radius2 1.0.28

a fast symbolic execution framework using r2
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
use crate::memory::{Memory, READ_CACHE};
use crate::r2_api::{Endian, Information, R2Api};
use crate::registers::Registers;
use crate::sims::fs::SimFilesytem;
use crate::solver::{BitVec, Solver};
use crate::value::{byte_values, vc, Value};

use std::cmp::Ordering;
use std::collections::{HashMap, HashSet};
use std::rc::Rc;
use std::u8;

// event hooks could be a performance issue at some point
// prolly not now cuz there are 10000 slower things
// but also i hate the code for them and want to remove it
pub const DO_EVENT_HOOKS: bool = false;

#[derive(Debug, Clone, PartialEq, Hash, Eq)]
pub enum EventTrigger {
    Before, // call hook before event occurs
    After,  // call hook after
}

#[derive(Debug, Clone, PartialEq, Hash, Eq)]
pub enum Event {
    SymbolicRead(EventTrigger),    // read from symbolic address
    SymbolicWrite(EventTrigger),   // write to symbolic address
    SymbolicExec(EventTrigger),    // execute symbolic address
    Alloc(EventTrigger),           // allocate memory
    SymbolicAlloc(EventTrigger),   // allocate symbolic length
    Free(EventTrigger),            // free memory
    SymbolicFree(EventTrigger),    // free symbolic address
    Search(EventTrigger),          // mem search (strchr, memmem)
    SymbolicSearch(EventTrigger),  // search with symbolic addr, needle, or length
    Compare(EventTrigger),         // compare memory (memcmp, strcmp)
    SymbolicCompare(EventTrigger), // symbolic compare
    StringLength(EventTrigger),    // string length check (strlen)
    SymbolicStrlen(EventTrigger),  // strlen of symbolic address
    Move(EventTrigger),            // move bytes from src to dst (memcpy, memmove)
    SymbolicMove(EventTrigger),    // symbolic move (memcpy, memmove)
    All(EventTrigger),             // gotta hook em all, ra! - di! - us!
}

#[derive(Debug, Clone, PartialEq)]
pub enum EventContext {
    ReadContext(Value, Value),
    WriteContext(Value, Value),
    ExecContext(Value, Vec<u64>),
    AllocContext(Value),
    FreeContext(Value),
    SearchContext(Value, Value, Value),
    CompareContext(Value, Value, Value),
    StrlenContext(Value, Value),
    MoveContext(Value, Value, Value),
}

pub type EventHook = dyn Fn(&mut State, &EventContext);

#[derive(Debug, Clone, PartialEq)]
pub enum ExecMode {
    If,     // in a symbolic if clause ?{,...,}
    Else,   // in a symbolic else clause ?{,---,}{,...,}
    Exec,   // in a clause that is always executed 1,?{,...,}
    NoExec, // in a clause that is never executed 0,?{,...,}
    Uncon,  // not in an if or else, regular parsing
}

#[derive(Debug, Clone)]
pub struct EsilState {
    pub mode: ExecMode,
    pub prev_pc: Value,
    pub previous: Value,
    pub current: Value,
    pub last_sz: usize,
    pub stored_address: Option<Value>,
    pub temp1: Vec<StackItem>,
    pub temp2: Vec<StackItem>,
    pub pcs: Vec<u64>,
}

#[derive(Debug, Clone)]
pub enum StackItem {
    StackRegister(usize),
    StackValue(Value),
}

impl Default for StackItem {
    fn default() -> Self {
        StackItem::StackValue(Value::Concrete(0, 0))
    }
}

#[derive(Debug, Clone, PartialEq)]
pub enum StateStatus {
    Active,
    Break,
    Merge,
    PostMerge, // so we dont get caught in merge loop
    Unsat,
    Inactive,
    Crash(u64, char),
    Exit,
}

/// A program state, including memory, registers, and solver data
#[derive(Clone)]
pub struct State {
    pub solver: Solver,
    pub r2api: R2Api,
    pub info: Information,
    pub stack: Vec<StackItem>,
    pub esil: EsilState,
    pub condition: Option<BitVec>,
    pub registers: Registers,
    pub memory: Memory,
    pub filesystem: SimFilesytem,
    pub status: StateStatus,
    pub context: HashMap<String, Vec<Value>>,
    pub taints: HashMap<String, u64>,
    pub hooks: HashMap<Event, Rc<EventHook>>,
    pub visits: HashMap<u64, usize>,
    pub pid: u64,
    pub backtrace: Vec<(u64, u64)>,
    pub blank: bool,
    pub debug: bool,
    pub check: bool,
    pub strict: bool,
    pub has_event_hooks: bool,
}

// state equality is based on PC visit count
// in order to use a priority queue to manage states
impl PartialEq for State {
    fn eq(&self, other: &Self) -> bool {
        other.get_visit() == self.get_visit()
    }
}

impl Eq for State {}

impl Ord for State {
    fn cmp(&self, other: &Self) -> Ordering {
        other.get_visit().cmp(&self.get_visit())
    }
}

impl PartialOrd for State {
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        Some(self.cmp(other))
    }
}

impl State {
    /// Create a new state, should generally not be called directly
    pub fn new(
        r2api: &mut R2Api,
        eval_max: usize,
        debug: bool,
        blank: bool,
        check: bool,
        strict: bool,
    ) -> Self {
        let esil_state = EsilState {
            mode: ExecMode::Uncon,
            prev_pc: Value::Concrete(0, 0),
            previous: Value::Concrete(0, 0),
            current: Value::Concrete(0, 0),
            last_sz: 64,
            stored_address: None,
            temp1: vec![], // these instances are actually not used
            temp2: vec![],
            pcs: Vec::with_capacity(64),
        };

        let solver = Solver::new(eval_max);
        let registers = Registers::new(r2api, solver.clone(), blank);
        let memory = Memory::new(r2api, solver.clone(), blank);

        State {
            solver,
            r2api: r2api.clone(),
            info: r2api.info.clone(),
            stack: Vec::with_capacity(128),
            esil: esil_state,
            condition: None,
            registers,
            memory,
            filesystem: SimFilesytem::new(),
            status: StateStatus::Active,
            context: HashMap::new(),
            taints: HashMap::new(),
            hooks: HashMap::new(),
            visits: HashMap::with_capacity(512),
            backtrace: Vec::with_capacity(128),
            pid: 1337, // sup3rh4x0r
            blank,
            debug,
            check,
            strict,
            has_event_hooks: false,
        }
    }

    /// duplicate state is different from clone as it creates
    /// a duplicate solver instead of another reference to the old one
    pub fn duplicate(&mut self) -> Self {
        let solver = self.solver.duplicate();

        let mut registers = self.registers.clone();
        registers.solver = solver.clone();
        registers.values = registers
            .values
            .iter()
            .map(|r| solver.translate_value(r))
            .collect();

        let mut memory = self.memory.clone();
        memory.solver = solver.clone();

        let addrs = memory.addresses();
        for addr in addrs {
            let values = memory.mem.remove(&addr).unwrap();
            memory.mem.insert(
                addr,
                values.iter().map(|v| solver.translate_value(&v)).collect(),
            );
        }

        let mut context = HashMap::new();
        for key in self.context.keys() {
            let values = self.context.get(key).unwrap();
            let new_values = values.iter().map(|v| solver.translate_value(v)).collect();

            context.insert(key.to_owned(), new_values);
        }

        let mut filesystem = self.filesystem.clone();
        for f in &mut filesystem.files {
            let content = f.content.clone();
            f.content = content.iter().map(|v| solver.translate_value(v)).collect();
        }

        let esil_state = EsilState {
            mode: ExecMode::Uncon,
            prev_pc: self.esil.prev_pc.clone(),
            previous: vc(0),
            current: vc(0),
            last_sz: 64,
            stored_address: None,
            temp1: Vec::with_capacity(128),
            temp2: Vec::with_capacity(128),
            pcs: Vec::with_capacity(64),
        };

        State {
            solver,
            r2api: self.r2api.clone(),
            info: self.info.clone(),
            stack: Vec::with_capacity(128),
            esil: esil_state,
            condition: None,
            registers,
            memory,
            filesystem,
            status: self.status.clone(),
            context,
            taints: self.taints.clone(),
            hooks: self.hooks.clone(),
            visits: self.visits.clone(),
            backtrace: self.backtrace.clone(),
            pid: self.pid,
            blank: self.blank,
            debug: self.debug,
            check: self.check,
            strict: self.strict,
            has_event_hooks: self.has_event_hooks,
        }
    }

    pub fn hook_event(&mut self, event: Event, hook: Rc<EventHook>) {
        self.has_event_hooks = true;
        self.hooks.insert(event, hook);
    }

    pub fn do_hooked(&mut self, event: &Event, event_context: &EventContext) {
        if !self.hooks.contains_key(event) {
            return;
        }
        let hook = self.hooks.get(event).unwrap().clone();
        hook(self, event_context)
    }

    /// Allocate a block of memory `length` bytes in size
    pub fn memory_alloc(&mut self, length: &Value) -> Value {
        if DO_EVENT_HOOKS && self.has_event_hooks {
            let event = if length.is_symbolic() {
                Event::SymbolicAlloc(EventTrigger::Before)
            } else {
                Event::Alloc(EventTrigger::Before)
            };
            self.do_hooked(&event, &EventContext::AllocContext(length.to_owned()));
        }

        let ret = self.memory.alloc_sym(length, &mut self.solver);

        if DO_EVENT_HOOKS && self.has_event_hooks {
            let event = if length.is_symbolic() {
                Event::SymbolicAlloc(EventTrigger::After)
            } else {
                Event::Alloc(EventTrigger::After)
            };
            self.do_hooked(&event, &EventContext::AllocContext(length.to_owned()));
        }

        ret
    }

    /// Free a block of memory at `addr`
    pub fn memory_free(&mut self, addr: &Value) -> Value {
        if DO_EVENT_HOOKS && self.has_event_hooks {
            let event = if addr.is_symbolic() {
                Event::SymbolicFree(EventTrigger::Before)
            } else {
                Event::Free(EventTrigger::Before)
            };
            self.do_hooked(&event, &EventContext::FreeContext(addr.to_owned()));
        }

        if self.check && self.check_crash(addr, &vc(1), 'r') {
            return vc(-1i64 as u64);
        }

        let ret = self.memory.free_sym(addr, &mut self.solver);

        if DO_EVENT_HOOKS && self.has_event_hooks {
            let event = if addr.is_symbolic() {
                Event::SymbolicFree(EventTrigger::After)
            } else {
                Event::Free(EventTrigger::After)
            };
            self.do_hooked(&event, &EventContext::FreeContext(addr.to_owned()));
        }

        ret
    }

    /// Read `length` bytes from `address`
    pub fn memory_read(&mut self, address: &Value, length: &Value) -> Vec<Value> {
        if DO_EVENT_HOOKS && self.has_event_hooks && (address.is_symbolic() || length.is_symbolic())
        {
            self.do_hooked(
                &Event::SymbolicRead(EventTrigger::Before),
                &EventContext::ReadContext(address.to_owned(), length.to_owned()),
            );
        }

        if self.check && self.check_crash(address, length, 'r') {
            return vec![];
        }

        let ret = self.memory.read_sym_len(address, length, &mut self.solver);

        if DO_EVENT_HOOKS && self.has_event_hooks && (address.is_symbolic() || length.is_symbolic())
        {
            self.do_hooked(
                &Event::SymbolicRead(EventTrigger::After),
                &EventContext::ReadContext(address.to_owned(), length.to_owned()),
            );
        }

        ret
    }

    /// Write `length` bytes to `address`
    pub fn memory_write(&mut self, address: &Value, values: &[Value], length: &Value) {
        if DO_EVENT_HOOKS && self.has_event_hooks && (address.is_symbolic() || length.is_symbolic())
        {
            self.do_hooked(
                &Event::SymbolicWrite(EventTrigger::Before),
                &EventContext::WriteContext(address.to_owned(), length.to_owned()),
            );
        }

        if self.check && self.check_crash(address, length, 'r') {
            return;
        }
        let ret = self
            .memory
            .write_sym_len(address, values, length, &mut self.solver);

        if DO_EVENT_HOOKS && self.has_event_hooks && (address.is_symbolic() || length.is_symbolic())
        {
            self.do_hooked(
                &Event::SymbolicWrite(EventTrigger::After),
                &EventContext::WriteContext(address.to_owned(), length.to_owned()),
            );
        }

        ret
    }

    /// Read `length` byte `value` from `address`
    #[inline]
    pub fn memory_read_value(&mut self, address: &Value, length: usize) -> Value {
        if DO_EVENT_HOOKS && self.has_event_hooks && address.is_symbolic() {
            self.do_hooked(
                &Event::SymbolicRead(EventTrigger::Before),
                &EventContext::ReadContext(address.to_owned(), Value::Concrete(length as u64, 0)),
            );
        }

        if self.check && self.check_crash(address, &vc(length as u64), 'r') {
            return vc(-1i64 as u64);
        }

        let ret = self.memory.read_sym(address, length, &mut self.solver);

        if DO_EVENT_HOOKS && self.has_event_hooks && address.is_symbolic() {
            self.do_hooked(
                &Event::SymbolicRead(EventTrigger::After),
                &EventContext::ReadContext(address.to_owned(), Value::Concrete(length as u64, 0)),
            );
        }

        ret
    }

    /// Write `length` byte `value` to `address`
    #[inline]
    pub fn memory_write_value(&mut self, address: &Value, value: &Value, length: usize) {
        if DO_EVENT_HOOKS && self.has_event_hooks && address.is_symbolic() {
            self.do_hooked(
                &Event::SymbolicRead(EventTrigger::Before),
                &EventContext::ReadContext(address.to_owned(), Value::Concrete(length as u64, 0)),
            );
        }

        if self.check && self.check_crash(address, &vc(length as u64), 'w') {
            return;
        }

        let ret = self
            .memory
            .write_sym(address, value, length, &mut self.solver);

        if DO_EVENT_HOOKS && self.has_event_hooks && address.is_symbolic() {
            self.do_hooked(
                &Event::SymbolicWrite(EventTrigger::After),
                &EventContext::WriteContext(address.to_owned(), Value::Concrete(length as u64, 0)),
            );
        }

        ret
    }

    /// Search for `needle` at the address `addr` for a maximum of `length` bytes
    /// Returns a `Value` containing the **address** of the needle, not index
    pub fn memory_search(
        &mut self,
        addr: &Value,
        needle: &Value,
        length: &Value,
        reverse: bool,
    ) -> Value {
        if DO_EVENT_HOOKS && self.has_event_hooks {
            let event = if addr.is_symbolic() || length.is_symbolic() {
                Event::SymbolicSearch(EventTrigger::Before)
            } else {
                Event::Search(EventTrigger::Before)
            };
            self.do_hooked(
                &event,
                &EventContext::SearchContext(addr.to_owned(), needle.to_owned(), length.to_owned()),
            );
        }

        if self.check && self.check_crash(addr, &vc(1), 'r') {
            return vc(-1i64 as u64);
        }

        let ret = self
            .memory
            .search(addr, needle, length, reverse, &mut self.solver);

        if DO_EVENT_HOOKS && self.has_event_hooks {
            let event = if addr.is_symbolic() || length.is_symbolic() {
                Event::SymbolicSearch(EventTrigger::After)
            } else {
                Event::Search(EventTrigger::After)
            };
            self.do_hooked(
                &event,
                &EventContext::SearchContext(addr.to_owned(), needle.to_owned(), length.to_owned()),
            );
        }

        ret
    }

    /// Compare memory at `dst` and `src` address up to `length` bytes.
    /// This is akin to memcmp but will handle symbolic addrs and length
    pub fn memory_compare(&mut self, dst: &Value, src: &Value, length: &Value) -> Value {
        if DO_EVENT_HOOKS && self.has_event_hooks {
            let event = if dst.is_symbolic() || src.is_symbolic() || length.is_symbolic() {
                Event::SymbolicCompare(EventTrigger::Before)
            } else {
                Event::Compare(EventTrigger::Before)
            };
            self.do_hooked(
                &event,
                &EventContext::CompareContext(dst.to_owned(), src.to_owned(), length.to_owned()),
            );
        }

        if self.check && (self.check_crash(src, &vc(1), 'r') || self.check_crash(dst, &vc(1), 'r'))
        {
            return vc(-1i64 as u64);
        }

        let ret = self.memory.compare(dst, src, length, &mut self.solver);

        if DO_EVENT_HOOKS && self.has_event_hooks {
            let event = if dst.is_symbolic() || src.is_symbolic() || length.is_symbolic() {
                Event::SymbolicCompare(EventTrigger::After)
            } else {
                Event::Compare(EventTrigger::After)
            };
            self.do_hooked(
                &event,
                &EventContext::CompareContext(dst.to_owned(), src.to_owned(), length.to_owned()),
            );
        }

        ret
    }

    /// Get the length of the null terminated string at `addr`
    pub fn memory_strlen(&mut self, addr: &Value, length: &Value) -> Value {
        if DO_EVENT_HOOKS && self.has_event_hooks {
            let event = if addr.is_symbolic() || length.is_symbolic() {
                Event::SymbolicStrlen(EventTrigger::Before)
            } else {
                Event::StringLength(EventTrigger::Before)
            };
            self.do_hooked(
                &event,
                &EventContext::StrlenContext(addr.to_owned(), length.to_owned()),
            );
        }

        // eh don't use the length here
        if self.check && self.check_crash(addr, &vc(1), 'r') {
            return vc(-1i64 as u64);
        }

        let ret = self.memory.strlen(addr, length, &mut self.solver);

        if DO_EVENT_HOOKS && self.has_event_hooks {
            let event = if addr.is_symbolic() || length.is_symbolic() {
                Event::SymbolicStrlen(EventTrigger::After)
            } else {
                Event::StringLength(EventTrigger::After)
            };
            self.do_hooked(
                &event,
                &EventContext::StrlenContext(addr.to_owned(), length.to_owned()),
            );
        }

        ret
    }

    /// Move `length` bytes from `src` to `dst`
    pub fn memory_move(&mut self, dst: &Value, src: &Value, length: &Value) {
        if DO_EVENT_HOOKS && self.has_event_hooks {
            let event = if dst.is_symbolic() || src.is_symbolic() || length.is_symbolic() {
                Event::SymbolicMove(EventTrigger::Before)
            } else {
                Event::Move(EventTrigger::Before)
            };
            self.do_hooked(
                &event,
                &EventContext::MoveContext(dst.to_owned(), src.to_owned(), length.to_owned()),
            );
        }

        if self.check && (self.check_crash(src, length, 'r') || self.check_crash(dst, length, 'w'))
        {
            return;
        }

        self.memory.memmove(dst, src, length, &mut self.solver);

        if DO_EVENT_HOOKS && self.has_event_hooks {
            let event = if dst.is_symbolic() || src.is_symbolic() || length.is_symbolic() {
                Event::SymbolicMove(EventTrigger::After)
            } else {
                Event::Move(EventTrigger::After)
            };
            self.do_hooked(
                &event,
                &EventContext::MoveContext(dst.to_owned(), src.to_owned(), length.to_owned()),
            );
        }
    }

    /// Read pointer from `address`
    pub fn memory_read_ptr(&mut self, address: &Value) -> Value {
        let ptr_len = self.memory.bits as usize / 8;
        self.memory_read_value(address, ptr_len)
    }

    /// Write pointer `value` to `address`
    pub fn memory_write_ptr(&mut self, address: &Value, value: &Value) {
        let ptr_len = self.memory.bits as usize / 8;
        self.memory_write_value(address, value, ptr_len)
    }

    /// Read `length` bytes from `address`
    pub fn memory_read_bytes(&mut self, address: u64, length: usize) -> Vec<u8> {
        self.memory.read_bytes(address, length, &mut self.solver)
    }

    /// Read a string from `address` up to `length` bytes long
    pub fn memory_read_string(&mut self, address: u64, length: usize) -> String {
        self.memory.read_string(address, length, &mut self.solver)
    }

    /// Read a concrete c string from `address`
    pub fn memory_read_cstring(&mut self, address: u64) -> String {
        let length = self.memory_strlen(&vc(address), &vc(4096));
        let len = self.solver.evalcon_to_u64(&length).unwrap_or(0);
        self.memory
            .read_string(address, len as usize, &mut self.solver)
    }

    // this doesnt need to be here, just for consistency sake
    /// Write `string` to `address`
    pub fn memory_write_string(&mut self, address: u64, string: &str) {
        self.memory.write_string(address, string)
    }

    /// pack bytes into a single `Value`
    pub fn pack(&self, data: &[Value]) -> Value {
        self.memory.pack(data)
    }

    /// unpack `Value` into vector of bytes
    pub fn unpack(&self, data: &Value, length: usize) -> Vec<Value> {
        let mut values = vec![Value::Concrete(0, 0); length];
        self.memory.unpack(data, length, &mut values);
        values
    }

    pub fn fill_file(&mut self, fd: usize, data: &[Value]) {
        self.filesystem.fill(fd, data)
    }

    pub fn fill_file_string(&mut self, fd: usize, string: &str) {
        let data = byte_values(string);
        self.filesystem.fill(fd, &data)
    }

    pub fn dump_path(&mut self, path: &str) -> Vec<Value> {
        if let Some(fd) = self.filesystem.getfd(path) {
            self.filesystem.dump(fd)
        } else {
            vec![]
        }
    }

    pub fn dump_file(&mut self, fd: usize) -> Vec<Value> {
        self.filesystem.dump(fd)
    }

    pub fn dump_file_bytes(&mut self, fd: usize) -> Vec<u8> {
        let values = self.filesystem.dump(fd);
        let bytes = values
            .iter()
            .map(|v| self.solver.evalcon_to_u64(v).unwrap_or(0) as u8)
            .collect();

        bytes
    }

    pub fn dump_file_string(&mut self, fd: usize) -> Option<String> {
        String::from_utf8(self.dump_file_bytes(fd)).ok()
    }

    /// Apply this state to the radare2 instance. This writes all the values
    /// in the states memory back to the memory in r2 as well as the register
    /// values, evaluating any symbolic expressions.
    pub fn apply(&mut self) {
        let mut inds = Vec::with_capacity(256);
        for reg in &self.registers.indexes {
            if !inds.contains(&reg.value_index) {
                inds.push(reg.value_index);
                let rval = self.registers.values[reg.value_index].to_owned();
                let r = self.solver.evalcon_to_u64(&rval).unwrap();
                self.r2api.set_register_value(&reg.reg_info.name, r);
            }
        }

        let mut bvals = vec![Value::Concrete(0, 0); READ_CACHE];
        for addr in self.memory.addresses() {
            self.memory.read(addr, READ_CACHE, &mut bvals);
            let bytes: Vec<u8> = bvals
                .iter()
                .map(|bval| self.solver.evalcon_to_u64(&bval).unwrap() as u8)
                .collect();

            self.r2api.write(addr, bytes.clone());
        }

        // TODO: evaluate files and write to real FS? maybe a bad idea
    }

    /// Merges `state` into self
    pub fn merge(&mut self, state: &mut State) {
        let state_asserts = &state.solver.assertions;
        let assertion = state.solver.and_all(state_asserts);
        let asserted = Value::Symbolic(assertion, 0);

        // merge registers
        let reg_count = state.registers.values.len();
        for index in 0..reg_count {
            let reg = &self.registers.values[index];
            let curr_reg = &state.registers.values[index];
            //new_regs.push(state.solver.conditional(&asserted, curr_reg, reg));
            self.registers.values[index] = state.solver.conditional(&asserted, curr_reg, reg);
        }

        // merge memory
        //let mut new_mem = HashMap::with_capacity(1024);

        let merge_addrs = self.memory.addresses();
        let state_addrs = state.memory.addresses();

        let mut addrs = HashSet::with_capacity(READ_CACHE);
        addrs.extend(merge_addrs);
        addrs.extend(state_addrs);

        let mut tmp1 = Vec::with_capacity(READ_CACHE);
        let mut tmp2 = Vec::with_capacity(READ_CACHE);

        for addr in addrs {
            let newvec = if let Some(m) = self.memory.mem.get_mut(&addr) {
                m
            } else {
                self.memory.read(addr, READ_CACHE, &mut tmp1);
                &mut tmp1
            };
            let curvec = if let Some(m) = state.memory.mem.get(&addr) {
                m
            } else {
                state.memory.read(addr, READ_CACHE, &mut tmp2);
                &tmp2
            };

            for i in 0..READ_CACHE {
                if newvec.len() > i && curvec.len() > i {   
                    newvec[i] = state.cond(&asserted, &curvec[i], &newvec[i]);
                }
            }
        }

        // merge context
        for (k, v) in &state.context {
            for i in 0..v.len() {
                if let Some(nv) = self.context.get_mut(k) {
                    if i < nv.len() {
                        nv[i] = state.cond(&asserted, &v[i], &nv[i]);
                    } else {
                        nv.push(state.cond(&asserted, &v[i], &vc(0)))
                    }
                }
            }
        }

        // merge filesystem
        for file in &state.filesystem.files {
            for cfile in &mut self.filesystem.files {
                if file.path == cfile.path {
                    let mlen = if file.content.len() > cfile.content.len() { 
                        file.content.len()
                    } else {
                        cfile.content.len()
                    };
                    for i in 0..mlen {
                        let space = vc(0x20); // fill overflow with spaces, uhhh cuz
                        let v = file.content.get(i).unwrap_or(&space);
                        let cv = cfile.content.get(i).unwrap_or(&space);
                        if i < cfile.content.len() {
                            cfile.content[i] = state.cond(&asserted, &v, &cv);
                        } else {
                            cfile.content.push(state.cond(&asserted, &v, &cv));
                        }
                    }
                }
            }
        }

        // merge solvers
        let assertions = &self.solver.assertions;
        let current = state.solver.and_all(assertions);
        self.solver.reset();
        self.assert_bv(&current.or(&asserted.as_bv().unwrap()));
    }

    /// Use the constraints from the provided state. This is
    /// useful for constraining the data in some initial
    /// state with the assertions of some desired final state
    pub fn constrain_with_state(&mut self, state: &Self) {
        self.solver = state.solver.clone();
    }

    /// Create a bitvector from this states solver
    pub fn bv(&self, s: &str, n: u32) -> BitVec {
        self.solver.bv(s, n)
    }

    /// Create a bitvector value from this states solver
    pub fn bvv(&self, v: u64, n: u32) -> BitVec {
        self.solver.bvv(v, n)
    }

    /// Create a `Value::Concrete` from a value `v` and bit width `n`
    pub fn concrete_value(&self, v: u64, n: u32) -> Value {
        let mask = if n < 64 { (1 << n) - 1 } else { -1i64 as u64 };
        Value::Concrete(v & mask, 0)
    }

    /// Create a `Value::Symbolic` from a name `s` and bit width `n`
    pub fn symbolic_value(&self, s: &str, n: u32) -> Value {
        Value::Symbolic(self.bv(s, n), 0)
    }

    /// Create a tainted `Value::Concrete` from a value `v` and bit width `n`
    pub fn tainted_concrete_value(&mut self, t: &str, v: u64, n: u32) -> Value {
        let mask = if n < 64 { (1 << n) - 1 } else { -1i64 as u64 };
        let taint = self.get_tainted_identifier(t);
        Value::Concrete(v & mask, taint)
    }

    /// Create a tainted `Value::Symbolic` from a name `s` and bit width `n`
    pub fn tainted_symbolic_value(&mut self, t: &str, s: &str, n: u32) -> Value {
        let taint = self.get_tainted_identifier(t);
        Value::Symbolic(self.bv(s, n), taint)
    }

    /// Get the numeric identifier for the given taint name
    pub fn get_tainted_identifier(&mut self, t: &str) -> u64 {
        if let Some(taint) = self.taints.get(t) {
            *taint
        } else {
            let index = self.taints.len();
            if index < 64 {
                let new_taint = 1 << index as u64;
                self.taints.insert(t.to_owned(), new_taint);
                new_taint
            } else {
                // no need to panic
                println!("Max of 64 taints allowed!");
                0
            }
        }
    }

    /// Check if the `value` is tainted with the given `taint`  
    pub fn is_tainted_with(&mut self, value: &Value, taint: &str) -> bool {
        (value.get_taint() & self.get_tainted_identifier(taint)) != 0
    }

    /// BitVectors will need to be translated if run is multithreaded
    pub fn translate(&self, bv: &BitVec) -> Option<BitVec> {
        self.solver.translate(bv)
    }

    /// Translate `value` to this states solver
    pub fn translate_value(&self, value: &Value) -> Value {
        self.solver.translate_value(value)
    }

    /// Evaluate a `Value` `val`
    pub fn eval(&mut self, val: &Value) -> Option<Value> {
        self.solver.eval(val)
    }

    /// Evaluate a bitvector `bv`
    pub fn evaluate(&mut self, bv: &BitVec) -> Option<Value> {
        self.solver.evaluate(bv)
    }

    /// Evaluate and constrain the symbol to the u64
    pub fn evalcon(&mut self, bv: &BitVec) -> Option<u64> {
        self.solver.evalcon(bv)
    }

    /// Constrain bytes of bitvector to be an exact string eg. "ABC"
    /// or use "\[...\]" to match a simple pattern eg. "\[XYZa-z0-9\]"
    pub fn constrain_bytes_bv(&mut self, bv: &BitVec, pattern: &str) {
        if &pattern[..1] != "[" {
            for (i, c) in pattern.chars().enumerate() {
                self.assert_bv(
                    &bv.slice(8 * (i as u32 + 1) - 1, 8 * i as u32)
                        ._eq(&self.bvv(c as u64, 8)),
                );
            }
        } else {
            let patlen = pattern.len();
            let newpat = &pattern[1..patlen - 1];
            let mut assertions = Vec::with_capacity(256);

            for ind in 0..bv.get_width() / 8 {
                assertions.clear();
                let s = &bv.slice(8 * (ind + 1) - 1, 8 * ind);

                let mut i = 0;
                while i < patlen - 2 {
                    let c = newpat.as_bytes()[i] as u64;
                    if patlen > 4 && i < patlen - 4 && &newpat[i + 1..i + 2] == "-" {
                        let n = newpat.as_bytes()[i + 2] as u64;
                        i += 3;
                        assertions.push(s.ugte(&self.bvv(c, 8)).and(&s.ulte(&self.bvv(n, 8))));
                    } else {
                        i += 1;
                        assertions.push(s._eq(&self.bvv(c, 8)));
                    }
                }

                self.assert_bv(&self.solver.or_all(&assertions));
            }
        }
    }

    /// Constrain bytes of bitvector to be an exact string eg. "ABC"
    /// or use "\[...\]" to match a simple pattern eg. "\[XYZa-z0-9\]"
    pub fn constrain_bytes(&mut self, bv: &Value, pattern: &str) {
        if let Value::Symbolic(s, _) = bv {
            self.constrain_bytes_bv(s, pattern)
        }
    }

    /// Constrain bytes of file with file descriptor `fd` and pattern
    pub fn constrain_fd(&mut self, fd: usize, content: &str) {
        let fbytes = self.dump_file(fd);
        let fbv = self.pack(&fbytes);
        self.constrain_bytes(&fbv, content);
    }

    /// Constrain bytes of file at `path` with pattern
    pub fn constrain_file(&mut self, path: &str, content: &str) {
        if let Some(fd) = self.filesystem.getfd(path) {
            self.constrain_fd(fd, content);
        }
    }

    // search for string in file
    pub fn search_file(&mut self, path: &str, content: &str) -> Value {
        if let Some(fd) = self.filesystem.getfd(path) {
            self.search_fd(fd, content)
        } else {
            vc(-1i64 as u64)
        }
    }

    // TODO this is hacky as fuck, make it better
    pub fn search_fd(&mut self, fd: usize, content: &str) -> Value {
        let data = self.dump_file(fd);
        let length = vc(data.len() as u64);
        let addr = self.memory_alloc(&length);
        self.memory_write(&addr, &data, &length);
        let needle = self.pack(&byte_values(content));
        let result = self.memory_search(&addr, &needle, &length, false);
        self.memory_free(&addr);
        self.cond(&result.eq(&vc(0)), &vc(-1i64 as u64), &result)
    }

    /// Check if this state is satisfiable and mark the state `Unsat` if not
    pub fn is_sat(&mut self) -> bool {
        if self.solver.is_sat() {
            true
        } else {
            self.status = StateStatus::Unsat;
            false
        }
    }

    /// Increment visit counter
    pub fn visit(&mut self) {
        if let Some(pc) = self.registers.get_pc().as_u64() {
            self.visits.entry(pc).and_modify(|c| *c += 1).or_insert(1);
        }
    }

    /// Get visit counter
    pub fn get_visit(&self) -> usize {
        if let Some(pc) = self.registers.get_pc().as_u64() {
            *self.visits.get(&pc).unwrap_or(&0)
        } else {
            0
        }
    }

    /// Print backtrace
    pub fn print_backtrace(&mut self) {
        for (i, bt) in self.backtrace.iter().rev().enumerate() {
            let name = self.r2api.get_flag(bt.1).unwrap_or_default();
            println!("\n#{} 0x{:08x} ({})\n", i, bt.1, name.trim());
        }
    }

    /// Set status of state (active, inactive, merge, unsat...)
    pub fn set_status(&mut self, status: StateStatus) {
        self.status = status;
    }

    /// Get status of state (active, inactive, merge, unsat...)
    pub fn get_status(&mut self) -> StateStatus {
        self.status.clone()
    }

    /// Convenience method to mark state inactive
    pub fn set_inactive(&mut self) {
        self.set_status(StateStatus::Inactive);
    }

    /// Convenience method to mark state crashed
    pub fn set_crash(&mut self, addr: u64, perm: char) {
        self.set_status(StateStatus::Crash(addr, perm));
    }

    pub fn check_crash(&mut self, addr: &Value, len: &Value, perm: char) -> bool {
        let length = self.solver.max_value(len);
        match addr {
            Value::Concrete(address, _t) => {
                let crash = !self.memory.check_permission(*address, length, perm);
                if crash {
                    self.set_crash(*address, perm);
                }
                crash
            }
            Value::Symbolic(address, _t) => {
                let min = self.solver.min(address);
                let max = self.solver.max(address);
                let min_crash = !self.memory.check_permission(min, length, perm);
                let max_crash = !self.memory.check_permission(max, length, perm);
                if min_crash {
                    self.set_crash(min, perm);
                } else if max_crash {
                    self.set_crash(max, perm);
                }
                min_crash || max_crash
            }
        }
    }

    /// convenience method to break
    pub fn set_break(&mut self) {
        self.set_status(StateStatus::Break);
    }

    /// Get the argument values for the current function
    pub fn get_args(&mut self) -> Vec<Value> {
        let pc = self.registers.get_pc().as_u64().unwrap();
        let cc = self.r2api.get_cc(pc).unwrap_or_default();
        let mut args = Vec::with_capacity(16);

        if !cc.args.is_empty() {
            for arg in &cc.args {
                args.push(self.registers.get_with_alias(arg));
            }
        } else {
            // read args from stack?
            let mut sp = self.registers.get_with_alias("SP");
            let length = self.memory.bits as usize / 8;

            for _ in 0..8 {
                // do 8 idk?
                sp = sp + Value::Concrete(length as u64, 0);
                let value = self.memory_read_value(&sp, length);
                args.push(value);
            }
        }

        args
    }

    /// get the return value from the right register
    pub fn get_ret(&mut self) -> Value {
        let pc = self.registers.get_pc().as_u64().unwrap();
        let cc = self.r2api.get_cc(pc).unwrap_or_default();
        self.registers.get(&cc.ret)
    }

    /// Set the argument values for the current function
    pub fn set_args(&mut self, mut values: Vec<Value>) {
        let pc = self.registers.get_pc().as_u64().unwrap();
        let cc = self.r2api.get_cc(pc).unwrap_or_default();

        if !cc.args.is_empty() {
            for arg in &cc.args {
                if !values.is_empty() {
                    self.registers.set_with_alias(arg, values.remove(0));
                }
            }
        } else {
            // read args from stack?
            let mut sp = self.registers.get_with_alias("SP");
            let length = self.memory.bits as usize / 8;

            for _ in 0..8 {
                // do 8 idk?
                sp = sp + Value::Concrete(length as u64, 0);
                if !values.is_empty() {
                    self.memory_write_value(&sp, &values.remove(0), length);
                }
            }
        }
    }

    /// Assert the truth of the given bitvector (value != 0)
    pub fn assert_bv(&mut self, bv: &BitVec) {
        self.solver.assert_bv(bv)
    }

    /// Assert the truth of the given `Value` (value != 0)
    pub fn assert(&mut self, value: &Value) {
        self.solver.assert(value)
    }

    /// Check the satisfiability of the given value
    pub fn check(&mut self, val: &Value) -> bool {
        self.solver.check_sat(val)
    }

    /// Get a conditional value
    pub fn cond(&self, condition: &Value, if_val: &Value, else_val: &Value) -> Value {
        self.solver.conditional(condition, if_val, else_val)
    }

    /// Evaluate multiple solutions to bv
    pub fn evaluate_many(&mut self, bv: &BitVec) -> Vec<u64> {
        self.solver.evaluate_many(bv)
    }

    /// Evaluate bytes from bitvector `bv`
    pub fn evaluate_bytes_bv(&mut self, bv: &BitVec) -> Option<Vec<u8>> {
        let new_bv = bv; //self.translate(bv).unwrap();
        let mut data: Vec<u8> = vec![];
        if self.solver.is_sat() {
            //let one_sol = new_bv.get_a_solution().disambiguate();
            let solution_opt = self.solver.solution(new_bv);
            if let Some(solution) = solution_opt {
                for i in 0..(new_bv.get_width() / 8) as usize {
                    let sol = u8::from_str_radix(&solution[i * 8..(i + 1) * 8], 2);
                    data.push(sol.unwrap());
                }
                if self.memory.endian == Endian::Little {
                    data.reverse();
                }
                Some(data)
            } else {
                None
            }
        } else {
            None
        }
    }

    /// Evaluate bytes from bitvector `bv`
    pub fn evaluate_string_bv(&mut self, bv: &BitVec) -> Option<String> {
        if let Some(bytes) = self.evaluate_bytes_bv(bv) {
            String::from_utf8(bytes).ok()
        } else {
            None
        }
    }

    /// Evaluate bytes from value
    pub fn evaluate_bytes(&mut self, value: &Value) -> Option<Vec<u8>> {
        self.evaluate_bytes_bv(value.as_bv().as_ref().unwrap())
    }

    /// Evaluate string from value
    pub fn evaluate_string(&mut self, value: &Value) -> Option<String> {
        self.evaluate_string_bv(value.as_bv().as_ref().unwrap())
    }
}