quinn 0.11.9

Versatile QUIC transport protocol implementation
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
use std::{
    future::{Future, poll_fn},
    io,
    pin::{Pin, pin},
    task::{Context, Poll},
};

use bytes::Bytes;
use proto::{ClosedStream, ConnectionError, FinishError, StreamId, Written};
use thiserror::Error;

use crate::{
    VarInt,
    connection::{ConnectionRef, State},
};

/// A stream that can only be used to send data
///
/// If dropped, streams that haven't been explicitly [`reset()`] will be implicitly [`finish()`]ed,
/// continuing to (re)transmit previously written data until it has been fully acknowledged or the
/// connection is closed.
///
/// # Cancellation
///
/// A `write` method is said to be *cancel-safe* when dropping its future before the future becomes
/// ready will always result in no data being written to the stream. This is true of methods which
/// succeed immediately when any progress is made, and is not true of methods which might need to
/// perform multiple writes internally before succeeding. Each `write` method documents whether it is
/// cancel-safe.
///
/// [`reset()`]: SendStream::reset
/// [`finish()`]: SendStream::finish
#[derive(Debug)]
pub struct SendStream {
    conn: ConnectionRef,
    stream: StreamId,
    is_0rtt: bool,
}

impl SendStream {
    pub(crate) fn new(conn: ConnectionRef, stream: StreamId, is_0rtt: bool) -> Self {
        Self {
            conn,
            stream,
            is_0rtt,
        }
    }

    /// Write a buffer into this stream, returning how many bytes were written
    ///
    /// Unless this method errors, it waits until some amount of `buf` can be written into this
    /// stream, and then writes as much as it can without waiting again. Due to congestion and flow
    /// control, this may be shorter than `buf.len()`. On success this yields the length of the
    /// prefix that was written.
    ///
    /// # Cancel safety
    ///
    /// This method is cancellation safe. If this does not resolve, no bytes were written.
    pub async fn write(&mut self, buf: &[u8]) -> Result<usize, WriteError> {
        poll_fn(|cx| self.execute_poll(cx, |s| s.write(buf))).await
    }

    /// Write a buffer into this stream in its entirety
    ///
    /// This method repeatedly calls [`write`](Self::write) until all bytes are written, or an
    /// error occurs.
    ///
    /// # Cancel safety
    ///
    /// This method is *not* cancellation safe. Even if this does not resolve, some prefix of `buf`
    /// may have been written when previously polled.
    pub async fn write_all(&mut self, mut buf: &[u8]) -> Result<(), WriteError> {
        while !buf.is_empty() {
            let written = self.write(buf).await?;
            buf = &buf[written..];
        }
        Ok(())
    }

    /// Write a slice of [`Bytes`] into this stream, returning how much was written
    ///
    /// Bytes to try to write are provided to this method as an array of cheaply cloneable chunks.
    /// Unless this method errors, it waits until some amount of those bytes can be written into
    /// this stream, and then writes as much as it can without waiting again. Due to congestion and
    /// flow control, this may be less than the total number of bytes.
    ///
    /// On success, this method both mutates `bufs` and yields an informative [`Written`] struct
    /// indicating how much was written:
    ///
    /// - [`Bytes`] chunks that were fully written are mutated to be [empty](Bytes::is_empty).
    /// - If a [`Bytes`] chunk was partially written, it is [split to](Bytes::split_to) contain
    ///   only the suffix of bytes that were not written.
    /// - The yielded [`Written`] struct indicates how many chunks were fully written as well as
    ///   how many bytes were written.
    ///
    /// # Cancel safety
    ///
    /// This method is cancellation safe. If this does not resolve, no bytes were written.
    pub async fn write_chunks(&mut self, bufs: &mut [Bytes]) -> Result<Written, WriteError> {
        poll_fn(|cx| self.execute_poll(cx, |s| s.write_chunks(bufs))).await
    }

    /// Write a single [`Bytes`] into this stream in its entirety
    ///
    /// Bytes to write are provided to this method as an single cheaply cloneable chunk. This
    /// method repeatedly calls [`write_chunks`](Self::write_chunks) until all bytes are written,
    /// or an error occurs.
    ///
    /// # Cancel safety
    ///
    /// This method is *not* cancellation safe. Even if this does not resolve, some bytes may have
    /// been written when previously polled.
    pub async fn write_chunk(&mut self, buf: Bytes) -> Result<(), WriteError> {
        self.write_all_chunks(&mut [buf]).await?;
        Ok(())
    }

    /// Write a slice of [`Bytes`] into this stream in its entirety
    ///
    /// Bytes to write are provided to this method as an array of cheaply cloneable chunks. This
    /// method repeatedly calls [`write_chunks`](Self::write_chunks) until all bytes are written,
    /// or an error occurs. This method mutates `bufs` by mutating all chunks to be
    /// [empty](Bytes::is_empty).
    ///
    /// # Cancel safety
    ///
    /// This method is *not* cancellation safe. Even if this does not resolve, some bytes may have
    /// been written when previously polled.
    pub async fn write_all_chunks(&mut self, mut bufs: &mut [Bytes]) -> Result<(), WriteError> {
        while !bufs.is_empty() {
            let written = self.write_chunks(bufs).await?;
            bufs = &mut bufs[written.chunks..];
        }
        Ok(())
    }

    fn execute_poll<F, R>(&mut self, cx: &mut Context, write_fn: F) -> Poll<Result<R, WriteError>>
    where
        F: FnOnce(&mut proto::SendStream) -> Result<R, proto::WriteError>,
    {
        use proto::WriteError::*;
        let mut conn = self.conn.state.lock("SendStream::poll_write");
        if self.is_0rtt {
            conn.check_0rtt()
                .map_err(|()| WriteError::ZeroRttRejected)?;
        }
        if let Some(ref x) = conn.error {
            return Poll::Ready(Err(WriteError::ConnectionLost(x.clone())));
        }

        let result = match write_fn(&mut conn.inner.send_stream(self.stream)) {
            Ok(result) => result,
            Err(Blocked) => {
                conn.blocked_writers.insert(self.stream, cx.waker().clone());
                return Poll::Pending;
            }
            Err(Stopped(error_code)) => {
                return Poll::Ready(Err(WriteError::Stopped(error_code)));
            }
            Err(ClosedStream) => {
                return Poll::Ready(Err(WriteError::ClosedStream));
            }
        };

        conn.wake();
        Poll::Ready(Ok(result))
    }

    /// Notify the peer that no more data will ever be written to this stream
    ///
    /// It is an error to write to a [`SendStream`] after `finish()`ing it. [`reset()`](Self::reset)
    /// may still be called after `finish` to abandon transmission of any stream data that might
    /// still be buffered.
    ///
    /// To wait for the peer to receive all buffered stream data, see [`stopped()`](Self::stopped).
    ///
    /// May fail if [`finish()`](Self::finish) or [`reset()`](Self::reset) was previously
    /// called. This error is harmless and serves only to indicate that the caller may have
    /// incorrect assumptions about the stream's state.
    pub fn finish(&mut self) -> Result<(), ClosedStream> {
        let mut conn = self.conn.state.lock("finish");
        match conn.inner.send_stream(self.stream).finish() {
            Ok(()) => {
                conn.wake();
                Ok(())
            }
            Err(FinishError::ClosedStream) => Err(ClosedStream::default()),
            // Harmless. If the application needs to know about stopped streams at this point, it
            // should call `stopped`.
            Err(FinishError::Stopped(_)) => Ok(()),
        }
    }

    /// Close the send stream immediately.
    ///
    /// No new data can be written after calling this method. Locally buffered data is dropped, and
    /// previously transmitted data will no longer be retransmitted if lost. If an attempt has
    /// already been made to finish the stream, the peer may still receive all written data.
    ///
    /// May fail if [`finish()`](Self::finish) or [`reset()`](Self::reset) was previously
    /// called. This error is harmless and serves only to indicate that the caller may have
    /// incorrect assumptions about the stream's state.
    pub fn reset(&mut self, error_code: VarInt) -> Result<(), ClosedStream> {
        let mut conn = self.conn.state.lock("SendStream::reset");
        if self.is_0rtt && conn.check_0rtt().is_err() {
            return Ok(());
        }
        conn.inner.send_stream(self.stream).reset(error_code)?;
        conn.wake();
        Ok(())
    }

    /// Set the priority of the send stream
    ///
    /// Every send stream has an initial priority of 0. Locally buffered data from streams with
    /// higher priority will be transmitted before data from streams with lower priority. Changing
    /// the priority of a stream with pending data may only take effect after that data has been
    /// transmitted. Using many different priority levels per connection may have a negative
    /// impact on performance.
    pub fn set_priority(&self, priority: i32) -> Result<(), ClosedStream> {
        let mut conn = self.conn.state.lock("SendStream::set_priority");
        conn.inner.send_stream(self.stream).set_priority(priority)?;
        Ok(())
    }

    /// Get the priority of the send stream
    pub fn priority(&self) -> Result<i32, ClosedStream> {
        let mut conn = self.conn.state.lock("SendStream::priority");
        conn.inner.send_stream(self.stream).priority()
    }

    /// Completes when the peer stops the stream or reads the stream to completion
    ///
    /// Yields `Some` with the stop error code if the peer stops the stream. Yields `None` if the
    /// local side [`finish()`](Self::finish)es the stream and then the peer acknowledges receipt
    /// of all stream data (although not necessarily the processing of it), after which the peer
    /// closing the stream is no longer meaningful.
    ///
    /// For a variety of reasons, the peer may not send acknowledgements immediately upon receiving
    /// data. As such, relying on `stopped` to know when the peer has read a stream to completion
    /// may introduce more latency than using an application-level response of some sort.
    pub fn stopped(
        &self,
    ) -> impl Future<Output = Result<Option<VarInt>, StoppedError>> + Send + Sync + 'static {
        let conn = self.conn.clone();
        let stream = self.stream;
        let is_0rtt = self.is_0rtt;
        async move {
            loop {
                // The `Notify::notified` future needs to be created while the lock is being held,
                // otherwise a wakeup could be missed if triggered inbetween releasing the lock
                // and creating the future.
                // The lock may only be held in a block without `await`s, otherwise the future
                // becomes `!Send`. `Notify::notified` is lifetime-bound to `Notify`, therefore
                // we need to declare `notify` outside of the block, and initialize it inside.
                let notify;
                {
                    let mut conn = conn.state.lock("SendStream::stopped");
                    if let Some(output) = send_stream_stopped(&mut conn, stream, is_0rtt) {
                        return output;
                    }

                    notify = conn.stopped.entry(stream).or_default().clone();
                    notify.notified()
                }
                .await
            }
        }
    }

    /// Get the identity of this stream
    pub fn id(&self) -> StreamId {
        self.stream
    }

    /// Attempt to write bytes from buf into the stream.
    ///
    /// On success, returns Poll::Ready(Ok(num_bytes_written)).
    ///
    /// If the stream is not ready for writing, the method returns Poll::Pending and arranges
    /// for the current task (via cx.waker().wake_by_ref()) to receive a notification when the
    /// stream becomes writable or is closed.
    pub fn poll_write(
        self: Pin<&mut Self>,
        cx: &mut Context,
        buf: &[u8],
    ) -> Poll<Result<usize, WriteError>> {
        pin!(self.get_mut().write(buf)).as_mut().poll(cx)
    }
}

/// Check if a send stream is stopped.
///
/// Returns `Some` if the stream is stopped or the connection is closed.
/// Returns `None` if the stream is not stopped.
fn send_stream_stopped(
    conn: &mut State,
    stream: StreamId,
    is_0rtt: bool,
) -> Option<Result<Option<VarInt>, StoppedError>> {
    if is_0rtt && conn.check_0rtt().is_err() {
        return Some(Err(StoppedError::ZeroRttRejected));
    }
    match conn.inner.send_stream(stream).stopped() {
        Err(ClosedStream { .. }) => Some(Ok(None)),
        Ok(Some(error_code)) => Some(Ok(Some(error_code))),
        Ok(None) => conn.error.clone().map(|error| Err(error.into())),
    }
}

#[cfg(feature = "futures-io")]
impl futures_io::AsyncWrite for SendStream {
    fn poll_write(self: Pin<&mut Self>, cx: &mut Context, buf: &[u8]) -> Poll<io::Result<usize>> {
        self.poll_write(cx, buf).map_err(Into::into)
    }

    fn poll_flush(self: Pin<&mut Self>, _cx: &mut Context) -> Poll<io::Result<()>> {
        Poll::Ready(Ok(()))
    }

    fn poll_close(self: Pin<&mut Self>, _cx: &mut Context) -> Poll<io::Result<()>> {
        Poll::Ready(self.get_mut().finish().map_err(Into::into))
    }
}

impl tokio::io::AsyncWrite for SendStream {
    fn poll_write(
        self: Pin<&mut Self>,
        cx: &mut Context<'_>,
        buf: &[u8],
    ) -> Poll<io::Result<usize>> {
        self.poll_write(cx, buf).map_err(Into::into)
    }

    fn poll_flush(self: Pin<&mut Self>, _cx: &mut Context) -> Poll<io::Result<()>> {
        Poll::Ready(Ok(()))
    }

    fn poll_shutdown(self: Pin<&mut Self>, _cx: &mut Context) -> Poll<io::Result<()>> {
        Poll::Ready(self.get_mut().finish().map_err(Into::into))
    }
}

impl Drop for SendStream {
    fn drop(&mut self) {
        let mut conn = self.conn.state.lock("SendStream::drop");

        // clean up any previously registered wakers
        conn.blocked_writers.remove(&self.stream);

        if conn.error.is_some() || (self.is_0rtt && conn.check_0rtt().is_err()) {
            return;
        }
        match conn.inner.send_stream(self.stream).finish() {
            Ok(()) => conn.wake(),
            Err(FinishError::Stopped(reason)) => {
                if conn.inner.send_stream(self.stream).reset(reason).is_ok() {
                    conn.wake();
                }
            }
            // Already finished or reset, which is fine.
            Err(FinishError::ClosedStream) => {}
        }
    }
}

/// Errors that arise from writing to a stream
#[derive(Debug, Error, Clone, PartialEq, Eq)]
pub enum WriteError {
    /// The peer is no longer accepting data on this stream
    ///
    /// Carries an application-defined error code.
    #[error("sending stopped by peer: error {0}")]
    Stopped(VarInt),
    /// The connection was lost
    #[error("connection lost")]
    ConnectionLost(#[from] ConnectionError),
    /// The stream has already been finished or reset
    #[error("closed stream")]
    ClosedStream,
    /// This was a 0-RTT stream and the server rejected it
    ///
    /// Can only occur on clients for 0-RTT streams, which can be opened using
    /// [`Connecting::into_0rtt()`].
    ///
    /// [`Connecting::into_0rtt()`]: crate::Connecting::into_0rtt()
    #[error("0-RTT rejected")]
    ZeroRttRejected,
}

impl From<ClosedStream> for WriteError {
    #[inline]
    fn from(_: ClosedStream) -> Self {
        Self::ClosedStream
    }
}

impl From<StoppedError> for WriteError {
    fn from(x: StoppedError) -> Self {
        match x {
            StoppedError::ConnectionLost(e) => Self::ConnectionLost(e),
            StoppedError::ZeroRttRejected => Self::ZeroRttRejected,
        }
    }
}

impl From<WriteError> for io::Error {
    fn from(x: WriteError) -> Self {
        use WriteError::*;
        let kind = match x {
            Stopped(_) | ZeroRttRejected => io::ErrorKind::ConnectionReset,
            ConnectionLost(_) | ClosedStream => io::ErrorKind::NotConnected,
        };
        Self::new(kind, x)
    }
}

/// Errors that arise while monitoring for a send stream stop from the peer
#[derive(Debug, Error, Clone, PartialEq, Eq)]
pub enum StoppedError {
    /// The connection was lost
    #[error("connection lost")]
    ConnectionLost(#[from] ConnectionError),
    /// This was a 0-RTT stream and the server rejected it
    ///
    /// Can only occur on clients for 0-RTT streams, which can be opened using
    /// [`Connecting::into_0rtt()`].
    ///
    /// [`Connecting::into_0rtt()`]: crate::Connecting::into_0rtt()
    #[error("0-RTT rejected")]
    ZeroRttRejected,
}

impl From<StoppedError> for io::Error {
    fn from(x: StoppedError) -> Self {
        use StoppedError::*;
        let kind = match x {
            ZeroRttRejected => io::ErrorKind::ConnectionReset,
            ConnectionLost(_) => io::ErrorKind::NotConnected,
        };
        Self::new(kind, x)
    }
}