1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
use ring::{aead, hkdf, hmac};

use crate::{
    config::ConfigError,
    crypto::{self, CryptoError},
    packet::{PacketNumber, LONG_HEADER_FORM},
};

impl crypto::HeaderKey for aead::quic::HeaderProtectionKey {
    fn decrypt(&self, pn_offset: usize, packet: &mut [u8]) {
        let (header, sample) = packet.split_at_mut(pn_offset + 4);
        let mask = self.new_mask(&sample[0..self.sample_size()]).unwrap();
        if header[0] & LONG_HEADER_FORM == LONG_HEADER_FORM {
            // Long header: 4 bits masked
            header[0] ^= mask[0] & 0x0f;
        } else {
            // Short header: 5 bits masked
            header[0] ^= mask[0] & 0x1f;
        }
        let pn_length = PacketNumber::decode_len(header[0]);
        for (out, inp) in header[pn_offset..pn_offset + pn_length]
            .iter_mut()
            .zip(&mask[1..])
        {
            *out ^= inp;
        }
    }

    fn encrypt(&self, pn_offset: usize, packet: &mut [u8]) {
        let (header, sample) = packet.split_at_mut(pn_offset + 4);
        let mask = self.new_mask(&sample[0..self.sample_size()]).unwrap();
        let pn_length = PacketNumber::decode_len(header[0]);
        if header[0] & LONG_HEADER_FORM == LONG_HEADER_FORM {
            // Long header: 4 bits masked
            header[0] ^= mask[0] & 0x0f;
        } else {
            // Short header: 5 bits masked
            header[0] ^= mask[0] & 0x1f;
        }
        for (out, inp) in header[pn_offset..pn_offset + pn_length]
            .iter_mut()
            .zip(&mask[1..])
        {
            *out ^= inp;
        }
    }

    fn sample_size(&self) -> usize {
        self.algorithm().sample_len()
    }
}

impl crypto::HmacKey for hmac::Key {
    const KEY_LEN: usize = 64;
    type Signature = hmac::Tag;

    fn new(key: &[u8]) -> Result<Self, ConfigError> {
        if key.len() == Self::KEY_LEN {
            Ok(hmac::Key::new(hmac::HMAC_SHA256, key))
        } else {
            Err(ConfigError::OutOfBounds)
        }
    }

    fn sign(&self, data: &[u8]) -> Self::Signature {
        hmac::sign(self, data)
    }

    fn verify(&self, data: &[u8], signature: &[u8]) -> Result<(), CryptoError> {
        Ok(hmac::verify(self, data, signature)?)
    }
}

impl crypto::HandshakeTokenKey for hkdf::Prk {
    type AeadKey = ring::aead::LessSafeKey;

    fn aead_from_hkdf(&self, random_bytes: &[u8]) -> Self::AeadKey {
        let mut key_buffer = [0u8; 32];
        let info = [random_bytes];
        let okm = self.expand(&info, hkdf::HKDF_SHA256).unwrap();

        okm.fill(&mut key_buffer).unwrap();

        let key = aead::UnboundKey::new(&aead::AES_256_GCM, &key_buffer).unwrap();
        Self::AeadKey::new(key)
    }

    fn from_secret(bytes: &[u8]) -> Self {
        hkdf::Salt::new(hkdf::HKDF_SHA256, &[]).extract(bytes)
    }
}

impl crypto::AeadKey for aead::LessSafeKey {
    const KEY_LEN: usize = 32;

    fn seal(&self, data: &mut Vec<u8>, additional_data: &[u8]) -> Result<(), CryptoError> {
        let aad = ring::aead::Aad::from(additional_data);
        let zero_nonce = ring::aead::Nonce::assume_unique_for_key([0u8; 12]);
        Ok(self.seal_in_place_append_tag(zero_nonce, aad, data)?)
    }

    fn open<'a>(
        &self,
        data: &'a mut [u8],
        additional_data: &[u8],
    ) -> Result<&'a mut [u8], CryptoError> {
        let aad = ring::aead::Aad::from(additional_data);
        let zero_nonce = ring::aead::Nonce::assume_unique_for_key([0u8; 12]);
        Ok(self.open_in_place(zero_nonce, aad, data)?)
    }
}

impl From<ring::error::Unspecified> for CryptoError {
    fn from(_: ring::error::Unspecified) -> Self {
        CryptoError
    }
}