
#endif
#ifndef NOT_OPTIMIZED
#define NOT_OPTIMIZED
#endif

/***************Instance and Position constructors**********/

static void load_block(block *dst, const void *input) {
	unsigned i;
	for (i = 0; i < ARGON2_QWORDS_IN_BLOCK; ++i) {
		dst->v[i] = load64((const uint8_t *)input + i * sizeof(dst->v[i]));
	}
}

static void store_block(void *output, const block *src) {
	unsigned i;
	for (i = 0; i < ARGON2_QWORDS_IN_BLOCK; ++i) {
		store64((uint8_t *)output + i * sizeof(src->v[i]), src->v[i]);
	}
}

uint32_t randomx_argon2_index_alpha(const argon2_instance_t *instance,
	const argon2_position_t *position, uint32_t pseudo_rand,
	int same_lane) {
	/*
	 * Pass 0:
	 *      This lane : all already finished segments plus already constructed
	 * blocks in this segment
	 *      Other lanes : all already finished segments
	 * Pass 1+:
	 *      This lane : (SYNC_POINTS - 1) last segments plus already constructed
	 * blocks in this segment
	 *      Other lanes : (SYNC_POINTS - 1) last segments
	 */
	uint32_t reference_area_size;
	uint64_t relative_position;
	uint32_t start_position, absolute_position;

	if (0 == position->pass) {
		/* First pass */
		if (0 == position->slice) {
			/* First slice */
			reference_area_size =
				position->index - 1; /* all but the previous */
		}
		else {
			if (same_lane) {
				/* The same lane => add current segment */
				reference_area_size =
					position->slice * instance->segment_length +
					position->index - 1;
			}
			else {
				reference_area_size =
					position->slice * instance->segment_length +
					((position->index == 0) ? (-1) : 0);
			}
		}
	}
	else {
		/* Second pass */
		if (same_lane) {
			reference_area_size = instance->lane_length -
				instance->segment_length + position->index -
				1;
		}
		else {
			reference_area_size = instance->lane_length -
				instance->segment_length +
				((position->index == 0) ? (-1) : 0);
		}
	}

	/* 1.2.4. Mapping pseudo_rand to 0..<reference_area_size-1> and produce
	 * relative position */
	relative_position = pseudo_rand;
	relative_position = relative_position * relative_position >> 32;
	relative_position = reference_area_size - 1 -
		(reference_area_size * relative_position >> 32);

	/* 1.2.5 Computing starting position */
	start_position = 0;

	if (0 != position->pass) {
		start_position = (position->slice == ARGON2_SYNC_POINTS - 1)
			? 0
			: (position->slice + 1) * instance->segment_length;
	}

	/* 1.2.6. Computing absolute position */
	absolute_position = (start_position + relative_position) %
		instance->lane_length; /* absolute position */
	return absolute_position;
}

/* Single-threaded version for p=1 case */
static int fill_memory_blocks_st(argon2_instance_t *instance) {
	uint32_t r, s, l;

	for (r = 0; r < instance->passes; ++r) {
		for (s = 0; s < ARGON2_SYNC_POINTS; ++s) {
			for (l = 0; l < instance->lanes; ++l) {
				argon2_position_t position = { r, l, (uint8_t)s, 0 };
				//fill the segment using the selected implementation
				instance->impl(instance, position);
			}
		}
	}
	return ARGON2_OK;
}

int randomx_argon2_fill_memory_blocks(argon2_instance_t *instance) {
	if (instance == NULL || instance->lanes == 0) {
		return ARGON2_INCORRECT_PARAMETER;
	}
	return fill_memory_blocks_st(instance);
}

int randomx_argon2_validate_inputs(const argon2_context *context) {
	if (NULL == context) {
		return ARGON2_INCORRECT_PARAMETER;
	}

	/* Validate password (required param) */
	if (NULL == context->pwd) {
		if (0 != context->pwdlen) {
			return ARGON2_PWD_PTR_MISMATCH;
		}
	}

	if (ARGON2_MIN_PWD_LENGTH > context->pwdlen) {
		return ARGON2_PWD_TOO_SHORT;
	}

	if (ARGON2_MAX_PWD_LENGTH < context->pwdlen) {
		return ARGON2_PWD_TOO_LONG;
	}

	/* Validate salt (required param) */
	if (NULL == context->salt) {
		if (0 != context->saltlen) {
			return ARGON2_SALT_PTR_MISMATCH;
		}
	}

	if (ARGON2_MIN_SALT_LENGTH > context->saltlen) {
		return ARGON2_SALT_TOO_SHORT;
	}

	if (ARGON2_MAX_SALT_LENGTH < context->saltlen) {
		return ARGON2_SALT_TOO_LONG;
	}

	/* Validate secret (optional param) */
	if (NULL == context->secret) {
		if (0 != context->secretlen) {
			return ARGON2_SECRET_PTR_MISMATCH;
		}
	}
	else {
		if (ARGON2_MIN_SECRET > context->secretlen) {
			return ARGON2_SECRET_TOO_SHORT;
		}
		if (ARGON2_MAX_SECRET < context->secretlen) {
			return ARGON2_SECRET_TOO_LONG;
		}
	}

	/* Validate associated data (optional param) */
	if (NULL == context->ad) {
		if (0 != context->adlen) {
			return ARGON2_AD_PTR_MISMATCH;
		}
	}
	else {
		if (ARGON2_MIN_AD_LENGTH > context->adlen) {
			return ARGON2_AD_TOO_SHORT;
		}
		if (ARGON2_MAX_AD_LENGTH < context->adlen) {
			return ARGON2_AD_TOO_LONG;
		}
	}

	/* Validate memory cost */
	if (ARGON2_MIN_MEMORY > context->m_cost) {
		return ARGON2_MEMORY_TOO_LITTLE;
	}

	if (ARGON2_MAX_MEMORY < context->m_cost) {
		return ARGON2_MEMORY_TOO_MUCH;
	}

	if (context->m_cost < 8 * context->lanes) {
		return ARGON2_MEMORY_TOO_LITTLE;
	}

	/* Validate time cost */
	if (ARGON2_MIN_TIME > context->t_cost) {
		return ARGON2_TIME_TOO_SMALL;
	}

	if (ARGON2_MAX_TIME < context->t_cost) {
		return ARGON2_TIME_TOO_LARGE;
	}

	/* Validate lanes */
	if (ARGON2_MIN_LANES > context->lanes) {
		return ARGON2_LANES_TOO_FEW;
	}

	if (ARGON2_MAX_LANES < context->lanes) {
		return ARGON2_LANES_TOO_MANY;
	}

	/* Validate threads */
	if (ARGON2_MIN_THREADS > context->threads) {
		return ARGON2_THREADS_TOO_FEW;
	}

	if (ARGON2_MAX_THREADS < context->threads) {
		return ARGON2_THREADS_TOO_MANY;
	}

	if (NULL != context->allocate_cbk && NULL == context->free_cbk) {
		return ARGON2_FREE_MEMORY_CBK_NULL;
	}

	if (NULL == context->allocate_cbk && NULL != context->free_cbk) {
		return ARGON2_ALLOCATE_MEMORY_CBK_NULL;
	}

	return ARGON2_OK;
}

void rxa2_fill_first_blocks(uint8_t *blockhash, const argon2_instance_t *instance) {
	uint32_t l;
	/* Make the first and second block in each lane as G(H0||0||i) or
	   G(H0||1||i) */
	uint8_t blockhash_bytes[ARGON2_BLOCK_SIZE];
	for (l = 0; l < instance->lanes; ++l) {

		store32(blockhash + ARGON2_PREHASH_DIGEST_LENGTH, 0);
		store32(blockhash + ARGON2_PREHASH_DIGEST_LENGTH + 4, l);
		blake2b_long(blockhash_bytes, ARGON2_BLOCK_SIZE, blockhash,
			ARGON2_PREHASH_SEED_LENGTH);
		load_block(&instance->memory[l * instance->lane_length + 0],
			blockhash_bytes);

		store32(blockhash + ARGON2_PREHASH_DIGEST_LENGTH, 1);
		blake2b_long(blockhash_bytes, ARGON2_BLOCK_SIZE, blockhash,
			ARGON2_PREHASH_SEED_LENGTH);
		load_block(&instance->memory[l * instance->lane_length + 1],
			blockhash_bytes);
	}
}

void rxa2_initial_hash(uint8_t *blockhash, argon2_context *context, argon2_type type) {
	blake2b_state BlakeHash;
	uint8_t value[sizeof(uint32_t)];

	if (NULL == context || NULL == blockhash) {
		return;
	}

	blake2b_init(&BlakeHash, ARGON2_PREHASH_DIGEST_LENGTH);

	store32(&value, context->lanes);
	blake2b_update(&BlakeHash, (const uint8_t *)&value, sizeof(value));

	store32(&value, context->outlen);
	blake2b_update(&BlakeHash, (const uint8_t *)&value, sizeof(value));

	store32(&value, context->m_cost);
	blake2b_update(&BlakeHash, (const uint8_t *)&value, sizeof(value));

	store32(&value, context->t_cost);
	blake2b_update(&BlakeHash, (const uint8_t *)&value, sizeof(value));

	store32(&value, context->version);
	blake2b_update(&BlakeHash, (const uint8_t *)&value, sizeof(value));

	store32(&value, (uint32_t)type);
	blake2b_update(&BlakeHash, (const uint8_t *)&value, sizeof(value));

	store32(&value, context->pwdlen);
	blake2b_update(&BlakeHash, (const uint8_t *)&value, sizeof(value));

	if (context->pwd != NULL) {
		blake2b_update(&BlakeHash, (const uint8_t *)context->pwd,
			context->pwdlen);
	}

	store32(&value, context->saltlen);
	blake2b_update(&BlakeHash, (const uint8_t *)&value, sizeof(value));

	if (context->salt != NULL) {
		blake2b_update(&BlakeHash, (const uint8_t *)context->salt, context->saltlen);
	}

	store32(&value, context->secretlen);
	blake2b_update(&BlakeHash, (const uint8_t *)&value, sizeof(value));

	if (context->secret != NULL) {
		blake2b_update(&BlakeHash, (const uint8_t *)context->secret,
			context->secretlen);
	}

	store32(&value, context->adlen);
	blake2b_update(&BlakeHash, (const uint8_t *)&value, sizeof(value));

	if (context->ad != NULL) {
		blake2b_update(&BlakeHash, (const uint8_t *)context->ad,
			context->adlen);
	}

	blake2b_final(&BlakeHash, blockhash, ARGON2_PREHASH_DIGEST_LENGTH);
}

int randomx_argon2_initialize(argon2_instance_t *instance, argon2_context *context) {
	uint8_t blockhash[ARGON2_PREHASH_SEED_LENGTH];
	int result = ARGON2_OK;

	if (instance == NULL || context == NULL)
		return ARGON2_INCORRECT_PARAMETER;
	instance->context_ptr = context;

	/* 1. Memory allocation */
	//RandomX takes care of memory allocation

	/* 2. Initial hashing */
	/* H_0 + 8 extra bytes to produce the first blocks */
	/* uint8_t blockhash[ARGON2_PREHASH_SEED_LENGTH]; */
	/* Hashing all inputs */
	rxa2_initial_hash(blockhash, context, instance->type);
	/* Zeroing 8 extra bytes */
	/*rxa2_clear_internal_memory(blockhash + ARGON2_PREHASH_DIGEST_LENGTH,
		ARGON2_PREHASH_SEED_LENGTH -
		ARGON2_PREHASH_DIGEST_LENGTH);*/

	/* 3. Creating first blocks, we always have at least two blocks in a slice
	 */
	rxa2_fill_first_blocks(blockhash, instance);

	return ARGON2_OK;
}