1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
mod d;
mod p;
mod q;
mod r;

use strafe_type::{LogProbability64, PositiveInteger64, Probability64, Real64};

pub(crate) use self::{d::*, p::*, q::*, r::*};
use crate::traits::{Distribution, RNG};

/// # The Binomial Distribution
///
/// ## Description:
///
/// Density, distribution function, quantile function and random
/// generation for the binomial distribution with parameters ‘size’
/// and ‘prob’.
///
/// This is conventionally interpreted as the number of ‘successes’ in
/// ‘size’ trials.
///
/// ## Arguments:
///
/// * size: number of trials (zero or more).
/// * prob: probability of success on each trial.
///
/// ## Details:
///
/// The binomial distribution with ‘size’ = n and ‘prob’ = p has
/// density
///
/// $p(x) = choose(n, x) p^x (1-p)^(n-x)$
///
/// for x = 0, ..., n. Note that binomial _coefficients_ can be
/// computed by ‘choose’ in R.
///
/// If an element of ‘x’ is not integer, the result of ‘dbinom’ is
/// zero, with a warning.
///
/// p(x) is computed using Loader's algorithm, see the reference
/// below.
///
/// The quantile is defined as the smallest value x such that $F(x) >= p$,
/// where F is the distribution function.
///
/// ## Density Plot
///
/// ```rust
/// # use r2rs_base::traits::StatisticalSlice;
/// # use r2rs_nmath::{distribution::BinomialBuilder, traits::Distribution};
/// # use strafe_plot::prelude::{IntoDrawingArea, Line, Plot, PlotOptions, SVGBackend, BLACK};
/// # use strafe_type::FloatConstraint;
/// let binom = BinomialBuilder::new().build();
/// let x = <[f64]>::sequence_by(-0.5, 1.5, 0.001);
/// let y = x
///     .iter()
///     .map(|x| binom.density(x).unwrap())
///     .collect::<Vec<_>>();
///
/// let root = SVGBackend::new("density.svg", (1024, 768)).into_drawing_area();
/// Plot::new()
///     .with_options(PlotOptions {
///         x_axis_label: "x".to_string(),
///         y_axis_label: "density".to_string(),
///         ..Default::default()
///     })
///     .with_plottable(Line {
///         x,
///         y,
///         color: BLACK,
///         ..Default::default()
///     })
///     .plot(&root)
///     .unwrap();
/// # use std::fs::rename;
/// #     drop(root);
/// #     rename(
/// #             format!("density.svg"),
/// #             format!("src/distribution/binom/doctest_out/density.svg"),
/// #     )
/// #     .unwrap();
/// ```
#[cfg_attr(feature = "doc_outputs", cfg_attr(all(), doc = embed_doc_image::embed_image!("density", "src/distribution/binom/doctest_out/density.svg")))]
#[cfg_attr(feature = "doc_outputs", cfg_attr(all(), doc = "![Density][density]"))]
///
/// ## Source:
///
/// For ‘dbinom’ a saddle-point expansion is used: see
///
/// Catherine Loader (2000). _Fast and Accurate Computation of
/// Binomial Probabilities_; available from \<URL:
/// <http://www.herine.net/stat/software/dbinom.html>\>.
///
/// ‘pbinom’ uses ‘pbeta’.
///
/// ‘qbinom’ uses the Cornish-Fisher Expansion to include a skewness
/// correction to a normal approximation, followed by a search.
///
/// ‘rbinom’ (for ‘size < .Machine$integer.max’) is based on
///
/// Kachitvichyanukul, V. and Schmeiser, B. W. (1988) Binomial random
/// variate generation. _Communications of the ACM_, *31*, 216-222.
///
/// For larger values it uses inversion.
///
/// ## See Also:
///
/// Distributions for other standard distributions, including
/// ‘dnbinom’ for the negative binomial, and ‘dpois’ for the Poisson
/// distribution.
///
/// ## Examples:
///
/// Compute $P(45 < X < 55)$ for $Binomial(100,0.5)$
/// ```rust
/// # use r2rs_nmath::{distribution::BinomialBuilder, traits::Distribution};
/// # use strafe_type::FloatConstraint;
/// let binom = BinomialBuilder::new()
///     .with_size(100)
///     .with_success_probability(0.5)
///     .build();
/// let p = (46..=54).map(|x| binom.density(x).unwrap()).sum::<f64>();
/// println!("{p:?}");
/// # use std::{fs::File, io::Write};
/// # let mut f = File::create("src/distribution/binom/doctest_out/binomial_sum.md").unwrap();
/// # writeln!(f, "```output").unwrap();
/// # writeln!(f, "{p:?}").unwrap();
/// # writeln!(f, "```").unwrap();
/// ```
#[cfg_attr(feature = "doc_outputs", cfg_attr(all(), doc = include_str!("doctest_out/binomial_sum.md")))]
/// ```rust
/// # use std::fs::rename;
/// # use num_traits::FloatConst;
/// # use r2rs_base::traits::StatisticalSlice;
/// # use r2rs_nmath::{distribution::BinomialBuilder, traits::Distribution};
/// # use strafe_plot::prelude::*;
/// # use strafe_type::FloatConstraint;
/// let n = 2000.0;
/// let k = <[f64]>::sequence_by(0.0, n, 20.0);
/// let binom = BinomialBuilder::new()
///     .with_size(n)
///     .with_success_probability(f64::PI() / 10.0)
///     .build();
/// let y1 = k
///     .iter()
///     .map(|k| binom.log_density(k).unwrap())
///     .collect::<Vec<_>>();
/// let y2 = k
///     .iter()
///     .map(|k| binom.density(k).unwrap().ln())
///     .collect::<Vec<_>>();
///
/// Plot::new()
///     .with_options(PlotOptions {
///         title: "log_density() is better than density().ln()".to_string(),
///         x_axis_label: "k".to_string(),
///         y_axis_label: "log density".to_string(),
///         legend_x: 0.9,
///         legend_y: 0.1,
///         ..Default::default()
///     })
///     .with_plottable(Line {
///         x: k.clone(),
///         y: y1,
///         color: BLACK,
///         legend: true,
///         label: "log_dbinom()".to_string(),
///         ..Default::default()
///     })
///     .with_plottable(Line {
///         x: k.clone(),
///         y: y2,
///         color: RED,
///         legend: true,
///         label: "dbinom().ln()".to_string(),
///         ..Default::default()
///     })
///     .plot(&SVGBackend::new("log_density.svg", (1024, 768)).into_drawing_area())
///     .unwrap();
/// # rename(
/// #     format!("log_density.svg"),
/// #     format!("src/distribution/binom/doctest_out/log_density.svg"),
/// # )
/// # .unwrap();
/// ```
#[cfg_attr(feature = "doc_outputs", cfg_attr(all(), doc = embed_doc_image::embed_image!("log_density", "src/distribution/binom/doctest_out/log_density.svg")))]
#[cfg_attr(
    feature = "doc_outputs",
    cfg_attr(all(), doc = "![Log Density Plot][log_density]")
)]
pub struct Binomial {
    size: PositiveInteger64,
    success_probability: Probability64,
}

impl Distribution for Binomial {
    fn density<R: Into<Real64>>(&self, x: R) -> Real64 {
        dbinom(x, self.size, self.success_probability, false)
    }

    fn log_density<R: Into<Real64>>(&self, x: R) -> Real64 {
        dbinom(x, self.size, self.success_probability, true)
    }

    fn probability<R: Into<Real64>>(&self, q: R, lower_tail: bool) -> Probability64 {
        pbinom(q, self.size, self.success_probability, lower_tail)
    }

    fn log_probability<R: Into<Real64>>(&self, q: R, lower_tail: bool) -> LogProbability64 {
        log_pbinom(q, self.size, self.success_probability, lower_tail)
    }

    fn quantile<P: Into<Probability64>>(&self, p: P, lower_tail: bool) -> Real64 {
        qbinom(p, self.size, self.success_probability, lower_tail)
    }

    fn log_quantile<LP: Into<LogProbability64>>(&self, p: LP, lower_tail: bool) -> Real64 {
        log_qbinom(p, self.size, self.success_probability, lower_tail)
    }

    fn random_sample<R: RNG>(&self, rng: &mut R) -> Real64 {
        rbinom(self.size, self.success_probability, rng)
    }
}

pub struct BinomialBuilder {
    size: Option<PositiveInteger64>,
    success_probability: Option<Probability64>,
}

impl BinomialBuilder {
    pub fn new() -> Self {
        Self {
            size: None,
            success_probability: None,
        }
    }

    pub fn with_size<PI: Into<PositiveInteger64>>(&mut self, size: PI) -> &mut Self {
        self.size = Some(size.into());
        self
    }

    pub fn with_success_probability<P: Into<Probability64>>(
        &mut self,
        success_probability: P,
    ) -> &mut Self {
        self.success_probability = Some(success_probability.into());
        self
    }

    pub fn build(&self) -> Binomial {
        let size = self.size.unwrap_or(1.into());
        let success_probability = self.success_probability.unwrap_or(0.5.into());

        Binomial {
            size,
            success_probability,
        }
    }
}

#[cfg(test)]
mod tests;

#[cfg(all(test, feature = "enable_proptest"))]
mod proptests;

#[cfg(all(test, feature = "enable_covtest"))]
mod covtests;