1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
mod d;
mod p;
mod q;
mod r;
use strafe_type::{LogProbability64, PositiveInteger64, Probability64, Real64};
pub(crate) use self::{d::*, p::*, q::*, r::*};
use crate::traits::{Distribution, RNG};
/// # The Binomial Distribution
///
/// ## Description:
///
/// Density, distribution function, quantile function and random
/// generation for the binomial distribution with parameters ‘size’
/// and ‘prob’.
///
/// This is conventionally interpreted as the number of ‘successes’ in
/// ‘size’ trials.
///
/// ## Arguments:
///
/// * size: number of trials (zero or more).
/// * prob: probability of success on each trial.
///
/// ## Details:
///
/// The binomial distribution with ‘size’ = n and ‘prob’ = p has
/// density
///
/// $p(x) = choose(n, x) p^x (1-p)^(n-x)$
///
/// for x = 0, ..., n. Note that binomial _coefficients_ can be
/// computed by ‘choose’ in R.
///
/// If an element of ‘x’ is not integer, the result of ‘dbinom’ is
/// zero, with a warning.
///
/// p(x) is computed using Loader's algorithm, see the reference
/// below.
///
/// The quantile is defined as the smallest value x such that $F(x) >= p$,
/// where F is the distribution function.
///
/// ## Density Plot
///
/// ```rust
/// # use r2rs_base::traits::StatisticalSlice;
/// # use r2rs_nmath::{distribution::BinomialBuilder, traits::Distribution};
/// # use strafe_plot::prelude::{IntoDrawingArea, Line, Plot, PlotOptions, SVGBackend, BLACK};
/// # use strafe_type::FloatConstraint;
/// let binom = BinomialBuilder::new().build();
/// let x = <[f64]>::sequence_by(-0.5, 1.5, 0.001);
/// let y = x
/// .iter()
/// .map(|x| binom.density(x).unwrap())
/// .collect::<Vec<_>>();
///
/// let root = SVGBackend::new("density.svg", (1024, 768)).into_drawing_area();
/// Plot::new()
/// .with_options(PlotOptions {
/// x_axis_label: "x".to_string(),
/// y_axis_label: "density".to_string(),
/// ..Default::default()
/// })
/// .with_plottable(Line {
/// x,
/// y,
/// color: BLACK,
/// ..Default::default()
/// })
/// .plot(&root)
/// .unwrap();
/// # use std::fs::rename;
/// # drop(root);
/// # rename(
/// # format!("density.svg"),
/// # format!("src/distribution/binom/doctest_out/density.svg"),
/// # )
/// # .unwrap();
/// ```
#[cfg_attr(feature = "doc_outputs", cfg_attr(all(), doc = embed_doc_image::embed_image!("density", "src/distribution/binom/doctest_out/density.svg")))]
#[cfg_attr(feature = "doc_outputs", cfg_attr(all(), doc = "![Density][density]"))]
///
/// ## Source:
///
/// For ‘dbinom’ a saddle-point expansion is used: see
///
/// Catherine Loader (2000). _Fast and Accurate Computation of
/// Binomial Probabilities_; available from \<URL:
/// <http://www.herine.net/stat/software/dbinom.html>\>.
///
/// ‘pbinom’ uses ‘pbeta’.
///
/// ‘qbinom’ uses the Cornish-Fisher Expansion to include a skewness
/// correction to a normal approximation, followed by a search.
///
/// ‘rbinom’ (for ‘size < .Machine$integer.max’) is based on
///
/// Kachitvichyanukul, V. and Schmeiser, B. W. (1988) Binomial random
/// variate generation. _Communications of the ACM_, *31*, 216-222.
///
/// For larger values it uses inversion.
///
/// ## See Also:
///
/// Distributions for other standard distributions, including
/// ‘dnbinom’ for the negative binomial, and ‘dpois’ for the Poisson
/// distribution.
///
/// ## Examples:
///
/// Compute $P(45 < X < 55)$ for $Binomial(100,0.5)$
/// ```rust
/// # use r2rs_nmath::{distribution::BinomialBuilder, traits::Distribution};
/// # use strafe_type::FloatConstraint;
/// let binom = BinomialBuilder::new()
/// .with_size(100)
/// .with_success_probability(0.5)
/// .build();
/// let p = (46..=54).map(|x| binom.density(x).unwrap()).sum::<f64>();
/// println!("{p:?}");
/// # use std::{fs::File, io::Write};
/// # let mut f = File::create("src/distribution/binom/doctest_out/binomial_sum.md").unwrap();
/// # writeln!(f, "```output").unwrap();
/// # writeln!(f, "{p:?}").unwrap();
/// # writeln!(f, "```").unwrap();
/// ```
#[cfg_attr(feature = "doc_outputs", cfg_attr(all(), doc = include_str!("doctest_out/binomial_sum.md")))]
/// ```rust
/// # use std::fs::rename;
/// # use num_traits::FloatConst;
/// # use r2rs_base::traits::StatisticalSlice;
/// # use r2rs_nmath::{distribution::BinomialBuilder, traits::Distribution};
/// # use strafe_plot::prelude::*;
/// # use strafe_type::FloatConstraint;
/// let n = 2000.0;
/// let k = <[f64]>::sequence_by(0.0, n, 20.0);
/// let binom = BinomialBuilder::new()
/// .with_size(n)
/// .with_success_probability(f64::PI() / 10.0)
/// .build();
/// let y1 = k
/// .iter()
/// .map(|k| binom.log_density(k).unwrap())
/// .collect::<Vec<_>>();
/// let y2 = k
/// .iter()
/// .map(|k| binom.density(k).unwrap().ln())
/// .collect::<Vec<_>>();
///
/// Plot::new()
/// .with_options(PlotOptions {
/// title: "log_density() is better than density().ln()".to_string(),
/// x_axis_label: "k".to_string(),
/// y_axis_label: "log density".to_string(),
/// legend_x: 0.9,
/// legend_y: 0.1,
/// ..Default::default()
/// })
/// .with_plottable(Line {
/// x: k.clone(),
/// y: y1,
/// color: BLACK,
/// legend: true,
/// label: "log_dbinom()".to_string(),
/// ..Default::default()
/// })
/// .with_plottable(Line {
/// x: k.clone(),
/// y: y2,
/// color: RED,
/// legend: true,
/// label: "dbinom().ln()".to_string(),
/// ..Default::default()
/// })
/// .plot(&SVGBackend::new("log_density.svg", (1024, 768)).into_drawing_area())
/// .unwrap();
/// # rename(
/// # format!("log_density.svg"),
/// # format!("src/distribution/binom/doctest_out/log_density.svg"),
/// # )
/// # .unwrap();
/// ```
#[cfg_attr(feature = "doc_outputs", cfg_attr(all(), doc = embed_doc_image::embed_image!("log_density", "src/distribution/binom/doctest_out/log_density.svg")))]
#[cfg_attr(
feature = "doc_outputs",
cfg_attr(all(), doc = "![Log Density Plot][log_density]")
)]
pub struct Binomial {
size: PositiveInteger64,
success_probability: Probability64,
}
impl Distribution for Binomial {
fn density<R: Into<Real64>>(&self, x: R) -> Real64 {
dbinom(x, self.size, self.success_probability, false)
}
fn log_density<R: Into<Real64>>(&self, x: R) -> Real64 {
dbinom(x, self.size, self.success_probability, true)
}
fn probability<R: Into<Real64>>(&self, q: R, lower_tail: bool) -> Probability64 {
pbinom(q, self.size, self.success_probability, lower_tail)
}
fn log_probability<R: Into<Real64>>(&self, q: R, lower_tail: bool) -> LogProbability64 {
log_pbinom(q, self.size, self.success_probability, lower_tail)
}
fn quantile<P: Into<Probability64>>(&self, p: P, lower_tail: bool) -> Real64 {
qbinom(p, self.size, self.success_probability, lower_tail)
}
fn log_quantile<LP: Into<LogProbability64>>(&self, p: LP, lower_tail: bool) -> Real64 {
log_qbinom(p, self.size, self.success_probability, lower_tail)
}
fn random_sample<R: RNG>(&self, rng: &mut R) -> Real64 {
rbinom(self.size, self.success_probability, rng)
}
}
pub struct BinomialBuilder {
size: Option<PositiveInteger64>,
success_probability: Option<Probability64>,
}
impl BinomialBuilder {
pub fn new() -> Self {
Self {
size: None,
success_probability: None,
}
}
pub fn with_size<PI: Into<PositiveInteger64>>(&mut self, size: PI) -> &mut Self {
self.size = Some(size.into());
self
}
pub fn with_success_probability<P: Into<Probability64>>(
&mut self,
success_probability: P,
) -> &mut Self {
self.success_probability = Some(success_probability.into());
self
}
pub fn build(&self) -> Binomial {
let size = self.size.unwrap_or(1.into());
let success_probability = self.success_probability.unwrap_or(0.5.into());
Binomial {
size,
success_probability,
}
}
}
#[cfg(test)]
mod tests;
#[cfg(all(test, feature = "enable_proptest"))]
mod proptests;
#[cfg(all(test, feature = "enable_covtest"))]
mod covtests;