quick_xml/de/
mod.rs

1//! Serde `Deserializer` module.
2//!
3//! Due to the complexity of the XML standard and the fact that Serde was developed
4//! with JSON in mind, not all Serde concepts apply smoothly to XML. This leads to
5//! that fact that some XML concepts are inexpressible in terms of Serde derives
6//! and may require manual deserialization.
7//!
8//! The most notable restriction is the ability to distinguish between _elements_
9//! and _attributes_, as no other format used by serde has such a conception.
10//!
11//! Due to that the mapping is performed in a best effort manner.
12//!
13//!
14//!
15//! Table of Contents
16//! =================
17//! - [Mapping XML to Rust types](#mapping-xml-to-rust-types)
18//!   - [Basics](#basics)
19//!   - [Optional attributes and elements](#optional-attributes-and-elements)
20//!   - [Choices (`xs:choice` XML Schema type)](#choices-xschoice-xml-schema-type)
21//!   - [Sequences (`xs:all` and `xs:sequence` XML Schema types)](#sequences-xsall-and-xssequence-xml-schema-types)
22//! - [Mapping of `xsi:nil`](#mapping-of-xsinil)
23//! - [Generate Rust types from XML](#generate-rust-types-from-xml)
24//! - [Composition Rules](#composition-rules)
25//! - [Enum Representations](#enum-representations)
26//!   - [Normal enum variant](#normal-enum-variant)
27//!   - [`$text` enum variant](#text-enum-variant)
28//! - [`$text` and `$value` special names](#text-and-value-special-names)
29//!   - [`$text`](#text)
30//!   - [`$value`](#value)
31//!     - [Primitives and sequences of primitives](#primitives-and-sequences-of-primitives)
32//!     - [Structs and sequences of structs](#structs-and-sequences-of-structs)
33//!     - [Enums and sequences of enums](#enums-and-sequences-of-enums)
34//! - [Frequently Used Patterns](#frequently-used-patterns)
35//!   - [`<element>` lists](#element-lists)
36//!   - [Overlapped (Out-of-Order) Elements](#overlapped-out-of-order-elements)
37//!   - [Internally Tagged Enums](#internally-tagged-enums)
38//!
39//!
40//!
41//! Mapping XML to Rust types
42//! =========================
43//!
44//! Type names are never considered when deserializing, so you can name your
45//! types as you wish. Other general rules:
46//! - `struct` field name could be represented in XML only as an attribute name
47//!   or an element name;
48//! - `enum` variant name could be represented in XML only as an attribute name
49//!   or an element name;
50//! - the unit struct, unit type `()` and unit enum variant can be deserialized
51//!   from any valid XML content:
52//!   - attribute and element names;
53//!   - attribute and element values;
54//!   - text or CDATA content (including mixed text and CDATA content).
55//!
56//! <div style="background:rgba(120,145,255,0.45);padding:0.75em;">
57//!
58//! NOTE: All tests are marked with an `ignore` option, even though they do
59//! compile. This is  because rustdoc marks such blocks with an information
60//! icon unlike `no_run` blocks.
61//!
62//! </div>
63//!
64//! <table>
65//! <thead>
66//! <tr><th colspan="2">
67//!
68//! ## Basics
69//!
70//! </th></tr>
71//! <tr><th>To parse all these XML's...</th><th>...use these Rust type(s)</th></tr>
72//! </thead>
73//! <tbody style="vertical-align:top;">
74//! <tr>
75//! <td>
76//! Content of attributes and text / CDATA content of elements (including mixed
77//! text and CDATA content):
78//!
79//! ```xml
80//! <... ...="content" />
81//! ```
82//! ```xml
83//! <...>content</...>
84//! ```
85//! ```xml
86//! <...><![CDATA[content]]></...>
87//! ```
88//! ```xml
89//! <...>text<![CDATA[cdata]]>text</...>
90//! ```
91//! Mixed text / CDATA content represents one logical string, `"textcdatatext"` in that case.
92//! </td>
93//! <td>
94//!
95//! You can use any type that can be deserialized from an `&str`, for example:
96//! - [`String`] and [`&str`]
97//! - [`Cow<str>`]
98//! - [`u32`], [`f32`] and other numeric types
99//! - `enum`s, like
100//!   ```
101//!   # use pretty_assertions::assert_eq;
102//!   # use serde::Deserialize;
103//!   # #[derive(Debug, PartialEq)]
104//!   #[derive(Deserialize)]
105//!   enum Language {
106//!     Rust,
107//!     Cpp,
108//!     #[serde(other)]
109//!     Other,
110//!   }
111//!   # #[derive(Debug, PartialEq, Deserialize)]
112//!   # struct X { #[serde(rename = "$text")] x: Language }
113//!   # assert_eq!(X { x: Language::Rust  }, quick_xml::de::from_str("<x>Rust</x>").unwrap());
114//!   # assert_eq!(X { x: Language::Cpp   }, quick_xml::de::from_str("<x>C<![CDATA[p]]>p</x>").unwrap());
115//!   # assert_eq!(X { x: Language::Other }, quick_xml::de::from_str("<x><![CDATA[other]]></x>").unwrap());
116//!   ```
117//!
118//! <div style="background:rgba(120,145,255,0.45);padding:0.75em;">
119//!
120//! NOTE: deserialization to non-owned types (i.e. borrow from the input),
121//! such as `&str`, is possible only if you parse document in the UTF-8
122//! encoding and content does not contain entity references such as `&amp;`,
123//! or character references such as `&#xD;`, as well as text content represented
124//! by one piece of [text] or [CDATA] element.
125//! </div>
126//! <!-- TODO: document an error type returned -->
127//!
128//! [text]: Event::Text
129//! [CDATA]: Event::CData
130//! </td>
131//! </tr>
132//! <!-- 2 ===================================================================================== -->
133//! <tr>
134//! <td>
135//!
136//! Content of attributes and text / CDATA content of elements (including mixed
137//! text and CDATA content), which represents a space-delimited lists, as
138//! specified in the XML Schema specification for [`xs:list`] `simpleType`:
139//!
140//! ```xml
141//! <... ...="element1 element2 ..." />
142//! ```
143//! ```xml
144//! <...>
145//!   element1
146//!   element2
147//!   ...
148//! </...>
149//! ```
150//! ```xml
151//! <...><![CDATA[
152//!   element1
153//!   element2
154//!   ...
155//! ]]></...>
156//! ```
157//!
158//! [`xs:list`]: https://www.w3.org/TR/xmlschema11-2/#list-datatypes
159//! </td>
160//! <td>
161//!
162//! Use any type that deserialized using [`deserialize_seq()`] call, for example:
163//!
164//! ```
165//! type List = Vec<u32>;
166//! ```
167//!
168//! See the next row to learn where in your struct definition you should
169//! use that type.
170//!
171//! According to the XML Schema specification, delimiters for elements is one
172//! or more space (`' '`, `'\r'`, `'\n'`, and `'\t'`) character(s).
173//!
174//! <div style="background:rgba(120,145,255,0.45);padding:0.75em;">
175//!
176//! NOTE: according to the XML Schema restrictions, you cannot escape those
177//! white-space characters, so list elements will _never_ contain them.
178//! In practice you will usually use `xs:list`s for lists of numbers or enumerated
179//! values which looks like identifiers in many languages, for example, `item`,
180//! `some_item` or `some-item`, so that shouldn't be a problem.
181//!
182//! NOTE: according to the XML Schema specification, list elements can be
183//! delimited only by spaces. Other delimiters (for example, commas) are not
184//! allowed.
185//!
186//! </div>
187//!
188//! [`deserialize_seq()`]: de::Deserializer::deserialize_seq
189//! </td>
190//! </tr>
191//! <!-- 3 ===================================================================================== -->
192//! <tr>
193//! <td>
194//! A typical XML with attributes. The root tag name does not matter:
195//!
196//! ```xml
197//! <any-tag one="..." two="..."/>
198//! ```
199//! </td>
200//! <td>
201//!
202//! A structure where each XML attribute is mapped to a field with a name
203//! starting with `@`. Because Rust identifiers do not permit the `@` character,
204//! you should use the `#[serde(rename = "@...")]` attribute to rename it.
205//! The name of the struct itself does not matter:
206//!
207//! ```
208//! # use serde::Deserialize;
209//! # type T = ();
210//! # type U = ();
211//! // Get both attributes
212//! # #[derive(Debug, PartialEq)]
213//! #[derive(Deserialize)]
214//! struct AnyName {
215//!   #[serde(rename = "@one")]
216//!   one: T,
217//!
218//!   #[serde(rename = "@two")]
219//!   two: U,
220//! }
221//! # quick_xml::de::from_str::<AnyName>(r#"<any-tag one="..." two="..."/>"#).unwrap();
222//! ```
223//! ```
224//! # use serde::Deserialize;
225//! # type T = ();
226//! // Get only the one attribute, ignore the other
227//! # #[derive(Debug, PartialEq)]
228//! #[derive(Deserialize)]
229//! struct AnyName {
230//!   #[serde(rename = "@one")]
231//!   one: T,
232//! }
233//! # quick_xml::de::from_str::<AnyName>(r#"<any-tag one="..." two="..."/>"#).unwrap();
234//! # quick_xml::de::from_str::<AnyName>(r#"<any-tag one="..."/>"#).unwrap();
235//! # quick_xml::de::from_str::<AnyName>(r#"<any-tag one="..."><one>...</one></any-tag>"#).unwrap();
236//! ```
237//! ```
238//! # use serde::Deserialize;
239//! // Ignore all attributes
240//! // You can also use the `()` type (unit type)
241//! # #[derive(Debug, PartialEq)]
242//! #[derive(Deserialize)]
243//! struct AnyName;
244//! # quick_xml::de::from_str::<AnyName>(r#"<any-tag one="..." two="..."/>"#).unwrap();
245//! # quick_xml::de::from_str::<AnyName>(r#"<any-tag one="..."><one>...</one></any-tag>"#).unwrap();
246//! # quick_xml::de::from_str::<AnyName>(r#"<any-tag><one>...</one><two>...</two></any-tag>"#).unwrap();
247//! ```
248//!
249//! All these structs can be used to deserialize from an XML on the
250//! left side depending on amount of information that you want to get.
251//! Of course, you can combine them with elements extractor structs (see below).
252//!
253//! <div style="background:rgba(120,145,255,0.45);padding:0.75em;">
254//!
255//! NOTE: XML allows you to have an attribute and an element with the same name
256//! inside the one element. quick-xml deals with that by prepending a `@` prefix
257//! to the name of attributes.
258//! </div>
259//! </td>
260//! </tr>
261//! <!-- 4 ===================================================================================== -->
262//! <tr>
263//! <td>
264//! A typical XML with child elements. The root tag name does not matter:
265//!
266//! ```xml
267//! <any-tag>
268//!   <one>...</one>
269//!   <two>...</two>
270//! </any-tag>
271//! ```
272//! </td>
273//! <td>
274//! A structure where each XML child element is mapped to the field.
275//! Each element name becomes a name of field. The name of the struct itself
276//! does not matter:
277//!
278//! ```
279//! # use serde::Deserialize;
280//! # type T = ();
281//! # type U = ();
282//! // Get both elements
283//! # #[derive(Debug, PartialEq)]
284//! #[derive(Deserialize)]
285//! struct AnyName {
286//!   one: T,
287//!   two: U,
288//! }
289//! # quick_xml::de::from_str::<AnyName>(r#"<any-tag><one>...</one><two>...</two></any-tag>"#).unwrap();
290//! #
291//! # quick_xml::de::from_str::<AnyName>(r#"<any-tag one="..." two="..."/>"#).unwrap_err();
292//! # quick_xml::de::from_str::<AnyName>(r#"<any-tag one="..."><two>...</two></any-tag>"#).unwrap_err();
293//! ```
294//! ```
295//! # use serde::Deserialize;
296//! # type T = ();
297//! // Get only the one element, ignore the other
298//! # #[derive(Debug, PartialEq)]
299//! #[derive(Deserialize)]
300//! struct AnyName {
301//!   one: T,
302//! }
303//! # quick_xml::de::from_str::<AnyName>(r#"<any-tag><one>...</one><two>...</two></any-tag>"#).unwrap();
304//! # quick_xml::de::from_str::<AnyName>(r#"<any-tag one="..."><one>...</one></any-tag>"#).unwrap();
305//! ```
306//! ```
307//! # use serde::Deserialize;
308//! // Ignore all elements
309//! // You can also use the `()` type (unit type)
310//! # #[derive(Debug, PartialEq)]
311//! #[derive(Deserialize)]
312//! struct AnyName;
313//! # quick_xml::de::from_str::<AnyName>(r#"<any-tag one="..." two="..."/>"#).unwrap();
314//! # quick_xml::de::from_str::<AnyName>(r#"<any-tag><one>...</one><two>...</two></any-tag>"#).unwrap();
315//! # quick_xml::de::from_str::<AnyName>(r#"<any-tag one="..."><two>...</two></any-tag>"#).unwrap();
316//! # quick_xml::de::from_str::<AnyName>(r#"<any-tag one="..."><one>...</one></any-tag>"#).unwrap();
317//! ```
318//!
319//! All these structs can be used to deserialize from an XML on the
320//! left side depending on amount of information that you want to get.
321//! Of course, you can combine them with attributes extractor structs (see above).
322//!
323//! <div style="background:rgba(120,145,255,0.45);padding:0.75em;">
324//!
325//! NOTE: XML allows you to have an attribute and an element with the same name
326//! inside the one element. quick-xml deals with that by prepending a `@` prefix
327//! to the name of attributes.
328//! </div>
329//! </td>
330//! </tr>
331//! <!-- 5 ===================================================================================== -->
332//! <tr>
333//! <td>
334//! An XML with an attribute and a child element named equally:
335//!
336//! ```xml
337//! <any-tag field="...">
338//!   <field>...</field>
339//! </any-tag>
340//! ```
341//! </td>
342//! <td>
343//!
344//! You MUST specify `#[serde(rename = "@field")]` on a field that will be used
345//! for an attribute:
346//!
347//! ```
348//! # use pretty_assertions::assert_eq;
349//! # use serde::Deserialize;
350//! # type T = ();
351//! # type U = ();
352//! # #[derive(Debug, PartialEq)]
353//! #[derive(Deserialize)]
354//! struct AnyName {
355//!   #[serde(rename = "@field")]
356//!   attribute: T,
357//!   field: U,
358//! }
359//! # assert_eq!(
360//! #   AnyName { attribute: (), field: () },
361//! #   quick_xml::de::from_str(r#"
362//! #     <any-tag field="...">
363//! #       <field>...</field>
364//! #     </any-tag>
365//! #   "#).unwrap(),
366//! # );
367//! ```
368//! </td>
369//! </tr>
370//! <!-- ======================================================================================= -->
371//! <tr><th colspan="2">
372//!
373//! ## Optional attributes and elements
374//!
375//! </th></tr>
376//! <tr><th>To parse all these XML's...</th><th>...use these Rust type(s)</th></tr>
377//! <!-- 6 ===================================================================================== -->
378//! <tr>
379//! <td>
380//! An optional XML attribute that you want to capture.
381//! The root tag name does not matter:
382//!
383//! ```xml
384//! <any-tag optional="..."/>
385//! ```
386//! ```xml
387//! <any-tag/>
388//! ```
389//! </td>
390//! <td>
391//!
392//! A structure with an optional field, renamed according to the requirements
393//! for attributes:
394//!
395//! ```
396//! # use pretty_assertions::assert_eq;
397//! # use serde::Deserialize;
398//! # type T = ();
399//! # #[derive(Debug, PartialEq)]
400//! #[derive(Deserialize)]
401//! struct AnyName {
402//!   #[serde(rename = "@optional")]
403//!   optional: Option<T>,
404//! }
405//! # assert_eq!(AnyName { optional: Some(()) }, quick_xml::de::from_str(r#"<any-tag optional="..."/>"#).unwrap());
406//! # assert_eq!(AnyName { optional: None     }, quick_xml::de::from_str(r#"<any-tag/>"#).unwrap());
407//! ```
408//! When the XML attribute is present, type `T` will be deserialized from
409//! an attribute value (which is a string). Note, that if `T = String` or other
410//! string type, the empty attribute is mapped to a `Some("")`, whereas `None`
411//! represents the missed attribute:
412//! ```xml
413//! <any-tag optional="..."/><!-- Some("...") -->
414//! <any-tag optional=""/>   <!-- Some("") -->
415//! <any-tag/>               <!-- None -->
416//! ```
417//! <div style="background:rgba(120,145,255,0.45);padding:0.75em;">
418//!
419//! NOTE: The behaviour is not symmetric by default. `None` will be serialized as
420//! `optional=""`. This behaviour is consistent across serde crates. You should add
421//! `#[serde(skip_serializing_if = "Option::is_none")]` attribute to the field to
422//! skip `None`s.
423//! </div>
424//! </td>
425//! </tr>
426//! <!-- 7 ===================================================================================== -->
427//! <tr>
428//! <td>
429//! An optional XML elements that you want to capture.
430//! The root tag name does not matter:
431//!
432//! ```xml
433//! <any-tag/>
434//!   <optional>...</optional>
435//! </any-tag>
436//! ```
437//! ```xml
438//! <any-tag/>
439//!   <optional/>
440//! </any-tag>
441//! ```
442//! ```xml
443//! <any-tag/>
444//! ```
445//! </td>
446//! <td>
447//!
448//! A structure with an optional field:
449//!
450//! ```
451//! # use pretty_assertions::assert_eq;
452//! # use serde::Deserialize;
453//! # type T = ();
454//! # #[derive(Debug, PartialEq)]
455//! #[derive(Deserialize)]
456//! struct AnyName {
457//!   optional: Option<T>,
458//! }
459//! # assert_eq!(AnyName { optional: Some(()) }, quick_xml::de::from_str(r#"<any-tag><optional>...</optional></any-tag>"#).unwrap());
460//! # assert_eq!(AnyName { optional: None     }, quick_xml::de::from_str(r#"<any-tag/>"#).unwrap());
461//! ```
462//! When the XML element is present, type `T` will be deserialized from an
463//! element (which is a string or a multi-mapping -- i.e. mapping which can have
464//! duplicated keys).
465//! <div style="background:rgba(120,145,255,0.45);padding:0.75em;">
466//!
467//! NOTE: The behaviour is not symmetric by default. `None` will be serialized as
468//! `<optional/>`. This behaviour is consistent across serde crates. You should add
469//! `#[serde(skip_serializing_if = "Option::is_none")]` attribute to the field to
470//! skip `None`s.
471//!
472//! NOTE: Deserializer will automatically handle a [`xsi:nil`] attribute and set field to `None`.
473//! For more info see [Mapping of `xsi:nil`](#mapping-of-xsinil).
474//! </div>
475//! </td>
476//! </tr>
477//! <!-- ======================================================================================= -->
478//! <tr><th colspan="2">
479//!
480//! ## Choices (`xs:choice` XML Schema type)
481//!
482//! </th></tr>
483//! <tr><th>To parse all these XML's...</th><th>...use these Rust type(s)</th></tr>
484//! <!-- 8 ===================================================================================== -->
485//! <tr>
486//! <td>
487//! An XML with different root tag names, as well as text / CDATA content:
488//!
489//! ```xml
490//! <one field1="...">...</one>
491//! ```
492//! ```xml
493//! <two>
494//!   <field2>...</field2>
495//! </two>
496//! ```
497//! ```xml
498//! Text <![CDATA[or (mixed)
499//! CDATA]]> content
500//! ```
501//! </td>
502//! <td>
503//!
504//! An enum where each variant has the name of a possible root tag. The name of
505//! the enum itself does not matter.
506//!
507//! If you need to get the textual content, mark a variant with `#[serde(rename = "$text")]`.
508//!
509//! All these structs can be used to deserialize from any XML on the
510//! left side depending on amount of information that you want to get:
511//!
512//! ```
513//! # use pretty_assertions::assert_eq;
514//! # use serde::Deserialize;
515//! # type T = ();
516//! # type U = ();
517//! # #[derive(Debug, PartialEq)]
518//! #[derive(Deserialize)]
519//! #[serde(rename_all = "snake_case")]
520//! enum AnyName {
521//!   One { #[serde(rename = "@field1")] field1: T },
522//!   Two { field2: U },
523//!
524//!   /// Use unit variant, if you do not care of a content.
525//!   /// You can use tuple variant if you want to parse
526//!   /// textual content as an xs:list.
527//!   /// Struct variants are will pass a string to the
528//!   /// struct enum variant visitor, which typically
529//!   /// returns Err(Custom)
530//!   #[serde(rename = "$text")]
531//!   Text(String),
532//! }
533//! # assert_eq!(AnyName::One { field1: () }, quick_xml::de::from_str(r#"<one field1="...">...</one>"#).unwrap());
534//! # assert_eq!(AnyName::Two { field2: () }, quick_xml::de::from_str(r#"<two><field2>...</field2></two>"#).unwrap());
535//! # assert_eq!(AnyName::Text("text  cdata ".into()), quick_xml::de::from_str(r#"text <![CDATA[ cdata ]]>"#).unwrap());
536//! ```
537//! ```
538//! # use pretty_assertions::assert_eq;
539//! # use serde::Deserialize;
540//! # type T = ();
541//! # #[derive(Debug, PartialEq)]
542//! #[derive(Deserialize)]
543//! struct Two {
544//!   field2: T,
545//! }
546//! # #[derive(Debug, PartialEq)]
547//! #[derive(Deserialize)]
548//! #[serde(rename_all = "snake_case")]
549//! enum AnyName {
550//!   // `field1` content discarded
551//!   One,
552//!   Two(Two),
553//!   #[serde(rename = "$text")]
554//!   Text,
555//! }
556//! # assert_eq!(AnyName::One,                     quick_xml::de::from_str(r#"<one field1="...">...</one>"#).unwrap());
557//! # assert_eq!(AnyName::Two(Two { field2: () }), quick_xml::de::from_str(r#"<two><field2>...</field2></two>"#).unwrap());
558//! # assert_eq!(AnyName::Text,                    quick_xml::de::from_str(r#"text <![CDATA[ cdata ]]>"#).unwrap());
559//! ```
560//! ```
561//! # use pretty_assertions::assert_eq;
562//! # use serde::Deserialize;
563//! # #[derive(Debug, PartialEq)]
564//! #[derive(Deserialize)]
565//! #[serde(rename_all = "snake_case")]
566//! enum AnyName {
567//!   One,
568//!   // the <two> and textual content will be mapped to this
569//!   #[serde(other)]
570//!   Other,
571//! }
572//! # assert_eq!(AnyName::One,   quick_xml::de::from_str(r#"<one field1="...">...</one>"#).unwrap());
573//! # assert_eq!(AnyName::Other, quick_xml::de::from_str(r#"<two><field2>...</field2></two>"#).unwrap());
574//! # assert_eq!(AnyName::Other, quick_xml::de::from_str(r#"text <![CDATA[ cdata ]]>"#).unwrap());
575//! ```
576//! <div style="background:rgba(120,145,255,0.45);padding:0.75em;">
577//!
578//! NOTE: You should have variants for all possible tag names in your enum
579//! or have an `#[serde(other)]` variant.
580//! <!-- TODO: document an error type if that requirement is violated -->
581//! </div>
582//! </td>
583//! </tr>
584//! <!-- 9 ===================================================================================== -->
585//! <tr>
586//! <td>
587//!
588//! `<xs:choice>` embedded in the other element, and at the same time you want
589//! to get access to other attributes that can appear in the same container
590//! (`<any-tag>`). Also this case can be described, as if you want to choose
591//! Rust enum variant based on a tag name:
592//!
593//! ```xml
594//! <any-tag field="...">
595//!   <one>...</one>
596//! </any-tag>
597//! ```
598//! ```xml
599//! <any-tag field="...">
600//!   <two>...</two>
601//! </any-tag>
602//! ```
603//! ```xml
604//! <any-tag field="...">
605//!   Text <![CDATA[or (mixed)
606//!   CDATA]]> content
607//! </any-tag>
608//! ```
609//! </td>
610//! <td>
611//!
612//! A structure with a field which type is an `enum`.
613//!
614//! If you need to get a textual content, mark a variant with `#[serde(rename = "$text")]`.
615//!
616//! Names of the enum, struct, and struct field with `Choice` type does not matter:
617//!
618//! ```
619//! # use pretty_assertions::assert_eq;
620//! # use serde::Deserialize;
621//! # type T = ();
622//! # #[derive(Debug, PartialEq)]
623//! #[derive(Deserialize)]
624//! #[serde(rename_all = "snake_case")]
625//! enum Choice {
626//!   One,
627//!   Two,
628//!
629//!   /// Use unit variant, if you do not care of a content.
630//!   /// You can use tuple variant if you want to parse
631//!   /// textual content as an xs:list.
632//!   /// Struct variants are will pass a string to the
633//!   /// struct enum variant visitor, which typically
634//!   /// returns Err(Custom)
635//!   #[serde(rename = "$text")]
636//!   Text(String),
637//! }
638//! # #[derive(Debug, PartialEq)]
639//! #[derive(Deserialize)]
640//! struct AnyName {
641//!   #[serde(rename = "@field")]
642//!   field: T,
643//!
644//!   #[serde(rename = "$value")]
645//!   any_name: Choice,
646//! }
647//! # assert_eq!(
648//! #   AnyName { field: (), any_name: Choice::One },
649//! #   quick_xml::de::from_str(r#"<any-tag field="..."><one>...</one></any-tag>"#).unwrap(),
650//! # );
651//! # assert_eq!(
652//! #   AnyName { field: (), any_name: Choice::Two },
653//! #   quick_xml::de::from_str(r#"<any-tag field="..."><two>...</two></any-tag>"#).unwrap(),
654//! # );
655//! # assert_eq!(
656//! #   AnyName { field: (), any_name: Choice::Text("text  cdata ".into()) },
657//! #   quick_xml::de::from_str(r#"<any-tag field="...">text <![CDATA[ cdata ]]></any-tag>"#).unwrap(),
658//! # );
659//! ```
660//! </td>
661//! </tr>
662//! <!-- 10 ==================================================================================== -->
663//! <tr>
664//! <td>
665//!
666//! `<xs:choice>` embedded in the other element, and at the same time you want
667//! to get access to other elements that can appear in the same container
668//! (`<any-tag>`). Also this case can be described, as if you want to choose
669//! Rust enum variant based on a tag name:
670//!
671//! ```xml
672//! <any-tag>
673//!   <field>...</field>
674//!   <one>...</one>
675//! </any-tag>
676//! ```
677//! ```xml
678//! <any-tag>
679//!   <two>...</two>
680//!   <field>...</field>
681//! </any-tag>
682//! ```
683//! </td>
684//! <td>
685//!
686//! A structure with a field which type is an `enum`.
687//!
688//! Names of the enum, struct, and struct field with `Choice` type does not matter:
689//!
690//! ```
691//! # use pretty_assertions::assert_eq;
692//! # use serde::Deserialize;
693//! # type T = ();
694//! # #[derive(Debug, PartialEq)]
695//! #[derive(Deserialize)]
696//! #[serde(rename_all = "snake_case")]
697//! enum Choice {
698//!   One,
699//!   Two,
700//! }
701//! # #[derive(Debug, PartialEq)]
702//! #[derive(Deserialize)]
703//! struct AnyName {
704//!   field: T,
705//!
706//!   #[serde(rename = "$value")]
707//!   any_name: Choice,
708//! }
709//! # assert_eq!(
710//! #   AnyName { field: (), any_name: Choice::One },
711//! #   quick_xml::de::from_str(r#"<any-tag><field>...</field><one>...</one></any-tag>"#).unwrap(),
712//! # );
713//! # assert_eq!(
714//! #   AnyName { field: (), any_name: Choice::Two },
715//! #   quick_xml::de::from_str(r#"<any-tag><two>...</two><field>...</field></any-tag>"#).unwrap(),
716//! # );
717//! ```
718//!
719//! <div style="background:rgba(120,145,255,0.45);padding:0.75em;">
720//!
721//! NOTE: if your `Choice` enum would contain an `#[serde(other)]`
722//! variant, element `<field>` will be mapped to the `field` and not to the enum
723//! variant.
724//! </div>
725//!
726//! </td>
727//! </tr>
728//! <!-- 11 ==================================================================================== -->
729//! <tr>
730//! <td>
731//!
732//! `<xs:choice>` encapsulated in other element with a fixed name:
733//!
734//! ```xml
735//! <any-tag field="...">
736//!   <choice>
737//!     <one>...</one>
738//!   </choice>
739//! </any-tag>
740//! ```
741//! ```xml
742//! <any-tag field="...">
743//!   <choice>
744//!     <two>...</two>
745//!   </choice>
746//! </any-tag>
747//! ```
748//! </td>
749//! <td>
750//!
751//! A structure with a field of an intermediate type with one field of `enum` type.
752//! Actually, this example is not necessary, because you can construct it by yourself
753//! using the composition rules that were described above. However the XML construction
754//! described here is very common, so it is shown explicitly.
755//!
756//! Names of the enum and struct does not matter:
757//!
758//! ```
759//! # use pretty_assertions::assert_eq;
760//! # use serde::Deserialize;
761//! # type T = ();
762//! # #[derive(Debug, PartialEq)]
763//! #[derive(Deserialize)]
764//! #[serde(rename_all = "snake_case")]
765//! enum Choice {
766//!   One,
767//!   Two,
768//! }
769//! # #[derive(Debug, PartialEq)]
770//! #[derive(Deserialize)]
771//! struct Holder {
772//!   #[serde(rename = "$value")]
773//!   any_name: Choice,
774//! }
775//! # #[derive(Debug, PartialEq)]
776//! #[derive(Deserialize)]
777//! struct AnyName {
778//!   #[serde(rename = "@field")]
779//!   field: T,
780//!
781//!   choice: Holder,
782//! }
783//! # assert_eq!(
784//! #   AnyName { field: (), choice: Holder { any_name: Choice::One } },
785//! #   quick_xml::de::from_str(r#"<any-tag field="..."><choice><one>...</one></choice></any-tag>"#).unwrap(),
786//! # );
787//! # assert_eq!(
788//! #   AnyName { field: (), choice: Holder { any_name: Choice::Two } },
789//! #   quick_xml::de::from_str(r#"<any-tag field="..."><choice><two>...</two></choice></any-tag>"#).unwrap(),
790//! # );
791//! ```
792//! </td>
793//! </tr>
794//! <!-- 12 ==================================================================================== -->
795//! <tr>
796//! <td>
797//!
798//! `<xs:choice>` encapsulated in other element with a fixed name:
799//!
800//! ```xml
801//! <any-tag>
802//!   <field>...</field>
803//!   <choice>
804//!     <one>...</one>
805//!   </choice>
806//! </any-tag>
807//! ```
808//! ```xml
809//! <any-tag>
810//!   <choice>
811//!     <two>...</two>
812//!   </choice>
813//!   <field>...</field>
814//! </any-tag>
815//! ```
816//! </td>
817//! <td>
818//!
819//! A structure with a field of an intermediate type with one field of `enum` type.
820//! Actually, this example is not necessary, because you can construct it by yourself
821//! using the composition rules that were described above. However the XML construction
822//! described here is very common, so it is shown explicitly.
823//!
824//! Names of the enum and struct does not matter:
825//!
826//! ```
827//! # use pretty_assertions::assert_eq;
828//! # use serde::Deserialize;
829//! # type T = ();
830//! # #[derive(Debug, PartialEq)]
831//! #[derive(Deserialize)]
832//! #[serde(rename_all = "snake_case")]
833//! enum Choice {
834//!   One,
835//!   Two,
836//! }
837//! # #[derive(Debug, PartialEq)]
838//! #[derive(Deserialize)]
839//! struct Holder {
840//!   #[serde(rename = "$value")]
841//!   any_name: Choice,
842//! }
843//! # #[derive(Debug, PartialEq)]
844//! #[derive(Deserialize)]
845//! struct AnyName {
846//!   field: T,
847//!
848//!   choice: Holder,
849//! }
850//! # assert_eq!(
851//! #   AnyName { field: (), choice: Holder { any_name: Choice::One } },
852//! #   quick_xml::de::from_str(r#"<any-tag><field>...</field><choice><one>...</one></choice></any-tag>"#).unwrap(),
853//! # );
854//! # assert_eq!(
855//! #   AnyName { field: (), choice: Holder { any_name: Choice::Two } },
856//! #   quick_xml::de::from_str(r#"<any-tag><choice><two>...</two></choice><field>...</field></any-tag>"#).unwrap(),
857//! # );
858//! ```
859//! </td>
860//! </tr>
861//! <!-- ======================================================================================== -->
862//! <tr><th colspan="2">
863//!
864//! ## Sequences (`xs:all` and `xs:sequence` XML Schema types)
865//!
866//! </th></tr>
867//! <tr><th>To parse all these XML's...</th><th>...use these Rust type(s)</th></tr>
868//! <!-- 13 ==================================================================================== -->
869//! <tr>
870//! <td>
871//! A sequence inside of a tag without a dedicated name:
872//!
873//! ```xml
874//! <any-tag/>
875//! ```
876//! ```xml
877//! <any-tag>
878//!   <item/>
879//! </any-tag>
880//! ```
881//! ```xml
882//! <any-tag>
883//!   <item/>
884//!   <item/>
885//!   <item/>
886//! </any-tag>
887//! ```
888//! </td>
889//! <td>
890//!
891//! A structure with a field which is a sequence type, for example, [`Vec`].
892//! Because XML syntax does not distinguish between empty sequences and missed
893//! elements, we should indicate that on the Rust side, because serde will require
894//! that field `item` exists. You can do that in two possible ways:
895//!
896//! Use the `#[serde(default)]` attribute for a [field] or the entire [struct]:
897//! ```
898//! # use pretty_assertions::assert_eq;
899//! # use serde::Deserialize;
900//! # type Item = ();
901//! # #[derive(Debug, PartialEq)]
902//! #[derive(Deserialize)]
903//! struct AnyName {
904//!   #[serde(default)]
905//!   item: Vec<Item>,
906//! }
907//! # assert_eq!(
908//! #   AnyName { item: vec![] },
909//! #   quick_xml::de::from_str(r#"<any-tag/>"#).unwrap(),
910//! # );
911//! # assert_eq!(
912//! #   AnyName { item: vec![()] },
913//! #   quick_xml::de::from_str(r#"<any-tag><item/></any-tag>"#).unwrap(),
914//! # );
915//! # assert_eq!(
916//! #   AnyName { item: vec![(), (), ()] },
917//! #   quick_xml::de::from_str(r#"<any-tag><item/><item/><item/></any-tag>"#).unwrap(),
918//! # );
919//! ```
920//!
921//! Use the [`Option`]. In that case inner array will always contains at least one
922//! element after deserialization:
923//! ```ignore
924//! # use pretty_assertions::assert_eq;
925//! # use serde::Deserialize;
926//! # type Item = ();
927//! # #[derive(Debug, PartialEq)]
928//! #[derive(Deserialize)]
929//! struct AnyName {
930//!   item: Option<Vec<Item>>,
931//! }
932//! # assert_eq!(
933//! #   AnyName { item: None },
934//! #   quick_xml::de::from_str(r#"<any-tag/>"#).unwrap(),
935//! # );
936//! # assert_eq!(
937//! #   AnyName { item: Some(vec![()]) },
938//! #   quick_xml::de::from_str(r#"<any-tag><item/></any-tag>"#).unwrap(),
939//! # );
940//! # assert_eq!(
941//! #   AnyName { item: Some(vec![(), (), ()]) },
942//! #   quick_xml::de::from_str(r#"<any-tag><item/><item/><item/></any-tag>"#).unwrap(),
943//! # );
944//! ```
945//!
946//! See also [Frequently Used Patterns](#element-lists).
947//!
948//! [field]: https://serde.rs/field-attrs.html#default
949//! [struct]: https://serde.rs/container-attrs.html#default
950//! </td>
951//! </tr>
952//! <!-- 14 ==================================================================================== -->
953//! <tr>
954//! <td>
955//! A sequence with a strict order, probably with mixed content
956//! (text / CDATA and tags):
957//!
958//! ```xml
959//! <one>...</one>
960//! text
961//! <![CDATA[cdata]]>
962//! <two>...</two>
963//! <one>...</one>
964//! ```
965//! <div style="background:rgba(120,145,255,0.45);padding:0.75em;">
966//!
967//! NOTE: this is just an example for showing mapping. XML does not allow
968//! multiple root tags -- you should wrap the sequence into a tag.
969//! </div>
970//! </td>
971//! <td>
972//!
973//! All elements mapped to the heterogeneous sequential type: tuple or named tuple.
974//! Each element of the tuple should be able to be deserialized from the nested
975//! element content (`...`), except the enum types which would be deserialized
976//! from the full element (`<one>...</one>`), so they could use the element name
977//! to choose the right variant:
978//!
979//! ```
980//! # use pretty_assertions::assert_eq;
981//! # use serde::Deserialize;
982//! # type One = ();
983//! # type Two = ();
984//! # /*
985//! type One = ...;
986//! type Two = ...;
987//! # */
988//! # #[derive(Debug, PartialEq)]
989//! #[derive(Deserialize)]
990//! struct AnyName(One, String, Two, One);
991//! # assert_eq!(
992//! #   AnyName((), "text cdata".into(), (), ()),
993//! #   quick_xml::de::from_str(r#"<one>...</one>text <![CDATA[cdata]]><two>...</two><one>...</one>"#).unwrap(),
994//! # );
995//! ```
996//! ```
997//! # use pretty_assertions::assert_eq;
998//! # use serde::Deserialize;
999//! # #[derive(Debug, PartialEq)]
1000//! #[derive(Deserialize)]
1001//! #[serde(rename_all = "snake_case")]
1002//! enum Choice {
1003//!   One,
1004//! }
1005//! # type Two = ();
1006//! # /*
1007//! type Two = ...;
1008//! # */
1009//! type AnyName = (Choice, String, Two, Choice);
1010//! # assert_eq!(
1011//! #   (Choice::One, "text cdata".to_string(), (), Choice::One),
1012//! #   quick_xml::de::from_str(r#"<one>...</one>text <![CDATA[cdata]]><two>...</two><one>...</one>"#).unwrap(),
1013//! # );
1014//! ```
1015//! <div style="background:rgba(120,145,255,0.45);padding:0.75em;">
1016//!
1017//! NOTE: consequent text and CDATA nodes are merged into the one text node,
1018//! so you cannot have two adjacent string types in your sequence.
1019//!
1020//! NOTE: In the case that the list might contain tags that are overlapped with
1021//! tags that do not correspond to the list you should add the feature [`overlapped-lists`].
1022//! </div>
1023//! </td>
1024//! </tr>
1025//! <!-- 15 ==================================================================================== -->
1026//! <tr>
1027//! <td>
1028//! A sequence with a non-strict order, probably with a mixed content
1029//! (text / CDATA and tags).
1030//!
1031//! ```xml
1032//! <one>...</one>
1033//! text
1034//! <![CDATA[cdata]]>
1035//! <two>...</two>
1036//! <one>...</one>
1037//! ```
1038//! <div style="background:rgba(120,145,255,0.45);padding:0.75em;">
1039//!
1040//! NOTE: this is just an example for showing mapping. XML does not allow
1041//! multiple root tags -- you should wrap the sequence into a tag.
1042//! </div>
1043//! </td>
1044//! <td>
1045//! A homogeneous sequence of elements with a fixed or dynamic size:
1046//!
1047//! ```
1048//! # use pretty_assertions::assert_eq;
1049//! # use serde::Deserialize;
1050//! # #[derive(Debug, PartialEq)]
1051//! #[derive(Deserialize)]
1052//! #[serde(rename_all = "snake_case")]
1053//! enum Choice {
1054//!   One,
1055//!   Two,
1056//!   #[serde(other)]
1057//!   Other,
1058//! }
1059//! type AnyName = [Choice; 4];
1060//! # assert_eq!(
1061//! #   [Choice::One, Choice::Other, Choice::Two, Choice::One],
1062//! #   quick_xml::de::from_str::<AnyName>(r#"<one>...</one>text <![CDATA[cdata]]><two>...</two><one>...</one>"#).unwrap(),
1063//! # );
1064//! ```
1065//! ```
1066//! # use pretty_assertions::assert_eq;
1067//! # use serde::Deserialize;
1068//! # #[derive(Debug, PartialEq)]
1069//! #[derive(Deserialize)]
1070//! #[serde(rename_all = "snake_case")]
1071//! enum Choice {
1072//!   One,
1073//!   Two,
1074//!   #[serde(rename = "$text")]
1075//!   Other(String),
1076//! }
1077//! type AnyName = Vec<Choice>;
1078//! # assert_eq!(
1079//! #   vec![
1080//! #     Choice::One,
1081//! #     Choice::Other("text cdata".into()),
1082//! #     Choice::Two,
1083//! #     Choice::One,
1084//! #   ],
1085//! #   quick_xml::de::from_str::<AnyName>(r#"<one>...</one>text <![CDATA[cdata]]><two>...</two><one>...</one>"#).unwrap(),
1086//! # );
1087//! ```
1088//! <div style="background:rgba(120,145,255,0.45);padding:0.75em;">
1089//!
1090//! NOTE: consequent text and CDATA nodes are merged into the one text node,
1091//! so you cannot have two adjacent string types in your sequence.
1092//! </div>
1093//! </td>
1094//! </tr>
1095//! <!-- 16 ==================================================================================== -->
1096//! <tr>
1097//! <td>
1098//! A sequence with a strict order, probably with a mixed content,
1099//! (text and tags) inside of the other element:
1100//!
1101//! ```xml
1102//! <any-tag attribute="...">
1103//!   <one>...</one>
1104//!   text
1105//!   <![CDATA[cdata]]>
1106//!   <two>...</two>
1107//!   <one>...</one>
1108//! </any-tag>
1109//! ```
1110//! </td>
1111//! <td>
1112//!
1113//! A structure where all child elements mapped to the one field which have
1114//! a heterogeneous sequential type: tuple or named tuple. Each element of the
1115//! tuple should be able to be deserialized from the full element (`<one>...</one>`).
1116//!
1117//! You MUST specify `#[serde(rename = "$value")]` on that field:
1118//!
1119//! ```
1120//! # use pretty_assertions::assert_eq;
1121//! # use serde::Deserialize;
1122//! # type One = ();
1123//! # type Two = ();
1124//! # /*
1125//! type One = ...;
1126//! type Two = ...;
1127//! # */
1128//!
1129//! # #[derive(Debug, PartialEq)]
1130//! #[derive(Deserialize)]
1131//! struct AnyName {
1132//!   #[serde(rename = "@attribute")]
1133//! # attribute: (),
1134//! # /*
1135//!   attribute: ...,
1136//! # */
1137//!   // Does not (yet?) supported by the serde
1138//!   // https://github.com/serde-rs/serde/issues/1905
1139//!   // #[serde(flatten)]
1140//!   #[serde(rename = "$value")]
1141//!   any_name: (One, String, Two, One),
1142//! }
1143//! # assert_eq!(
1144//! #   AnyName { attribute: (), any_name: ((), "text cdata".into(), (), ()) },
1145//! #   quick_xml::de::from_str("\
1146//! #     <any-tag attribute='...'>\
1147//! #       <one>...</one>\
1148//! #       text \
1149//! #       <![CDATA[cdata]]>\
1150//! #       <two>...</two>\
1151//! #       <one>...</one>\
1152//! #     </any-tag>"
1153//! #   ).unwrap(),
1154//! # );
1155//! ```
1156//! ```
1157//! # use pretty_assertions::assert_eq;
1158//! # use serde::Deserialize;
1159//! # type One = ();
1160//! # type Two = ();
1161//! # /*
1162//! type One = ...;
1163//! type Two = ...;
1164//! # */
1165//!
1166//! # #[derive(Debug, PartialEq)]
1167//! #[derive(Deserialize)]
1168//! struct NamedTuple(One, String, Two, One);
1169//!
1170//! # #[derive(Debug, PartialEq)]
1171//! #[derive(Deserialize)]
1172//! struct AnyName {
1173//!   #[serde(rename = "@attribute")]
1174//! # attribute: (),
1175//! # /*
1176//!   attribute: ...,
1177//! # */
1178//!   // Does not (yet?) supported by the serde
1179//!   // https://github.com/serde-rs/serde/issues/1905
1180//!   // #[serde(flatten)]
1181//!   #[serde(rename = "$value")]
1182//!   any_name: NamedTuple,
1183//! }
1184//! # assert_eq!(
1185//! #   AnyName { attribute: (), any_name: NamedTuple((), "text cdata".into(), (), ()) },
1186//! #   quick_xml::de::from_str("\
1187//! #     <any-tag attribute='...'>\
1188//! #       <one>...</one>\
1189//! #       text \
1190//! #       <![CDATA[cdata]]>\
1191//! #       <two>...</two>\
1192//! #       <one>...</one>\
1193//! #     </any-tag>"
1194//! #   ).unwrap(),
1195//! # );
1196//! ```
1197//! <div style="background:rgba(120,145,255,0.45);padding:0.75em;">
1198//!
1199//! NOTE: consequent text and CDATA nodes are merged into the one text node,
1200//! so you cannot have two adjacent string types in your sequence.
1201//! </div>
1202//! </td>
1203//! </tr>
1204//! <!-- 17 ==================================================================================== -->
1205//! <tr>
1206//! <td>
1207//! A sequence with a non-strict order, probably with a mixed content
1208//! (text / CDATA and tags) inside of the other element:
1209//!
1210//! ```xml
1211//! <any-tag>
1212//!   <one>...</one>
1213//!   text
1214//!   <![CDATA[cdata]]>
1215//!   <two>...</two>
1216//!   <one>...</one>
1217//! </any-tag>
1218//! ```
1219//! </td>
1220//! <td>
1221//!
1222//! A structure where all child elements mapped to the one field which have
1223//! a homogeneous sequential type: array-like container. A container type `T`
1224//! should be able to be deserialized from the nested element content (`...`),
1225//! except if it is an enum type which would be deserialized from the full
1226//! element (`<one>...</one>`).
1227//!
1228//! You MUST specify `#[serde(rename = "$value")]` on that field:
1229//!
1230//! ```
1231//! # use pretty_assertions::assert_eq;
1232//! # use serde::Deserialize;
1233//! # #[derive(Debug, PartialEq)]
1234//! #[derive(Deserialize)]
1235//! #[serde(rename_all = "snake_case")]
1236//! enum Choice {
1237//!   One,
1238//!   Two,
1239//!   #[serde(rename = "$text")]
1240//!   Other(String),
1241//! }
1242//! # #[derive(Debug, PartialEq)]
1243//! #[derive(Deserialize)]
1244//! struct AnyName {
1245//!   #[serde(rename = "@attribute")]
1246//! # attribute: (),
1247//! # /*
1248//!   attribute: ...,
1249//! # */
1250//!   // Does not (yet?) supported by the serde
1251//!   // https://github.com/serde-rs/serde/issues/1905
1252//!   // #[serde(flatten)]
1253//!   #[serde(rename = "$value")]
1254//!   any_name: [Choice; 4],
1255//! }
1256//! # assert_eq!(
1257//! #   AnyName { attribute: (), any_name: [
1258//! #     Choice::One,
1259//! #     Choice::Other("text cdata".into()),
1260//! #     Choice::Two,
1261//! #     Choice::One,
1262//! #   ] },
1263//! #   quick_xml::de::from_str("\
1264//! #     <any-tag attribute='...'>\
1265//! #       <one>...</one>\
1266//! #       text \
1267//! #       <![CDATA[cdata]]>\
1268//! #       <two>...</two>\
1269//! #       <one>...</one>\
1270//! #     </any-tag>"
1271//! #   ).unwrap(),
1272//! # );
1273//! ```
1274//! ```
1275//! # use pretty_assertions::assert_eq;
1276//! # use serde::Deserialize;
1277//! # #[derive(Debug, PartialEq)]
1278//! #[derive(Deserialize)]
1279//! #[serde(rename_all = "snake_case")]
1280//! enum Choice {
1281//!   One,
1282//!   Two,
1283//!   #[serde(rename = "$text")]
1284//!   Other(String),
1285//! }
1286//! # #[derive(Debug, PartialEq)]
1287//! #[derive(Deserialize)]
1288//! struct AnyName {
1289//!   #[serde(rename = "@attribute")]
1290//! # attribute: (),
1291//! # /*
1292//!   attribute: ...,
1293//! # */
1294//!   // Does not (yet?) supported by the serde
1295//!   // https://github.com/serde-rs/serde/issues/1905
1296//!   // #[serde(flatten)]
1297//!   #[serde(rename = "$value")]
1298//!   any_name: Vec<Choice>,
1299//! }
1300//! # assert_eq!(
1301//! #   AnyName { attribute: (), any_name: vec![
1302//! #     Choice::One,
1303//! #     Choice::Other("text cdata".into()),
1304//! #     Choice::Two,
1305//! #     Choice::One,
1306//! #   ] },
1307//! #   quick_xml::de::from_str("\
1308//! #     <any-tag attribute='...'>\
1309//! #       <one>...</one>\
1310//! #       text \
1311//! #       <![CDATA[cdata]]>\
1312//! #       <two>...</two>\
1313//! #       <one>...</one>\
1314//! #     </any-tag>"
1315//! #   ).unwrap(),
1316//! # );
1317//! ```
1318//! <div style="background:rgba(120,145,255,0.45);padding:0.75em;">
1319//!
1320//! NOTE: consequent text and CDATA nodes are merged into the one text node,
1321//! so you cannot have two adjacent string types in your sequence.
1322//! </div>
1323//! </td>
1324//! </tr>
1325//! </tbody>
1326//! </table>
1327//!
1328//!
1329//! Mapping of `xsi:nil`
1330//! ====================
1331//!
1332//! quick-xml supports handling of [`xsi:nil`] special attribute. When field of optional
1333//! type is mapped to the XML element which have `xsi:nil="true"` set, or if that attribute
1334//! is placed on parent XML element, the deserializer will call [`Visitor::visit_none`]
1335//! and skip XML element corresponding to a field.
1336//!
1337//! Examples:
1338//!
1339//! ```
1340//! # use pretty_assertions::assert_eq;
1341//! # use serde::Deserialize;
1342//! #[derive(Deserialize, Debug, PartialEq)]
1343//! struct TypeWithOptionalField {
1344//!   element: Option<String>,
1345//! }
1346//!
1347//! assert_eq!(
1348//!   TypeWithOptionalField {
1349//!     element: None,
1350//!   },
1351//!   quick_xml::de::from_str("
1352//!     <any-tag xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'>
1353//!       <element xsi:nil='true'>Content is skiped because of xsi:nil='true'</element>
1354//!     </any-tag>
1355//!   ").unwrap(),
1356//! );
1357//! ```
1358//!
1359//! You can capture attributes from the optional type, because ` xsi:nil="true"` elements can have
1360//! attributes:
1361//! ```
1362//! # use pretty_assertions::assert_eq;
1363//! # use serde::Deserialize;
1364//! #[derive(Deserialize, Debug, PartialEq)]
1365//! struct TypeWithOptionalField {
1366//!   #[serde(rename = "@attribute")]
1367//!   attribute: usize,
1368//!
1369//!   element: Option<String>,
1370//!   non_optional: String,
1371//! }
1372//!
1373//! assert_eq!(
1374//!   TypeWithOptionalField {
1375//!     attribute: 42,
1376//!     element: None,
1377//!     non_optional: "Note, that non-optional fields will be deserialized as usual".to_string(),
1378//!   },
1379//!   quick_xml::de::from_str("
1380//!     <any-tag attribute='42' xsi:nil='true' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'>
1381//!       <element>Content is skiped because of xsi:nil='true'</element>
1382//!       <non_optional>Note, that non-optional fields will be deserialized as usual</non_optional>
1383//!     </any-tag>
1384//!   ").unwrap(),
1385//! );
1386//! ```
1387//!
1388//! Generate Rust types from XML
1389//! ============================
1390//!
1391//! To speed up the creation of Rust types that represent a given XML file you can
1392//! use the [xml_schema_generator](https://github.com/Thomblin/xml_schema_generator).
1393//! It provides a standalone binary and a Rust library that parses one or more XML files
1394//! and generates a collection of structs that are compatible with quick_xml::de.
1395//!
1396//!
1397//!
1398//! Composition Rules
1399//! =================
1400//!
1401//! The XML format is very different from other formats supported by `serde`.
1402//! One such difference it is how data in the serialized form is related to
1403//! the Rust type. Usually each byte in the data can be associated only with
1404//! one field in the data structure. However, XML is an exception.
1405//!
1406//! For example, took this XML:
1407//!
1408//! ```xml
1409//! <any>
1410//!   <key attr="value"/>
1411//! </any>
1412//! ```
1413//!
1414//! and try to deserialize it to the struct `AnyName`:
1415//!
1416//! ```no_run
1417//! # use serde::Deserialize;
1418//! #[derive(Deserialize)]
1419//! struct AnyName { // AnyName calls `deserialize_struct` on `<any><key attr="value"/></any>`
1420//!                  //                         Used data:          ^^^^^^^^^^^^^^^^^^^
1421//!   key: Inner,    // Inner   calls `deserialize_struct` on `<key attr="value"/>`
1422//!                  //                         Used data:          ^^^^^^^^^^^^
1423//! }
1424//! #[derive(Deserialize)]
1425//! struct Inner {
1426//!   #[serde(rename = "@attr")]
1427//!   attr: String,  // String  calls `deserialize_string` on `value`
1428//!                  //                         Used data:     ^^^^^
1429//! }
1430//! ```
1431//!
1432//! Comments shows what methods of a [`Deserializer`] called by each struct
1433//! `deserialize` method and which input their seen. **Used data** shows, what
1434//! content is actually used for deserializing. As you see, name of the inner
1435//! `<key>` tag used both as a map key / outer struct field name and as part
1436//! of the inner struct (although _value_ of the tag, i.e. `key` is not used
1437//! by it).
1438//!
1439//!
1440//!
1441//! Enum Representations
1442//! ====================
1443//!
1444//! `quick-xml` represents enums differently in normal fields, `$text` fields and
1445//! `$value` fields. A normal representation is compatible with serde's adjacent
1446//! and internal tags feature -- tag for adjacently and internally tagged enums
1447//! are serialized using [`Serializer::serialize_unit_variant`] and deserialized
1448//! using [`Deserializer::deserialize_enum`].
1449//!
1450//! Use those simple rules to remember, how enum would be represented in XML:
1451//! - In `$value` field the representation is always the same as top-level representation;
1452//! - In `$text` field the representation is always the same as in normal field,
1453//!   but surrounding tags with field name are removed;
1454//! - In normal field the representation is always contains a tag with a field name.
1455//!
1456//! Normal enum variant
1457//! -------------------
1458//!
1459//! To model an `xs:choice` XML construct use `$value` field.
1460//! To model a top-level `xs:choice` just use the enum type.
1461//!
1462//! |Kind   |Top-level and in `$value` field          |In normal field      |In `$text` field     |
1463//! |-------|-----------------------------------------|---------------------|---------------------|
1464//! |Unit   |`<Unit/>`                                |`<field>Unit</field>`|`Unit`               |
1465//! |Newtype|`<Newtype>42</Newtype>`                  |Err(Custom) [^0]     |Err(Custom) [^0]     |
1466//! |Tuple  |`<Tuple>42</Tuple><Tuple>answer</Tuple>` |Err(Custom) [^0]     |Err(Custom) [^0]     |
1467//! |Struct |`<Struct><q>42</q><a>answer</a></Struct>`|Err(Custom) [^0]     |Err(Custom) [^0]     |
1468//!
1469//! `$text` enum variant
1470//! --------------------
1471//!
1472//! |Kind   |Top-level and in `$value` field          |In normal field      |In `$text` field     |
1473//! |-------|-----------------------------------------|---------------------|---------------------|
1474//! |Unit   |_(empty)_                                |`<field/>`           |_(empty)_            |
1475//! |Newtype|`42`                                     |Err(Custom) [^0] [^1]|Err(Custom) [^0] [^2]|
1476//! |Tuple  |`42 answer`                              |Err(Custom) [^0] [^3]|Err(Custom) [^0] [^4]|
1477//! |Struct |Err(Custom) [^0]                         |Err(Custom) [^0]     |Err(Custom) [^0]     |
1478//!
1479//! [^0]: Error is returned by the deserialized type. In case of derived implementation a `Custom`
1480//!       error will be returned, but custom deserialize implementation can successfully deserialize
1481//!       value from a string which will be passed to it.
1482//!
1483//! [^1]: If this serialize as `<field>42</field>` then it will be ambiguity during deserialization,
1484//!       because it clash with `Unit` representation in normal field.
1485//!
1486//! [^2]: If this serialize as `42` then it will be ambiguity during deserialization,
1487//!       because it clash with `Unit` representation in `$text` field.
1488//!
1489//! [^3]: If this serialize as `<field>42 answer</field>` then it will be ambiguity during deserialization,
1490//!       because it clash with `Unit` representation in normal field.
1491//!
1492//! [^4]: If this serialize as `42 answer` then it will be ambiguity during deserialization,
1493//!       because it clash with `Unit` representation in `$text` field.
1494//!
1495//!
1496//!
1497//! `$text` and `$value` special names
1498//! ==================================
1499//!
1500//! quick-xml supports two special names for fields -- `$text` and `$value`.
1501//! Although they may seem the same, there is a distinction. Two different
1502//! names is required mostly for serialization, because quick-xml should know
1503//! how you want to serialize certain constructs, which could be represented
1504//! through XML in multiple different ways.
1505//!
1506//! The only difference is in how complex types and sequences are serialized.
1507//! If you doubt which one you should select, begin with [`$value`](#value).
1508//!
1509//! If you have both `$text` and `$value` in you struct, then text events will be
1510//! mapped to the `$text` field:
1511//!
1512//! ```
1513//! # use serde::Deserialize;
1514//! # use quick_xml::de::from_str;
1515//! #[derive(Deserialize, PartialEq, Debug)]
1516//! struct TextAndValue {
1517//!     #[serde(rename = "$text")]
1518//!     text: Option<String>,
1519//!
1520//!     #[serde(rename = "$value")]
1521//!     value: Option<String>,
1522//! }
1523//!
1524//! let object: TextAndValue = from_str("<AnyName>text <![CDATA[and CDATA]]></AnyName>").unwrap();
1525//! assert_eq!(object, TextAndValue {
1526//!     text: Some("text and CDATA".to_string()),
1527//!     value: None,
1528//! });
1529//! ```
1530//!
1531//! ## `$text`
1532//! `$text` is used when you want to write your XML as a text or a CDATA content.
1533//! More formally, field with that name represents simple type definition with
1534//! `{variety} = atomic` or `{variety} = union` whose basic members are all atomic,
1535//! as described in the [specification].
1536//!
1537//! As a result, not all types of such fields can be serialized. Only serialization
1538//! of following types are supported:
1539//! - all primitive types (strings, numbers, booleans)
1540//! - unit variants of enumerations (serializes to a name of a variant)
1541//! - newtypes (delegates serialization to inner type)
1542//! - [`Option`] of above (`None` serializes to nothing)
1543//! - sequences (including tuples and tuple variants of enumerations) of above,
1544//!   excluding `None` and empty string elements (because it will not be possible
1545//!   to deserialize them back). The elements are separated by space(s)
1546//! - unit type `()` and unit structs (serializes to nothing)
1547//!
1548//! Complex types, such as structs and maps, are not supported in this field.
1549//! If you want them, you should use `$value`.
1550//!
1551//! Sequences serialized to a space-delimited string, that is why only certain
1552//! types are allowed in this mode:
1553//!
1554//! ```
1555//! # use serde::{Deserialize, Serialize};
1556//! # use quick_xml::de::from_str;
1557//! # use quick_xml::se::to_string;
1558//! #[derive(Deserialize, Serialize, PartialEq, Debug)]
1559//! struct AnyName {
1560//!     #[serde(rename = "$text")]
1561//!     field: Vec<usize>,
1562//! }
1563//!
1564//! let obj = AnyName { field: vec![1, 2, 3] };
1565//! let xml = to_string(&obj).unwrap();
1566//! assert_eq!(xml, "<AnyName>1 2 3</AnyName>");
1567//!
1568//! let object: AnyName = from_str(&xml).unwrap();
1569//! assert_eq!(object, obj);
1570//! ```
1571//!
1572//! ## `$value`
1573//! <div style="background:rgba(120,145,255,0.45);padding:0.75em;">
1574//!
1575//! NOTE: a name `#content` would better explain the purpose of that field,
1576//! but `$value` is used for compatibility with other XML serde crates, which
1577//! uses that name. This will allow you to switch XML crates more smoothly if required.
1578//! </div>
1579//!
1580//! The representation of primitive types in `$value` does not differ from their
1581//! representation in `$text` fields. The difference is how sequences are serialized
1582//! and deserialized. `$value` serializes each sequence item as a separate XML element.
1583//! How the name of the XML element is chosen depends on the field's type. For
1584//! `enum`s, the variant name is used. For `struct`s, the name of the `struct`
1585//! is used.
1586//!
1587//! During deserialization, if the `$value` field is an enum, then the variant's
1588//! name is matched against. That's **not** the case with structs, however, since
1589//! `serde` does not expose type names of nested fields. This does mean that **any**
1590//! type could be deserialized into a `$value` struct-type field, so long as the
1591//! struct's fields have compatible types (or are captured as text by `String`
1592//! or similar-behaving types). This can be handy when using generic types in fields
1593//! where one knows in advance what to expect. If you do not know what to expect,
1594//! however, prefer an enum with all possible variants.
1595//!
1596//! Unit structs and unit type `()` serialize to nothing and can be deserialized
1597//! from any content.
1598//!
1599//! Serialization and deserialization of `$value` field performed as usual, except
1600//! that name for an XML element will be given by the serialized type, instead of
1601//! field. The latter allow to serialize enumerated types, where variant is encoded
1602//! as a tag name, and, so, represent an XSD `xs:choice` schema by the Rust `enum`.
1603//!
1604//! In the example below, field will be serialized as `<field/>`, because elements
1605//! get their names from the field name. It cannot be deserialized, because `Enum`
1606//! expects elements `<A/>`, `<B/>` or `<C/>`, but `AnyName` looked only for `<field/>`:
1607//!
1608//! ```
1609//! # use serde::{Deserialize, Serialize};
1610//! # use pretty_assertions::assert_eq;
1611//! # #[derive(PartialEq, Debug)]
1612//! #[derive(Deserialize, Serialize)]
1613//! enum Enum { A, B, C }
1614//!
1615//! # #[derive(PartialEq, Debug)]
1616//! #[derive(Deserialize, Serialize)]
1617//! struct AnyName {
1618//!     // <field>A</field>, <field>B</field>, or <field>C</field>
1619//!     field: Enum,
1620//! }
1621//! # assert_eq!(
1622//! #     quick_xml::se::to_string(&AnyName { field: Enum::A }).unwrap(),
1623//! #     "<AnyName><field>A</field></AnyName>",
1624//! # );
1625//! # assert_eq!(
1626//! #     AnyName { field: Enum::B },
1627//! #     quick_xml::de::from_str("<root><field>B</field></root>").unwrap(),
1628//! # );
1629//! ```
1630//!
1631//! If you rename field to `$value`, then `field` would be serialized as `<A/>`,
1632//! `<B/>` or `<C/>`, depending on the its content. It is also possible to
1633//! deserialize it from the same elements:
1634//!
1635//! ```
1636//! # use serde::{Deserialize, Serialize};
1637//! # use pretty_assertions::assert_eq;
1638//! # #[derive(Deserialize, Serialize, PartialEq, Debug)]
1639//! # enum Enum { A, B, C }
1640//! #
1641//! # #[derive(PartialEq, Debug)]
1642//! #[derive(Deserialize, Serialize)]
1643//! struct AnyName {
1644//!     // <A/>, <B/> or <C/>
1645//!     #[serde(rename = "$value")]
1646//!     field: Enum,
1647//! }
1648//! # assert_eq!(
1649//! #     quick_xml::se::to_string(&AnyName { field: Enum::A }).unwrap(),
1650//! #     "<AnyName><A/></AnyName>",
1651//! # );
1652//! # assert_eq!(
1653//! #     AnyName { field: Enum::B },
1654//! #     quick_xml::de::from_str("<root><B/></root>").unwrap(),
1655//! # );
1656//! ```
1657//!
1658//! The next example demonstrates how generic types can be used in conjunction
1659//! with `$value`-named fields to allow the reuse of wrapping structs. A common
1660//! example use case for this feature is SOAP messages, which can be commmonly
1661//! found wrapped around `<soapenv:Envelope> ... </soapenv:Envelope>`.
1662//!
1663//! ```rust
1664//! # use pretty_assertions::assert_eq;
1665//! # use quick_xml::de::from_str;
1666//! # use quick_xml::se::to_string;
1667//! # use serde::{Deserialize, Serialize};
1668//! #
1669//! #[derive(Deserialize, Serialize, PartialEq, Debug)]
1670//! struct Envelope<T> {
1671//!     body: Body<T>,
1672//! }
1673//!
1674//! #[derive(Deserialize, Serialize, PartialEq, Debug)]
1675//! struct Body<T> {
1676//!     #[serde(rename = "$value")]
1677//!     inner: T,
1678//! }
1679//!
1680//! #[derive(Serialize, PartialEq, Debug)]
1681//! struct Example {
1682//!     a: i32,
1683//! }
1684//!
1685//! assert_eq!(
1686//!     to_string(&Envelope { body: Body { inner: Example { a: 42 } } }).unwrap(),
1687//!     // Notice how `inner` is not present in the XML
1688//!     "<Envelope><body><Example><a>42</a></Example></body></Envelope>",
1689//! );
1690//!
1691//! #[derive(Deserialize, PartialEq, Debug)]
1692//! struct AnotherExample {
1693//!     a: i32,
1694//! }
1695//!
1696//! assert_eq!(
1697//!     // Notice that tag the name does nothing for struct in `$value` field
1698//!     Envelope { body: Body { inner: AnotherExample { a: 42 } } },
1699//!     from_str("<Envelope><body><Example><a>42</a></Example></body></Envelope>").unwrap(),
1700//! );
1701//! ```
1702//!
1703//! ### Primitives and sequences of primitives
1704//!
1705//! Sequences serialized to a list of elements. Note, that types that does not
1706//! produce their own tag (i. e. primitives) will produce [`SeError::Unsupported`]
1707//! if they contains more that one element, because such sequence cannot be
1708//! deserialized to the same value:
1709//!
1710//! ```
1711//! # use serde::{Deserialize, Serialize};
1712//! # use pretty_assertions::assert_eq;
1713//! # use quick_xml::de::from_str;
1714//! # use quick_xml::se::to_string;
1715//! #[derive(Deserialize, Serialize, PartialEq, Debug)]
1716//! struct AnyName {
1717//!     #[serde(rename = "$value")]
1718//!     field: Vec<usize>,
1719//! }
1720//!
1721//! let obj = AnyName { field: vec![1, 2, 3] };
1722//! // If this object were serialized, it would be represented as "<AnyName>123</AnyName>"
1723//! to_string(&obj).unwrap_err();
1724//!
1725//! let object: AnyName = from_str("<AnyName>123</AnyName>").unwrap();
1726//! assert_eq!(object, AnyName { field: vec![123] });
1727//!
1728//! // `1 2 3` is mapped to a single `usize` element
1729//! // It is impossible to deserialize list of primitives to such field
1730//! from_str::<AnyName>("<AnyName>1 2 3</AnyName>").unwrap_err();
1731//! ```
1732//!
1733//! A particular case of that example is a string `$value` field, which probably
1734//! would be a most used example of that attribute:
1735//!
1736//! ```
1737//! # use serde::{Deserialize, Serialize};
1738//! # use pretty_assertions::assert_eq;
1739//! # use quick_xml::de::from_str;
1740//! # use quick_xml::se::to_string;
1741//! #[derive(Deserialize, Serialize, PartialEq, Debug)]
1742//! struct AnyName {
1743//!     #[serde(rename = "$value")]
1744//!     field: String,
1745//! }
1746//!
1747//! let obj = AnyName { field: "content".to_string() };
1748//! let xml = to_string(&obj).unwrap();
1749//! assert_eq!(xml, "<AnyName>content</AnyName>");
1750//! ```
1751//!
1752//! ### Structs and sequences of structs
1753//!
1754//! Note, that structures do not have a serializable name as well (name of the
1755//! type is never used), so it is impossible to serialize non-unit struct or
1756//! sequence of non-unit structs in `$value` field. (sequences of) unit structs
1757//! are serialized as empty string, because units itself serializing
1758//! to nothing:
1759//!
1760//! ```
1761//! # use serde::{Deserialize, Serialize};
1762//! # use pretty_assertions::assert_eq;
1763//! # use quick_xml::de::from_str;
1764//! # use quick_xml::se::to_string;
1765//! #[derive(Deserialize, Serialize, PartialEq, Debug)]
1766//! struct Unit;
1767//!
1768//! #[derive(Deserialize, Serialize, PartialEq, Debug)]
1769//! struct AnyName {
1770//!     // #[serde(default)] is required to deserialization of empty lists
1771//!     // This is a general note, not related to $value
1772//!     #[serde(rename = "$value", default)]
1773//!     field: Vec<Unit>,
1774//! }
1775//!
1776//! let obj = AnyName { field: vec![Unit, Unit, Unit] };
1777//! let xml = to_string(&obj).unwrap();
1778//! assert_eq!(xml, "<AnyName/>");
1779//!
1780//! let object: AnyName = from_str("<AnyName/>").unwrap();
1781//! assert_eq!(object, AnyName { field: vec![] });
1782//!
1783//! let object: AnyName = from_str("<AnyName></AnyName>").unwrap();
1784//! assert_eq!(object, AnyName { field: vec![] });
1785//!
1786//! let object: AnyName = from_str("<AnyName><A/><B/><C/></AnyName>").unwrap();
1787//! assert_eq!(object, AnyName { field: vec![Unit, Unit, Unit] });
1788//! ```
1789//!
1790//! ### Enums and sequences of enums
1791//!
1792//! Enumerations uses the variant name as an element name:
1793//!
1794//! ```
1795//! # use serde::{Deserialize, Serialize};
1796//! # use pretty_assertions::assert_eq;
1797//! # use quick_xml::de::from_str;
1798//! # use quick_xml::se::to_string;
1799//! #[derive(Deserialize, Serialize, PartialEq, Debug)]
1800//! struct AnyName {
1801//!     #[serde(rename = "$value")]
1802//!     field: Vec<Enum>,
1803//! }
1804//!
1805//! #[derive(Deserialize, Serialize, PartialEq, Debug)]
1806//! enum Enum { A, B, C }
1807//!
1808//! let obj = AnyName { field: vec![Enum::A, Enum::B, Enum::C] };
1809//! let xml = to_string(&obj).unwrap();
1810//! assert_eq!(
1811//!     xml,
1812//!     "<AnyName>\
1813//!         <A/>\
1814//!         <B/>\
1815//!         <C/>\
1816//!      </AnyName>"
1817//! );
1818//!
1819//! let object: AnyName = from_str(&xml).unwrap();
1820//! assert_eq!(object, obj);
1821//! ```
1822//!
1823//!
1824//!
1825//! Frequently Used Patterns
1826//! ========================
1827//!
1828//! Some XML constructs used so frequent, that it is worth to document the recommended
1829//! way to represent them in the Rust. The sections below describes them.
1830//!
1831//! `<element>` lists
1832//! -----------------
1833//! Many XML formats wrap lists of elements in the additional container,
1834//! although this is not required by the XML rules:
1835//!
1836//! ```xml
1837//! <root>
1838//!   <field1/>
1839//!   <field2/>
1840//!   <list><!-- Container -->
1841//!     <element/>
1842//!     <element/>
1843//!     <element/>
1844//!   </list>
1845//!   <field3/>
1846//! </root>
1847//! ```
1848//! In this case, there is a great desire to describe this XML in this way:
1849//! ```
1850//! /// Represents <element/>
1851//! type Element = ();
1852//!
1853//! /// Represents <root>...</root>
1854//! struct AnyName {
1855//!     // Incorrect
1856//!     list: Vec<Element>,
1857//! }
1858//! ```
1859//! This will not work, because potentially `<list>` element can have attributes
1860//! and other elements inside. You should define the struct for the `<list>`
1861//! explicitly, as you do that in the XSD for that XML:
1862//! ```
1863//! /// Represents <element/>
1864//! type Element = ();
1865//!
1866//! /// Represents <root>...</root>
1867//! struct AnyName {
1868//!     // Correct
1869//!     list: List,
1870//! }
1871//! /// Represents <list>...</list>
1872//! struct List {
1873//!     element: Vec<Element>,
1874//! }
1875//! ```
1876//!
1877//! If you want to simplify your API, you could write a simple function for unwrapping
1878//! inner list and apply it via [`deserialize_with`]:
1879//!
1880//! ```
1881//! # use pretty_assertions::assert_eq;
1882//! use quick_xml::de::from_str;
1883//! use serde::{Deserialize, Deserializer};
1884//!
1885//! /// Represents <element/>
1886//! type Element = ();
1887//!
1888//! /// Represents <root>...</root>
1889//! #[derive(Deserialize, Debug, PartialEq)]
1890//! struct AnyName {
1891//!     #[serde(deserialize_with = "unwrap_list")]
1892//!     list: Vec<Element>,
1893//! }
1894//!
1895//! fn unwrap_list<'de, D>(deserializer: D) -> Result<Vec<Element>, D::Error>
1896//! where
1897//!     D: Deserializer<'de>,
1898//! {
1899//!     /// Represents <list>...</list>
1900//!     #[derive(Deserialize)]
1901//!     struct List {
1902//!         // default allows empty list
1903//!         #[serde(default)]
1904//!         element: Vec<Element>,
1905//!     }
1906//!     Ok(List::deserialize(deserializer)?.element)
1907//! }
1908//!
1909//! assert_eq!(
1910//!     AnyName { list: vec![(), (), ()] },
1911//!     from_str("
1912//!         <root>
1913//!           <list>
1914//!             <element/>
1915//!             <element/>
1916//!             <element/>
1917//!           </list>
1918//!         </root>
1919//!     ").unwrap(),
1920//! );
1921//! ```
1922//!
1923//! Instead of writing such functions manually, you also could try <https://lib.rs/crates/serde-query>.
1924//!
1925//! Overlapped (Out-of-Order) Elements
1926//! ----------------------------------
1927//! In the case that the list might contain tags that are overlapped with
1928//! tags that do not correspond to the list (this is a usual case in XML
1929//! documents) like this:
1930//! ```xml
1931//! <any-name>
1932//!   <item/>
1933//!   <another-item/>
1934//!   <item/>
1935//!   <item/>
1936//! </any-name>
1937//! ```
1938//! you should enable the [`overlapped-lists`] feature to make it possible
1939//! to deserialize this to:
1940//! ```no_run
1941//! # use serde::Deserialize;
1942//! #[derive(Deserialize)]
1943//! #[serde(rename_all = "kebab-case")]
1944//! struct AnyName {
1945//!     item: Vec<()>,
1946//!     another_item: (),
1947//! }
1948//! ```
1949//!
1950//!
1951//! Internally Tagged Enums
1952//! -----------------------
1953//! [Tagged enums] are currently not supported because of an issue in the Serde
1954//! design (see [serde#1183] and [quick-xml#586]) and missing optimizations in
1955//! Serde which could be useful for XML parsing ([serde#1495]). This can be worked
1956//! around by manually implementing deserialize with `#[serde(deserialize_with = "func")]`
1957//! or implementing [`Deserialize`], but this can get very tedious very fast for
1958//! files with large amounts of tagged enums. To help with this issue quick-xml
1959//! provides a macro [`impl_deserialize_for_internally_tagged_enum!`]. See the
1960//! macro documentation for details.
1961//!
1962//!
1963//! [`overlapped-lists`]: ../index.html#overlapped-lists
1964//! [specification]: https://www.w3.org/TR/xmlschema11-1/#Simple_Type_Definition
1965//! [`deserialize_with`]: https://serde.rs/field-attrs.html#deserialize_with
1966//! [`xsi:nil`]: https://www.w3.org/TR/xmlschema-1/#xsi_nil
1967//! [`Serializer::serialize_unit_variant`]: serde::Serializer::serialize_unit_variant
1968//! [`Deserializer::deserialize_enum`]: serde::Deserializer::deserialize_enum
1969//! [`SeError::Unsupported`]: crate::errors::serialize::SeError::Unsupported
1970//! [Tagged enums]: https://serde.rs/enum-representations.html#internally-tagged
1971//! [serde#1183]: https://github.com/serde-rs/serde/issues/1183
1972//! [serde#1495]: https://github.com/serde-rs/serde/issues/1495
1973//! [quick-xml#586]: https://github.com/tafia/quick-xml/issues/586
1974//! [`impl_deserialize_for_internally_tagged_enum!`]: crate::impl_deserialize_for_internally_tagged_enum
1975
1976// Macros should be defined before the modules that using them
1977// Also, macros should be imported before using them
1978use serde::serde_if_integer128;
1979
1980macro_rules! forward_to_simple_type {
1981    ($deserialize:ident, $($mut:tt)?) => {
1982        #[inline]
1983        fn $deserialize<V>($($mut)? self, visitor: V) -> Result<V::Value, DeError>
1984        where
1985            V: Visitor<'de>,
1986        {
1987            SimpleTypeDeserializer::from_text(self.read_string()?).$deserialize(visitor)
1988        }
1989    };
1990}
1991
1992/// Implement deserialization methods for scalar types, such as numbers, strings,
1993/// byte arrays, booleans and identifiers.
1994macro_rules! deserialize_primitives {
1995    ($($mut:tt)?) => {
1996        forward_to_simple_type!(deserialize_i8, $($mut)?);
1997        forward_to_simple_type!(deserialize_i16, $($mut)?);
1998        forward_to_simple_type!(deserialize_i32, $($mut)?);
1999        forward_to_simple_type!(deserialize_i64, $($mut)?);
2000
2001        forward_to_simple_type!(deserialize_u8, $($mut)?);
2002        forward_to_simple_type!(deserialize_u16, $($mut)?);
2003        forward_to_simple_type!(deserialize_u32, $($mut)?);
2004        forward_to_simple_type!(deserialize_u64, $($mut)?);
2005
2006        serde_if_integer128! {
2007            forward_to_simple_type!(deserialize_i128, $($mut)?);
2008            forward_to_simple_type!(deserialize_u128, $($mut)?);
2009        }
2010
2011        forward_to_simple_type!(deserialize_f32, $($mut)?);
2012        forward_to_simple_type!(deserialize_f64, $($mut)?);
2013
2014        forward_to_simple_type!(deserialize_bool, $($mut)?);
2015        forward_to_simple_type!(deserialize_char, $($mut)?);
2016
2017        forward_to_simple_type!(deserialize_str, $($mut)?);
2018        forward_to_simple_type!(deserialize_string, $($mut)?);
2019
2020        /// Forwards deserialization to the [`deserialize_any`](#method.deserialize_any).
2021        #[inline]
2022        fn deserialize_bytes<V>(self, visitor: V) -> Result<V::Value, DeError>
2023        where
2024            V: Visitor<'de>,
2025        {
2026            self.deserialize_any(visitor)
2027        }
2028
2029        /// Forwards deserialization to the [`deserialize_bytes`](#method.deserialize_bytes).
2030        #[inline]
2031        fn deserialize_byte_buf<V>(self, visitor: V) -> Result<V::Value, DeError>
2032        where
2033            V: Visitor<'de>,
2034        {
2035            self.deserialize_bytes(visitor)
2036        }
2037
2038        /// Representation of the named units the same as [unnamed units](#method.deserialize_unit).
2039        #[inline]
2040        fn deserialize_unit_struct<V>(
2041            self,
2042            _name: &'static str,
2043            visitor: V,
2044        ) -> Result<V::Value, DeError>
2045        where
2046            V: Visitor<'de>,
2047        {
2048            self.deserialize_unit(visitor)
2049        }
2050
2051        /// Representation of tuples the same as [sequences](#method.deserialize_seq).
2052        #[inline]
2053        fn deserialize_tuple<V>(self, _len: usize, visitor: V) -> Result<V::Value, DeError>
2054        where
2055            V: Visitor<'de>,
2056        {
2057            self.deserialize_seq(visitor)
2058        }
2059
2060        /// Representation of named tuples the same as [unnamed tuples](#method.deserialize_tuple).
2061        #[inline]
2062        fn deserialize_tuple_struct<V>(
2063            self,
2064            _name: &'static str,
2065            len: usize,
2066            visitor: V,
2067        ) -> Result<V::Value, DeError>
2068        where
2069            V: Visitor<'de>,
2070        {
2071            self.deserialize_tuple(len, visitor)
2072        }
2073
2074        /// Forwards deserialization to the [`deserialize_struct`](#method.deserialize_struct)
2075        /// with empty name and fields.
2076        #[inline]
2077        fn deserialize_map<V>(self, visitor: V) -> Result<V::Value, DeError>
2078        where
2079            V: Visitor<'de>,
2080        {
2081            self.deserialize_struct("", &[], visitor)
2082        }
2083
2084        /// Identifiers represented as [strings](#method.deserialize_str).
2085        #[inline]
2086        fn deserialize_identifier<V>(self, visitor: V) -> Result<V::Value, DeError>
2087        where
2088            V: Visitor<'de>,
2089        {
2090            self.deserialize_str(visitor)
2091        }
2092
2093        /// Forwards deserialization to the [`deserialize_unit`](#method.deserialize_unit).
2094        #[inline]
2095        fn deserialize_ignored_any<V>(self, visitor: V) -> Result<V::Value, DeError>
2096        where
2097            V: Visitor<'de>,
2098        {
2099            self.deserialize_unit(visitor)
2100        }
2101    };
2102}
2103
2104mod attributes;
2105mod key;
2106mod map;
2107mod resolver;
2108mod simple_type;
2109mod text;
2110mod var;
2111
2112pub use self::attributes::AttributesDeserializer;
2113pub use self::resolver::{EntityResolver, PredefinedEntityResolver};
2114pub use self::simple_type::SimpleTypeDeserializer;
2115pub use crate::errors::serialize::DeError;
2116
2117use crate::{
2118    de::map::ElementMapAccess,
2119    encoding::Decoder,
2120    errors::Error,
2121    escape::{parse_number, EscapeError},
2122    events::{BytesCData, BytesEnd, BytesRef, BytesStart, BytesText, Event},
2123    name::QName,
2124    reader::NsReader,
2125};
2126use serde::de::{
2127    self, Deserialize, DeserializeOwned, DeserializeSeed, IntoDeserializer, SeqAccess, Visitor,
2128};
2129use std::borrow::Cow;
2130#[cfg(feature = "overlapped-lists")]
2131use std::collections::VecDeque;
2132use std::io::BufRead;
2133use std::mem::replace;
2134#[cfg(feature = "overlapped-lists")]
2135use std::num::NonZeroUsize;
2136use std::ops::{Deref, Range};
2137
2138/// Data represented by a text node or a CDATA node. XML markup is not expected
2139pub(crate) const TEXT_KEY: &str = "$text";
2140/// Data represented by any XML markup inside
2141pub(crate) const VALUE_KEY: &str = "$value";
2142
2143/// A function to check whether the character is a whitespace (blank, new line, carriage return or tab).
2144#[inline]
2145const fn is_non_whitespace(ch: char) -> bool {
2146    !matches!(ch, ' ' | '\r' | '\n' | '\t')
2147}
2148
2149/// Decoded and concatenated content of consequent [`Text`] and [`CData`]
2150/// events. _Consequent_ means that events should follow each other or be
2151/// delimited only by (any count of) [`Comment`] or [`PI`] events.
2152///
2153/// Internally text is stored in `Cow<str>`. Cloning of text is cheap while it
2154/// is borrowed and makes copies of data when it is owned.
2155///
2156/// [`Text`]: Event::Text
2157/// [`CData`]: Event::CData
2158/// [`Comment`]: Event::Comment
2159/// [`PI`]: Event::PI
2160#[derive(Clone, Debug, PartialEq, Eq)]
2161pub struct Text<'a> {
2162    /// Untrimmed text after concatenating content of all
2163    /// [`Text`] and [`CData`] events
2164    ///
2165    /// [`Text`]: Event::Text
2166    /// [`CData`]: Event::CData
2167    text: Cow<'a, str>,
2168    /// A range into `text` which contains data after trimming
2169    content: Range<usize>,
2170}
2171
2172impl<'a> Text<'a> {
2173    fn new(text: Cow<'a, str>) -> Self {
2174        let start = text.find(is_non_whitespace).unwrap_or(0);
2175        let end = text.rfind(is_non_whitespace).map_or(0, |i| i + 1);
2176
2177        let content = if start >= end { 0..0 } else { start..end };
2178
2179        Self { text, content }
2180    }
2181
2182    /// Returns text without leading and trailing whitespaces as [defined] by XML specification.
2183    ///
2184    /// If you want to only check if text contains only whitespaces, use [`is_blank`](Self::is_blank),
2185    /// which will not allocate.
2186    ///
2187    /// # Example
2188    ///
2189    /// ```
2190    /// # use quick_xml::de::Text;
2191    /// # use pretty_assertions::assert_eq;
2192    /// #
2193    /// let text = Text::from("");
2194    /// assert_eq!(text.trimmed(), "");
2195    ///
2196    /// let text = Text::from(" \r\n\t ");
2197    /// assert_eq!(text.trimmed(), "");
2198    ///
2199    /// let text = Text::from("  some useful text  ");
2200    /// assert_eq!(text.trimmed(), "some useful text");
2201    /// ```
2202    ///
2203    /// [defined]: https://www.w3.org/TR/xml11/#NT-S
2204    pub fn trimmed(&self) -> Cow<'a, str> {
2205        match self.text {
2206            Cow::Borrowed(text) => Cow::Borrowed(&text[self.content.clone()]),
2207            Cow::Owned(ref text) => Cow::Owned(text[self.content.clone()].to_string()),
2208        }
2209    }
2210
2211    /// Returns `true` if text is empty or contains only whitespaces as [defined] by XML specification.
2212    ///
2213    /// # Example
2214    ///
2215    /// ```
2216    /// # use quick_xml::de::Text;
2217    /// # use pretty_assertions::assert_eq;
2218    /// #
2219    /// let text = Text::from("");
2220    /// assert_eq!(text.is_blank(), true);
2221    ///
2222    /// let text = Text::from(" \r\n\t ");
2223    /// assert_eq!(text.is_blank(), true);
2224    ///
2225    /// let text = Text::from("  some useful text  ");
2226    /// assert_eq!(text.is_blank(), false);
2227    /// ```
2228    ///
2229    /// [defined]: https://www.w3.org/TR/xml11/#NT-S
2230    pub fn is_blank(&self) -> bool {
2231        self.content.is_empty()
2232    }
2233}
2234
2235impl<'a> Deref for Text<'a> {
2236    type Target = str;
2237
2238    #[inline]
2239    fn deref(&self) -> &Self::Target {
2240        self.text.deref()
2241    }
2242}
2243
2244impl<'a> From<&'a str> for Text<'a> {
2245    #[inline]
2246    fn from(text: &'a str) -> Self {
2247        Self::new(Cow::Borrowed(text))
2248    }
2249}
2250
2251impl<'a> From<String> for Text<'a> {
2252    #[inline]
2253    fn from(text: String) -> Self {
2254        Self::new(Cow::Owned(text))
2255    }
2256}
2257
2258impl<'a> From<Cow<'a, str>> for Text<'a> {
2259    #[inline]
2260    fn from(text: Cow<'a, str>) -> Self {
2261        Self::new(text)
2262    }
2263}
2264
2265////////////////////////////////////////////////////////////////////////////////////////////////////
2266
2267/// Simplified event which contains only these variants that used by deserializer
2268#[derive(Clone, Debug, PartialEq, Eq)]
2269pub enum DeEvent<'a> {
2270    /// Start tag (with attributes) `<tag attr="value">`.
2271    Start(BytesStart<'a>),
2272    /// End tag `</tag>`.
2273    End(BytesEnd<'a>),
2274    /// Decoded and concatenated content of consequent [`Text`] and [`CData`]
2275    /// events. _Consequent_ means that events should follow each other or be
2276    /// delimited only by (any count of) [`Comment`] or [`PI`] events.
2277    ///
2278    /// [`Text`]: Event::Text
2279    /// [`CData`]: Event::CData
2280    /// [`Comment`]: Event::Comment
2281    /// [`PI`]: Event::PI
2282    Text(Text<'a>),
2283    /// End of XML document.
2284    Eof,
2285}
2286
2287////////////////////////////////////////////////////////////////////////////////////////////////////
2288
2289/// Simplified event which contains only these variants that used by deserializer,
2290/// but [`Text`] events not yet fully processed.
2291///
2292/// [`Text`] events should be trimmed if they does not surrounded by the other
2293/// [`Text`] or [`CData`] events. This event contains intermediate state of [`Text`]
2294/// event, where they are trimmed from the start, but not from the end. To trim
2295/// end spaces we should lookahead by one deserializer event (i. e. skip all
2296/// comments and processing instructions).
2297///
2298/// [`Text`]: Event::Text
2299/// [`CData`]: Event::CData
2300#[derive(Clone, Debug, PartialEq, Eq)]
2301pub enum PayloadEvent<'a> {
2302    /// Start tag (with attributes) `<tag attr="value">`.
2303    Start(BytesStart<'a>),
2304    /// End tag `</tag>`.
2305    End(BytesEnd<'a>),
2306    /// Escaped character data between tags.
2307    Text(BytesText<'a>),
2308    /// Unescaped character data stored in `<![CDATA[...]]>`.
2309    CData(BytesCData<'a>),
2310    /// Document type definition data (DTD) stored in `<!DOCTYPE ...>`.
2311    DocType(BytesText<'a>),
2312    /// Reference `&ref;` in the textual data.
2313    GeneralRef(BytesRef<'a>),
2314    /// End of XML document.
2315    Eof,
2316}
2317
2318impl<'a> PayloadEvent<'a> {
2319    /// Ensures that all data is owned to extend the object's lifetime if necessary.
2320    #[inline]
2321    fn into_owned(self) -> PayloadEvent<'static> {
2322        match self {
2323            PayloadEvent::Start(e) => PayloadEvent::Start(e.into_owned()),
2324            PayloadEvent::End(e) => PayloadEvent::End(e.into_owned()),
2325            PayloadEvent::Text(e) => PayloadEvent::Text(e.into_owned()),
2326            PayloadEvent::CData(e) => PayloadEvent::CData(e.into_owned()),
2327            PayloadEvent::DocType(e) => PayloadEvent::DocType(e.into_owned()),
2328            PayloadEvent::GeneralRef(e) => PayloadEvent::GeneralRef(e.into_owned()),
2329            PayloadEvent::Eof => PayloadEvent::Eof,
2330        }
2331    }
2332}
2333
2334/// An intermediate reader that consumes [`PayloadEvent`]s and produces final [`DeEvent`]s.
2335/// [`PayloadEvent::Text`] events, that followed by any event except
2336/// [`PayloadEvent::Text`] or [`PayloadEvent::CData`], are trimmed from the end.
2337struct XmlReader<'i, R: XmlRead<'i>, E: EntityResolver = PredefinedEntityResolver> {
2338    /// A source of low-level XML events
2339    reader: R,
2340    /// Intermediate event, that could be returned by the next call to `next()`.
2341    /// If that is the `Text` event then leading spaces already trimmed, but
2342    /// trailing spaces is not. Before the event will be returned, trimming of
2343    /// the spaces could be necessary
2344    lookahead: Result<PayloadEvent<'i>, DeError>,
2345
2346    /// Used to resolve unknown entities that would otherwise cause the parser
2347    /// to return an [`EscapeError::UnrecognizedEntity`] error.
2348    ///
2349    /// [`EscapeError::UnrecognizedEntity`]: crate::escape::EscapeError::UnrecognizedEntity
2350    entity_resolver: E,
2351}
2352
2353impl<'i, R: XmlRead<'i>, E: EntityResolver> XmlReader<'i, R, E> {
2354    fn new(mut reader: R, entity_resolver: E) -> Self {
2355        // Lookahead by one event immediately, so we do not need to check in the
2356        // loop if we need lookahead or not
2357        let lookahead = reader.next();
2358
2359        Self {
2360            reader,
2361            lookahead,
2362            entity_resolver,
2363        }
2364    }
2365
2366    /// Returns `true` if all events was consumed
2367    const fn is_empty(&self) -> bool {
2368        matches!(self.lookahead, Ok(PayloadEvent::Eof))
2369    }
2370
2371    /// Read next event and put it in lookahead, return the current lookahead
2372    #[inline(always)]
2373    fn next_impl(&mut self) -> Result<PayloadEvent<'i>, DeError> {
2374        replace(&mut self.lookahead, self.reader.next())
2375    }
2376
2377    /// Returns `true` when next event is not a text event in any form.
2378    #[inline(always)]
2379    const fn current_event_is_last_text(&self) -> bool {
2380        // If next event is a text or CDATA, we should not trim trailing spaces
2381        !matches!(
2382            self.lookahead,
2383            Ok(PayloadEvent::Text(_)) | Ok(PayloadEvent::CData(_) | PayloadEvent::GeneralRef(_))
2384        )
2385    }
2386
2387    /// Read all consequent [`Text`] and [`CData`] events until non-text event
2388    /// occurs. Content of all events would be appended to `result` and returned
2389    /// as [`DeEvent::Text`].
2390    ///
2391    /// [`Text`]: PayloadEvent::Text
2392    /// [`CData`]: PayloadEvent::CData
2393    fn drain_text(&mut self, mut result: Cow<'i, str>) -> Result<DeEvent<'i>, DeError> {
2394        loop {
2395            if self.current_event_is_last_text() {
2396                break;
2397            }
2398
2399            match self.next_impl()? {
2400                PayloadEvent::Text(e) => result.to_mut().push_str(&e.xml_content()?),
2401                PayloadEvent::CData(e) => result.to_mut().push_str(&e.xml_content()?),
2402                PayloadEvent::GeneralRef(e) => self.resolve_reference(result.to_mut(), e)?,
2403
2404                // SAFETY: current_event_is_last_text checks that event is Text, CData or GeneralRef
2405                _ => unreachable!("Only `Text`, `CData` or `GeneralRef` events can come here"),
2406            }
2407        }
2408        Ok(DeEvent::Text(Text::new(result)))
2409    }
2410
2411    /// Return an input-borrowing event.
2412    fn next(&mut self) -> Result<DeEvent<'i>, DeError> {
2413        loop {
2414            return match self.next_impl()? {
2415                PayloadEvent::Start(e) => Ok(DeEvent::Start(e)),
2416                PayloadEvent::End(e) => Ok(DeEvent::End(e)),
2417                PayloadEvent::Text(e) => self.drain_text(e.xml_content()?),
2418                PayloadEvent::CData(e) => self.drain_text(e.xml_content()?),
2419                PayloadEvent::DocType(e) => {
2420                    self.entity_resolver
2421                        .capture(e)
2422                        .map_err(|err| DeError::Custom(format!("cannot parse DTD: {}", err)))?;
2423                    continue;
2424                }
2425                PayloadEvent::GeneralRef(e) => {
2426                    let mut text = String::new();
2427                    self.resolve_reference(&mut text, e)?;
2428                    self.drain_text(text.into())
2429                }
2430                PayloadEvent::Eof => Ok(DeEvent::Eof),
2431            };
2432        }
2433    }
2434
2435    fn resolve_reference(&mut self, result: &mut String, event: BytesRef) -> Result<(), DeError> {
2436        let len = event.len();
2437        let reference = self.decoder().decode(&event)?;
2438
2439        if let Some(num) = reference.strip_prefix('#') {
2440            let codepoint = parse_number(num).map_err(EscapeError::InvalidCharRef)?;
2441            result.push_str(codepoint.encode_utf8(&mut [0u8; 4]));
2442            return Ok(());
2443        }
2444        if let Some(value) = self.entity_resolver.resolve(reference.as_ref()) {
2445            result.push_str(value);
2446            return Ok(());
2447        }
2448        Err(EscapeError::UnrecognizedEntity(0..len, reference.to_string()).into())
2449    }
2450
2451    #[inline]
2452    fn read_to_end(&mut self, name: QName) -> Result<(), DeError> {
2453        match self.lookahead {
2454            // We pre-read event with the same name that is required to be skipped.
2455            // First call of `read_to_end` will end out pre-read event, the second
2456            // will consume other events
2457            Ok(PayloadEvent::Start(ref e)) if e.name() == name => {
2458                let result1 = self.reader.read_to_end(name);
2459                let result2 = self.reader.read_to_end(name);
2460
2461                // In case of error `next_impl` returns `Eof`
2462                let _ = self.next_impl();
2463                result1?;
2464                result2?;
2465            }
2466            // We pre-read event with the same name that is required to be skipped.
2467            // Because this is end event, we already consume the whole tree, so
2468            // nothing to do, just update lookahead
2469            Ok(PayloadEvent::End(ref e)) if e.name() == name => {
2470                let _ = self.next_impl();
2471            }
2472            Ok(_) => {
2473                let result = self.reader.read_to_end(name);
2474
2475                // In case of error `next_impl` returns `Eof`
2476                let _ = self.next_impl();
2477                result?;
2478            }
2479            // Read next lookahead event, unpack error from the current lookahead
2480            Err(_) => {
2481                self.next_impl()?;
2482            }
2483        }
2484        Ok(())
2485    }
2486
2487    #[inline]
2488    fn decoder(&self) -> Decoder {
2489        self.reader.decoder()
2490    }
2491}
2492
2493////////////////////////////////////////////////////////////////////////////////////////////////////
2494
2495/// Deserialize an instance of type `T` from a string of XML text.
2496pub fn from_str<'de, T>(s: &'de str) -> Result<T, DeError>
2497where
2498    T: Deserialize<'de>,
2499{
2500    let mut de = Deserializer::from_str(s);
2501    T::deserialize(&mut de)
2502}
2503
2504/// Deserialize from a reader. This method will do internal copies of data
2505/// read from `reader`. If you want have a `&str` input and want to borrow
2506/// as much as possible, use [`from_str`].
2507pub fn from_reader<R, T>(reader: R) -> Result<T, DeError>
2508where
2509    R: BufRead,
2510    T: DeserializeOwned,
2511{
2512    let mut de = Deserializer::from_reader(reader);
2513    T::deserialize(&mut de)
2514}
2515
2516////////////////////////////////////////////////////////////////////////////////////////////////////
2517
2518/// A structure that deserializes XML into Rust values.
2519pub struct Deserializer<'de, R, E: EntityResolver = PredefinedEntityResolver>
2520where
2521    R: XmlRead<'de>,
2522{
2523    /// An XML reader that streams events into this deserializer
2524    reader: XmlReader<'de, R, E>,
2525
2526    /// When deserializing sequences sometimes we have to skip unwanted events.
2527    /// That events should be stored and then replayed. This is a replay buffer,
2528    /// that streams events while not empty. When it exhausted, events will
2529    /// requested from [`Self::reader`].
2530    #[cfg(feature = "overlapped-lists")]
2531    read: VecDeque<DeEvent<'de>>,
2532    /// When deserializing sequences sometimes we have to skip events, because XML
2533    /// is tolerant to elements order and even if in the XSD order is strictly
2534    /// specified (using `xs:sequence`) most of XML parsers allows order violations.
2535    /// That means, that elements, forming a sequence, could be overlapped with
2536    /// other elements, do not related to that sequence.
2537    ///
2538    /// In order to support this, deserializer will scan events and skip unwanted
2539    /// events, store them here. After call [`Self::start_replay()`] all events
2540    /// moved from this to [`Self::read`].
2541    #[cfg(feature = "overlapped-lists")]
2542    write: VecDeque<DeEvent<'de>>,
2543    /// Maximum number of events that can be skipped when processing sequences
2544    /// that occur out-of-order. This field is used to prevent potential
2545    /// denial-of-service (DoS) attacks which could cause infinite memory
2546    /// consumption when parsing a very large amount of XML into a sequence field.
2547    #[cfg(feature = "overlapped-lists")]
2548    limit: Option<NonZeroUsize>,
2549
2550    #[cfg(not(feature = "overlapped-lists"))]
2551    peek: Option<DeEvent<'de>>,
2552
2553    /// Buffer to store attribute name as a field name exposed to serde consumers
2554    key_buf: String,
2555}
2556
2557impl<'de, R, E> Deserializer<'de, R, E>
2558where
2559    R: XmlRead<'de>,
2560    E: EntityResolver,
2561{
2562    /// Create an XML deserializer from one of the possible quick_xml input sources.
2563    ///
2564    /// Typically it is more convenient to use one of these methods instead:
2565    ///
2566    ///  - [`Deserializer::from_str`]
2567    ///  - [`Deserializer::from_reader`]
2568    fn new(reader: R, entity_resolver: E) -> Self {
2569        Self {
2570            reader: XmlReader::new(reader, entity_resolver),
2571
2572            #[cfg(feature = "overlapped-lists")]
2573            read: VecDeque::new(),
2574            #[cfg(feature = "overlapped-lists")]
2575            write: VecDeque::new(),
2576            #[cfg(feature = "overlapped-lists")]
2577            limit: None,
2578
2579            #[cfg(not(feature = "overlapped-lists"))]
2580            peek: None,
2581
2582            key_buf: String::new(),
2583        }
2584    }
2585
2586    /// Returns `true` if all events was consumed.
2587    pub fn is_empty(&self) -> bool {
2588        #[cfg(feature = "overlapped-lists")]
2589        let event = self.read.front();
2590
2591        #[cfg(not(feature = "overlapped-lists"))]
2592        let event = self.peek.as_ref();
2593
2594        match event {
2595            None | Some(DeEvent::Eof) => self.reader.is_empty(),
2596            _ => false,
2597        }
2598    }
2599
2600    /// Returns the underlying XML reader.
2601    ///
2602    /// ```
2603    /// # use pretty_assertions::assert_eq;
2604    /// use serde::Deserialize;
2605    /// use quick_xml::de::Deserializer;
2606    /// use quick_xml::NsReader;
2607    ///
2608    /// #[derive(Deserialize)]
2609    /// struct SomeStruct {
2610    ///     field1: String,
2611    ///     field2: String,
2612    /// }
2613    ///
2614    /// // Try to deserialize from broken XML
2615    /// let mut de = Deserializer::from_str(
2616    ///     "<SomeStruct><field1><field2></SomeStruct>"
2617    /// //   0                           ^= 28        ^= 41
2618    /// );
2619    ///
2620    /// let err = SomeStruct::deserialize(&mut de);
2621    /// assert!(err.is_err());
2622    ///
2623    /// let reader: &NsReader<_> = de.get_ref().get_ref();
2624    ///
2625    /// assert_eq!(reader.error_position(), 28);
2626    /// assert_eq!(reader.buffer_position(), 41);
2627    /// ```
2628    pub const fn get_ref(&self) -> &R {
2629        &self.reader.reader
2630    }
2631
2632    /// Set the maximum number of events that could be skipped during deserialization
2633    /// of sequences.
2634    ///
2635    /// If `<element>` contains more than specified nested elements, `$text` or
2636    /// CDATA nodes, then [`DeError::TooManyEvents`] will be returned during
2637    /// deserialization of sequence field (any type that uses [`deserialize_seq`]
2638    /// for the deserialization, for example, `Vec<T>`).
2639    ///
2640    /// This method can be used to prevent a [DoS] attack and infinite memory
2641    /// consumption when parsing a very large XML to a sequence field.
2642    ///
2643    /// It is strongly recommended to set limit to some value when you parse data
2644    /// from untrusted sources. You should choose a value that your typical XMLs
2645    /// can have _between_ different elements that corresponds to the same sequence.
2646    ///
2647    /// # Examples
2648    ///
2649    /// Let's imagine, that we deserialize such structure:
2650    /// ```
2651    /// struct List {
2652    ///   item: Vec<()>,
2653    /// }
2654    /// ```
2655    ///
2656    /// The XML that we try to parse look like this:
2657    /// ```xml
2658    /// <any-name>
2659    ///   <item/>
2660    ///   <!-- Bufferization starts at this point -->
2661    ///   <another-item>
2662    ///     <some-element>with text</some-element>
2663    ///     <yet-another-element/>
2664    ///   </another-item>
2665    ///   <!-- Buffer will be emptied at this point; 7 events were buffered -->
2666    ///   <item/>
2667    ///   <!-- There is nothing to buffer, because elements follows each other -->
2668    ///   <item/>
2669    /// </any-name>
2670    /// ```
2671    ///
2672    /// There, when we deserialize the `item` field, we need to buffer 7 events,
2673    /// before we can deserialize the second `<item/>`:
2674    ///
2675    /// - `<another-item>`
2676    /// - `<some-element>`
2677    /// - `$text(with text)`
2678    /// - `</some-element>`
2679    /// - `<yet-another-element/>` (virtual start event)
2680    /// - `<yet-another-element/>` (virtual end event)
2681    /// - `</another-item>`
2682    ///
2683    /// Note, that `<yet-another-element/>` internally represented as 2 events:
2684    /// one for the start tag and one for the end tag. In the future this can be
2685    /// eliminated, but for now we use [auto-expanding feature] of a reader,
2686    /// because this simplifies deserializer code.
2687    ///
2688    /// [`deserialize_seq`]: serde::Deserializer::deserialize_seq
2689    /// [DoS]: https://en.wikipedia.org/wiki/Denial-of-service_attack
2690    /// [auto-expanding feature]: crate::reader::Config::expand_empty_elements
2691    #[cfg(feature = "overlapped-lists")]
2692    pub fn event_buffer_size(&mut self, limit: Option<NonZeroUsize>) -> &mut Self {
2693        self.limit = limit;
2694        self
2695    }
2696
2697    #[cfg(feature = "overlapped-lists")]
2698    fn peek(&mut self) -> Result<&DeEvent<'de>, DeError> {
2699        if self.read.is_empty() {
2700            self.read.push_front(self.reader.next()?);
2701        }
2702        if let Some(event) = self.read.front() {
2703            return Ok(event);
2704        }
2705        // SAFETY: `self.read` was filled in the code above.
2706        // NOTE: Can be replaced with `unsafe { std::hint::unreachable_unchecked() }`
2707        // if unsafe code will be allowed
2708        unreachable!()
2709    }
2710    #[cfg(not(feature = "overlapped-lists"))]
2711    fn peek(&mut self) -> Result<&DeEvent<'de>, DeError> {
2712        match &mut self.peek {
2713            Some(event) => Ok(event),
2714            empty_peek @ None => Ok(empty_peek.insert(self.reader.next()?)),
2715        }
2716    }
2717
2718    #[inline]
2719    fn last_peeked(&self) -> &DeEvent<'de> {
2720        #[cfg(feature = "overlapped-lists")]
2721        {
2722            self.read
2723                .front()
2724                .expect("`Deserializer::peek()` should be called")
2725        }
2726        #[cfg(not(feature = "overlapped-lists"))]
2727        {
2728            self.peek
2729                .as_ref()
2730                .expect("`Deserializer::peek()` should be called")
2731        }
2732    }
2733
2734    fn next(&mut self) -> Result<DeEvent<'de>, DeError> {
2735        // Replay skipped or peeked events
2736        #[cfg(feature = "overlapped-lists")]
2737        if let Some(event) = self.read.pop_front() {
2738            return Ok(event);
2739        }
2740        #[cfg(not(feature = "overlapped-lists"))]
2741        if let Some(e) = self.peek.take() {
2742            return Ok(e);
2743        }
2744        self.reader.next()
2745    }
2746
2747    fn skip_whitespaces(&mut self) -> Result<(), DeError> {
2748        loop {
2749            match self.peek()? {
2750                DeEvent::Text(e) if e.is_blank() => {
2751                    self.next()?;
2752                }
2753                _ => break,
2754            }
2755        }
2756        Ok(())
2757    }
2758
2759    /// Returns the mark after which all events, skipped by [`Self::skip()`] call,
2760    /// should be replayed after calling [`Self::start_replay()`].
2761    #[cfg(feature = "overlapped-lists")]
2762    #[inline]
2763    #[must_use = "returned checkpoint should be used in `start_replay`"]
2764    fn skip_checkpoint(&self) -> usize {
2765        self.write.len()
2766    }
2767
2768    /// Extracts XML tree of events from and stores them in the skipped events
2769    /// buffer from which they can be retrieved later. You MUST call
2770    /// [`Self::start_replay()`] after calling this to give access to the skipped
2771    /// events and release internal buffers.
2772    #[cfg(feature = "overlapped-lists")]
2773    fn skip(&mut self) -> Result<(), DeError> {
2774        let event = self.next()?;
2775        self.skip_event(event)?;
2776        // Skip all subtree, if we skip a start event
2777        if let Some(DeEvent::Start(e)) = self.write.back() {
2778            let end = e.name().as_ref().to_owned();
2779            let mut depth = 0;
2780            loop {
2781                let event = self.next()?;
2782                match event {
2783                    DeEvent::Start(ref e) if e.name().as_ref() == end => {
2784                        self.skip_event(event)?;
2785                        depth += 1;
2786                    }
2787                    DeEvent::End(ref e) if e.name().as_ref() == end => {
2788                        self.skip_event(event)?;
2789                        if depth == 0 {
2790                            break;
2791                        }
2792                        depth -= 1;
2793                    }
2794                    DeEvent::Eof => {
2795                        self.skip_event(event)?;
2796                        break;
2797                    }
2798                    _ => self.skip_event(event)?,
2799                }
2800            }
2801        }
2802        Ok(())
2803    }
2804
2805    #[cfg(feature = "overlapped-lists")]
2806    #[inline]
2807    fn skip_event(&mut self, event: DeEvent<'de>) -> Result<(), DeError> {
2808        if let Some(max) = self.limit {
2809            if self.write.len() >= max.get() {
2810                return Err(DeError::TooManyEvents(max));
2811            }
2812        }
2813        self.write.push_back(event);
2814        Ok(())
2815    }
2816
2817    /// Moves buffered events, skipped after given `checkpoint` from [`Self::write`]
2818    /// skip buffer to [`Self::read`] buffer.
2819    ///
2820    /// After calling this method, [`Self::peek()`] and [`Self::next()`] starts
2821    /// return events that was skipped previously by calling [`Self::skip()`],
2822    /// and only when all that events will be consumed, the deserializer starts
2823    /// to drain events from underlying reader.
2824    ///
2825    /// This method MUST be called if any number of [`Self::skip()`] was called
2826    /// after [`Self::new()`] or `start_replay()` or you'll lost events.
2827    #[cfg(feature = "overlapped-lists")]
2828    fn start_replay(&mut self, checkpoint: usize) {
2829        if checkpoint == 0 {
2830            self.write.append(&mut self.read);
2831            std::mem::swap(&mut self.read, &mut self.write);
2832        } else {
2833            let mut read = self.write.split_off(checkpoint);
2834            read.append(&mut self.read);
2835            self.read = read;
2836        }
2837    }
2838
2839    #[inline]
2840    fn read_string(&mut self) -> Result<Cow<'de, str>, DeError> {
2841        self.read_string_impl(true)
2842    }
2843
2844    /// Consumes consequent [`Text`] and [`CData`] (both a referred below as a _text_)
2845    /// events, merge them into one string. If there are no such events, returns
2846    /// an empty string.
2847    ///
2848    /// If `allow_start` is `false`, then only text events are consumed, for other
2849    /// events an error is returned (see table below).
2850    ///
2851    /// If `allow_start` is `true`, then two or three events are expected:
2852    /// - [`DeEvent::Start`];
2853    /// - _(optional)_ [`DeEvent::Text`] which content is returned;
2854    /// - [`DeEvent::End`]. If text event was missed, an empty string is returned.
2855    ///
2856    /// Corresponding events are consumed.
2857    ///
2858    /// # Handling events
2859    ///
2860    /// The table below shows how events is handled by this method:
2861    ///
2862    /// |Event             |XML                        |Handling
2863    /// |------------------|---------------------------|----------------------------------------
2864    /// |[`DeEvent::Start`]|`<tag>...</tag>`           |if `allow_start == true`, result determined by the second table, otherwise emits [`UnexpectedStart("tag")`](DeError::UnexpectedStart)
2865    /// |[`DeEvent::End`]  |`</any-tag>`               |This is impossible situation, the method will panic if it happens
2866    /// |[`DeEvent::Text`] |`text content` or `<![CDATA[cdata content]]>` (probably mixed)|Returns event content unchanged
2867    /// |[`DeEvent::Eof`]  |                           |Emits [`UnexpectedEof`](DeError::UnexpectedEof)
2868    ///
2869    /// Second event, consumed if [`DeEvent::Start`] was received and `allow_start == true`:
2870    ///
2871    /// |Event             |XML                        |Handling
2872    /// |------------------|---------------------------|----------------------------------------------------------------------------------
2873    /// |[`DeEvent::Start`]|`<any-tag>...</any-tag>`   |Emits [`UnexpectedStart("any-tag")`](DeError::UnexpectedStart)
2874    /// |[`DeEvent::End`]  |`</tag>`                   |Returns an empty slice. The reader guarantee that tag will match the open one
2875    /// |[`DeEvent::Text`] |`text content` or `<![CDATA[cdata content]]>` (probably mixed)|Returns event content unchanged, expects the `</tag>` after that
2876    /// |[`DeEvent::Eof`]  |                           |Emits [`InvalidXml(IllFormed(MissingEndTag))`](DeError::InvalidXml)
2877    ///
2878    /// [`Text`]: Event::Text
2879    /// [`CData`]: Event::CData
2880    fn read_string_impl(&mut self, allow_start: bool) -> Result<Cow<'de, str>, DeError> {
2881        match self.next()? {
2882            // Reached by doc tests only: this file, lines 979 and 996
2883            DeEvent::Text(e) => Ok(e.text),
2884            // allow one nested level
2885            // Reached by trivial::{...}::{field, field_nested, field_tag_after, field_tag_before, nested, tag_after, tag_before, wrapped}
2886            DeEvent::Start(e) if allow_start => self.read_text(e.name()),
2887            // TODO: not reached by any tests
2888            DeEvent::Start(e) => Err(DeError::UnexpectedStart(e.name().as_ref().to_owned())),
2889            // SAFETY: The reader is guaranteed that we don't have unmatched tags
2890            // If we here, then our deserializer has a bug
2891            DeEvent::End(e) => unreachable!("{:?}", e),
2892            // Reached by trivial::{empty_doc, only_comment}
2893            DeEvent::Eof => Err(DeError::UnexpectedEof),
2894        }
2895    }
2896    /// Consumes one [`DeEvent::Text`] event and ensures that it is followed by the
2897    /// [`DeEvent::End`] event.
2898    ///
2899    /// # Parameters
2900    /// - `name`: name of a tag opened before reading text. The corresponding end tag
2901    ///   should present in input just after the text
2902    fn read_text(&mut self, name: QName) -> Result<Cow<'de, str>, DeError> {
2903        match self.next()? {
2904            DeEvent::Text(e) => match self.next()? {
2905                // The matching tag name is guaranteed by the reader
2906                // Reached by trivial::{...}::{field, wrapped}
2907                DeEvent::End(_) => Ok(e.text),
2908                // SAFETY: Cannot be two consequent Text events, they would be merged into one
2909                DeEvent::Text(_) => unreachable!(),
2910                // Reached by trivial::{...}::{field_tag_after, tag_after}
2911                DeEvent::Start(e) => Err(DeError::UnexpectedStart(e.name().as_ref().to_owned())),
2912                // Reached by struct_::non_closed::elements_child
2913                DeEvent::Eof => Err(Error::missed_end(name, self.reader.decoder()).into()),
2914            },
2915            // We can get End event in case of `<tag></tag>` or `<tag/>` input
2916            // Return empty text in that case
2917            // The matching tag name is guaranteed by the reader
2918            // Reached by {...}::xs_list::empty
2919            DeEvent::End(_) => Ok("".into()),
2920            // Reached by trivial::{...}::{field_nested, field_tag_before, nested, tag_before}
2921            DeEvent::Start(s) => Err(DeError::UnexpectedStart(s.name().as_ref().to_owned())),
2922            // Reached by struct_::non_closed::elements_child
2923            DeEvent::Eof => Err(Error::missed_end(name, self.reader.decoder()).into()),
2924        }
2925    }
2926
2927    /// Drops all events until event with [name](BytesEnd::name()) `name` won't be
2928    /// dropped. This method should be called after [`Self::next()`]
2929    #[cfg(feature = "overlapped-lists")]
2930    fn read_to_end(&mut self, name: QName) -> Result<(), DeError> {
2931        let mut depth = 0;
2932        loop {
2933            match self.read.pop_front() {
2934                Some(DeEvent::Start(e)) if e.name() == name => {
2935                    depth += 1;
2936                }
2937                Some(DeEvent::End(e)) if e.name() == name => {
2938                    if depth == 0 {
2939                        break;
2940                    }
2941                    depth -= 1;
2942                }
2943
2944                // Drop all other skipped events
2945                Some(_) => continue,
2946
2947                // If we do not have skipped events, use effective reading that will
2948                // not allocate memory for events
2949                None => {
2950                    // We should close all opened tags, because we could buffer
2951                    // Start events, but not the corresponding End events. So we
2952                    // keep reading events until we exit all nested tags.
2953                    // `read_to_end()` will return an error if an Eof was encountered
2954                    // preliminary (in case of malformed XML).
2955                    //
2956                    // <tag><tag></tag></tag>
2957                    // ^^^^^^^^^^             - buffered in `self.read`, when `self.read_to_end()` is called, depth = 2
2958                    //           ^^^^^^       - read by the first call of `self.reader.read_to_end()`
2959                    //                 ^^^^^^ - read by the second call of `self.reader.read_to_end()`
2960                    loop {
2961                        self.reader.read_to_end(name)?;
2962                        if depth == 0 {
2963                            break;
2964                        }
2965                        depth -= 1;
2966                    }
2967                    break;
2968                }
2969            }
2970        }
2971        Ok(())
2972    }
2973    #[cfg(not(feature = "overlapped-lists"))]
2974    fn read_to_end(&mut self, name: QName) -> Result<(), DeError> {
2975        // First one might be in self.peek
2976        match self.next()? {
2977            DeEvent::Start(e) => self.reader.read_to_end(e.name())?,
2978            DeEvent::End(e) if e.name() == name => return Ok(()),
2979            _ => (),
2980        }
2981        self.reader.read_to_end(name)
2982    }
2983
2984    fn skip_next_tree(&mut self) -> Result<(), DeError> {
2985        let DeEvent::Start(start) = self.next()? else {
2986            unreachable!("Only call this if the next event is a start event")
2987        };
2988        let name = start.name();
2989        self.read_to_end(name)
2990    }
2991
2992    /// Method for testing Deserializer implementation. Checks that all events was consumed during
2993    /// deserialization. Panics if the next event will not be [`DeEvent::Eof`].
2994    #[doc(hidden)]
2995    #[track_caller]
2996    pub fn check_eof_reached(&mut self) {
2997        // Deserializer may not consume trailing spaces, that is normal
2998        self.skip_whitespaces().expect("cannot skip whitespaces");
2999        let event = self.peek().expect("cannot peek event");
3000        assert_eq!(
3001            *event,
3002            DeEvent::Eof,
3003            "the whole XML document should be consumed, expected `Eof`",
3004        );
3005    }
3006}
3007
3008impl<'de> Deserializer<'de, SliceReader<'de>> {
3009    /// Create a new deserializer that will borrow data from the specified string.
3010    ///
3011    /// Deserializer created with this method will not resolve custom entities.
3012    #[allow(clippy::should_implement_trait)]
3013    pub fn from_str(source: &'de str) -> Self {
3014        Self::from_str_with_resolver(source, PredefinedEntityResolver)
3015    }
3016
3017    /// Create a new deserializer that will borrow data from the specified preconfigured
3018    /// reader.
3019    ///
3020    /// Deserializer created with this method will not resolve custom entities.
3021    ///
3022    /// Note, that config option [`Config::expand_empty_elements`] will be set to `true`.
3023    ///
3024    /// # Example
3025    ///
3026    /// ```
3027    /// # use pretty_assertions::assert_eq;
3028    /// # use quick_xml::de::Deserializer;
3029    /// # use quick_xml::NsReader;
3030    /// # use serde::Deserialize;
3031    /// #
3032    /// #[derive(Deserialize, PartialEq, Debug)]
3033    /// struct Object<'a> {
3034    ///     tag: &'a str,
3035    /// }
3036    ///
3037    /// let mut reader = NsReader::from_str("<xml><tag>    test    </tag></xml>");
3038    ///
3039    /// let mut de = Deserializer::borrowing(reader.clone());
3040    /// let obj = Object::deserialize(&mut de).unwrap();
3041    /// assert_eq!(obj, Object { tag: "    test    " });
3042    ///
3043    /// reader.config_mut().trim_text(true);
3044    ///
3045    /// let mut de = Deserializer::borrowing(reader);
3046    /// let obj = Object::deserialize(&mut de).unwrap();
3047    /// assert_eq!(obj, Object { tag: "test" });
3048    /// ```
3049    ///
3050    /// [`Config::expand_empty_elements`]: crate::reader::Config::expand_empty_elements
3051    #[inline]
3052    pub fn borrowing(reader: NsReader<&'de [u8]>) -> Self {
3053        Self::borrowing_with_resolver(reader, PredefinedEntityResolver)
3054    }
3055}
3056
3057impl<'de, E> Deserializer<'de, SliceReader<'de>, E>
3058where
3059    E: EntityResolver,
3060{
3061    /// Create a new deserializer that will borrow data from the specified string
3062    /// and use the specified entity resolver.
3063    pub fn from_str_with_resolver(source: &'de str, entity_resolver: E) -> Self {
3064        Self::borrowing_with_resolver(NsReader::from_str(source), entity_resolver)
3065    }
3066
3067    /// Create a new deserializer that will borrow data from the specified preconfigured
3068    /// reader and use the specified entity resolver.
3069    ///
3070    /// Note, that config option [`Config::expand_empty_elements`] will be set to `true`.
3071    ///
3072    /// [`Config::expand_empty_elements`]: crate::reader::Config::expand_empty_elements
3073    pub fn borrowing_with_resolver(mut reader: NsReader<&'de [u8]>, entity_resolver: E) -> Self {
3074        let config = reader.config_mut();
3075        config.expand_empty_elements = true;
3076
3077        Self::new(SliceReader { reader }, entity_resolver)
3078    }
3079}
3080
3081impl<'de, R> Deserializer<'de, IoReader<R>>
3082where
3083    R: BufRead,
3084{
3085    /// Create a new deserializer that will copy data from the specified reader
3086    /// into internal buffer.
3087    ///
3088    /// If you already have a string use [`Self::from_str`] instead, because it
3089    /// will borrow instead of copy. If you have `&[u8]` which is known to represent
3090    /// UTF-8, you can decode it first before using [`from_str`].
3091    ///
3092    /// Deserializer created with this method will not resolve custom entities.
3093    pub fn from_reader(reader: R) -> Self {
3094        Self::with_resolver(reader, PredefinedEntityResolver)
3095    }
3096
3097    /// Create a new deserializer that will copy data from the specified preconfigured
3098    /// reader into internal buffer.
3099    ///
3100    /// Deserializer created with this method will not resolve custom entities.
3101    ///
3102    /// Note, that config option [`Config::expand_empty_elements`] will be set to `true`.
3103    ///
3104    /// # Example
3105    ///
3106    /// ```
3107    /// # use pretty_assertions::assert_eq;
3108    /// # use quick_xml::de::Deserializer;
3109    /// # use quick_xml::NsReader;
3110    /// # use serde::Deserialize;
3111    /// #
3112    /// #[derive(Deserialize, PartialEq, Debug)]
3113    /// struct Object {
3114    ///     tag: String,
3115    /// }
3116    ///
3117    /// let mut reader = NsReader::from_str("<xml><tag>    test    </tag></xml>");
3118    ///
3119    /// let mut de = Deserializer::buffering(reader.clone());
3120    /// let obj = Object::deserialize(&mut de).unwrap();
3121    /// assert_eq!(obj, Object { tag: "    test    ".to_string() });
3122    ///
3123    /// reader.config_mut().trim_text(true);
3124    ///
3125    /// let mut de = Deserializer::buffering(reader);
3126    /// let obj = Object::deserialize(&mut de).unwrap();
3127    /// assert_eq!(obj, Object { tag: "test".to_string() });
3128    /// ```
3129    ///
3130    /// [`Config::expand_empty_elements`]: crate::reader::Config::expand_empty_elements
3131    #[inline]
3132    pub fn buffering(reader: NsReader<R>) -> Self {
3133        Self::buffering_with_resolver(reader, PredefinedEntityResolver)
3134    }
3135}
3136
3137impl<'de, R, E> Deserializer<'de, IoReader<R>, E>
3138where
3139    R: BufRead,
3140    E: EntityResolver,
3141{
3142    /// Create a new deserializer that will copy data from the specified reader
3143    /// into internal buffer and use the specified entity resolver.
3144    ///
3145    /// If you already have a string use [`Self::from_str`] instead, because it
3146    /// will borrow instead of copy. If you have `&[u8]` which is known to represent
3147    /// UTF-8, you can decode it first before using [`from_str`].
3148    pub fn with_resolver(reader: R, entity_resolver: E) -> Self {
3149        let mut reader = NsReader::from_reader(reader);
3150        let config = reader.config_mut();
3151        config.expand_empty_elements = true;
3152
3153        Self::new(
3154            IoReader {
3155                reader,
3156                buf: Vec::new(),
3157            },
3158            entity_resolver,
3159        )
3160    }
3161
3162    /// Create new deserializer that will copy data from the specified preconfigured reader
3163    /// into internal buffer and use the specified entity resolver.
3164    ///
3165    /// Note, that config option [`Config::expand_empty_elements`] will be set to `true`.
3166    ///
3167    /// [`Config::expand_empty_elements`]: crate::reader::Config::expand_empty_elements
3168    pub fn buffering_with_resolver(mut reader: NsReader<R>, entity_resolver: E) -> Self {
3169        let config = reader.config_mut();
3170        config.expand_empty_elements = true;
3171
3172        Self::new(
3173            IoReader {
3174                reader,
3175                buf: Vec::new(),
3176            },
3177            entity_resolver,
3178        )
3179    }
3180}
3181
3182impl<'de, R, E> de::Deserializer<'de> for &mut Deserializer<'de, R, E>
3183where
3184    R: XmlRead<'de>,
3185    E: EntityResolver,
3186{
3187    type Error = DeError;
3188
3189    deserialize_primitives!();
3190
3191    fn deserialize_struct<V>(
3192        self,
3193        _name: &'static str,
3194        fields: &'static [&'static str],
3195        visitor: V,
3196    ) -> Result<V::Value, DeError>
3197    where
3198        V: Visitor<'de>,
3199    {
3200        // When document is pretty-printed there could be whitespaces before the root element
3201        self.skip_whitespaces()?;
3202        match self.next()? {
3203            DeEvent::Start(e) => visitor.visit_map(ElementMapAccess::new(self, e, fields)),
3204            // SAFETY: The reader is guaranteed that we don't have unmatched tags
3205            // If we here, then our deserializer has a bug
3206            DeEvent::End(e) => unreachable!("{:?}", e),
3207            // Deserializer methods are only hints, if deserializer could not satisfy
3208            // request, it should return the data that it has. It is responsibility
3209            // of a Visitor to return an error if it does not understand the data
3210            DeEvent::Text(e) => match e.text {
3211                Cow::Borrowed(s) => visitor.visit_borrowed_str(s),
3212                Cow::Owned(s) => visitor.visit_string(s),
3213            },
3214            DeEvent::Eof => Err(DeError::UnexpectedEof),
3215        }
3216    }
3217
3218    /// Unit represented in XML as a `xs:element` or text/CDATA content.
3219    /// Any content inside `xs:element` is ignored and skipped.
3220    ///
3221    /// Produces unit struct from any of following inputs:
3222    /// - any `<tag ...>...</tag>`
3223    /// - any `<tag .../>`
3224    /// - any consequent text / CDATA content (can consist of several parts
3225    ///   delimited by comments and processing instructions)
3226    ///
3227    /// # Events handling
3228    ///
3229    /// |Event             |XML                        |Handling
3230    /// |------------------|---------------------------|-------------------------------------------
3231    /// |[`DeEvent::Start`]|`<tag>...</tag>`           |Calls `visitor.visit_unit()`, consumes all events up to and including corresponding `End` event
3232    /// |[`DeEvent::End`]  |`</tag>`                   |This is impossible situation, the method will panic if it happens
3233    /// |[`DeEvent::Text`] |`text content` or `<![CDATA[cdata content]]>` (probably mixed)|Calls `visitor.visit_unit()`. The content is ignored
3234    /// |[`DeEvent::Eof`]  |                           |Emits [`UnexpectedEof`](DeError::UnexpectedEof)
3235    fn deserialize_unit<V>(self, visitor: V) -> Result<V::Value, DeError>
3236    where
3237        V: Visitor<'de>,
3238    {
3239        match self.next()? {
3240            DeEvent::Start(s) => {
3241                self.read_to_end(s.name())?;
3242                visitor.visit_unit()
3243            }
3244            DeEvent::Text(_) => visitor.visit_unit(),
3245            // SAFETY: The reader is guaranteed that we don't have unmatched tags
3246            // If we here, then our deserializer has a bug
3247            DeEvent::End(e) => unreachable!("{:?}", e),
3248            DeEvent::Eof => Err(DeError::UnexpectedEof),
3249        }
3250    }
3251
3252    /// Forwards deserialization of the inner type. Always calls [`Visitor::visit_newtype_struct`]
3253    /// with the same deserializer.
3254    fn deserialize_newtype_struct<V>(
3255        self,
3256        _name: &'static str,
3257        visitor: V,
3258    ) -> Result<V::Value, DeError>
3259    where
3260        V: Visitor<'de>,
3261    {
3262        visitor.visit_newtype_struct(self)
3263    }
3264
3265    fn deserialize_enum<V>(
3266        self,
3267        _name: &'static str,
3268        _variants: &'static [&'static str],
3269        visitor: V,
3270    ) -> Result<V::Value, DeError>
3271    where
3272        V: Visitor<'de>,
3273    {
3274        // When document is pretty-printed there could be whitespaces before the root element
3275        // which represents the enum variant
3276        // Checked by `top_level::list_of_enum` test in serde-de-seq
3277        self.skip_whitespaces()?;
3278        visitor.visit_enum(var::EnumAccess::new(self))
3279    }
3280
3281    fn deserialize_seq<V>(self, visitor: V) -> Result<V::Value, DeError>
3282    where
3283        V: Visitor<'de>,
3284    {
3285        visitor.visit_seq(self)
3286    }
3287
3288    fn deserialize_option<V>(self, visitor: V) -> Result<V::Value, DeError>
3289    where
3290        V: Visitor<'de>,
3291    {
3292        // We cannot use result of `peek()` directly because of borrow checker
3293        let _ = self.peek()?;
3294        match self.last_peeked() {
3295            DeEvent::Text(t) if t.is_empty() => visitor.visit_none(),
3296            DeEvent::Eof => visitor.visit_none(),
3297            // if the `xsi:nil` attribute is set to true we got a none value
3298            DeEvent::Start(start) if self.reader.reader.has_nil_attr(start) => {
3299                self.skip_next_tree()?;
3300                visitor.visit_none()
3301            }
3302            _ => visitor.visit_some(self),
3303        }
3304    }
3305
3306    fn deserialize_any<V>(self, visitor: V) -> Result<V::Value, DeError>
3307    where
3308        V: Visitor<'de>,
3309    {
3310        match self.peek()? {
3311            DeEvent::Text(_) => self.deserialize_str(visitor),
3312            _ => self.deserialize_map(visitor),
3313        }
3314    }
3315}
3316
3317/// An accessor to sequence elements forming a value for top-level sequence of XML
3318/// elements.
3319///
3320/// Technically, multiple top-level elements violates XML rule of only one top-level
3321/// element, but we consider this as several concatenated XML documents.
3322impl<'de, R, E> SeqAccess<'de> for &mut Deserializer<'de, R, E>
3323where
3324    R: XmlRead<'de>,
3325    E: EntityResolver,
3326{
3327    type Error = DeError;
3328
3329    fn next_element_seed<T>(&mut self, seed: T) -> Result<Option<T::Value>, Self::Error>
3330    where
3331        T: DeserializeSeed<'de>,
3332    {
3333        // When document is pretty-printed there could be whitespaces before, between
3334        // and after root elements. We cannot defer decision if we need to skip spaces
3335        // or not: if we have a sequence of type that does not accept blank text, it
3336        // will need to return something and it can return only error. For example,
3337        // it can be enum without `$text` variant
3338        // Checked by `top_level::list_of_enum` test in serde-de-seq
3339        self.skip_whitespaces()?;
3340        match self.peek()? {
3341            DeEvent::Eof => Ok(None),
3342
3343            // Start(tag), End(tag), Text
3344            _ => seed.deserialize(&mut **self).map(Some),
3345        }
3346    }
3347}
3348
3349impl<'de, R, E> IntoDeserializer<'de, DeError> for &mut Deserializer<'de, R, E>
3350where
3351    R: XmlRead<'de>,
3352    E: EntityResolver,
3353{
3354    type Deserializer = Self;
3355
3356    #[inline]
3357    fn into_deserializer(self) -> Self {
3358        self
3359    }
3360}
3361
3362////////////////////////////////////////////////////////////////////////////////////////////////////
3363
3364/// Converts raw reader's event into a payload event.
3365/// Returns `None`, if event should be skipped.
3366#[inline(always)]
3367fn skip_uninterested<'a>(event: Event<'a>) -> Option<PayloadEvent<'a>> {
3368    let event = match event {
3369        Event::DocType(e) => PayloadEvent::DocType(e),
3370        Event::Start(e) => PayloadEvent::Start(e),
3371        Event::End(e) => PayloadEvent::End(e),
3372        Event::Eof => PayloadEvent::Eof,
3373
3374        // Do not trim next text event after Text, CDATA or reference event
3375        Event::CData(e) => PayloadEvent::CData(e),
3376        Event::Text(e) => PayloadEvent::Text(e),
3377        Event::GeneralRef(e) => PayloadEvent::GeneralRef(e),
3378
3379        _ => return None,
3380    };
3381    Some(event)
3382}
3383
3384////////////////////////////////////////////////////////////////////////////////////////////////////
3385
3386/// Trait used by the deserializer for iterating over input. This is manually
3387/// "specialized" for iterating over `&[u8]`.
3388///
3389/// You do not need to implement this trait, it is needed to abstract from
3390/// [borrowing](SliceReader) and [copying](IoReader) data sources and reuse code in
3391/// deserializer
3392pub trait XmlRead<'i> {
3393    /// Return an input-borrowing event.
3394    fn next(&mut self) -> Result<PayloadEvent<'i>, DeError>;
3395
3396    /// Skips until end element is found. Unlike `next()` it will not allocate
3397    /// when it cannot satisfy the lifetime.
3398    fn read_to_end(&mut self, name: QName) -> Result<(), DeError>;
3399
3400    /// A copy of the reader's decoder used to decode strings.
3401    fn decoder(&self) -> Decoder;
3402
3403    /// Checks if the `start` tag has a [`xsi:nil`] attribute. This method ignores
3404    /// any errors in attributes.
3405    ///
3406    /// [`xsi:nil`]: https://www.w3.org/TR/xmlschema-1/#xsi_nil
3407    fn has_nil_attr(&self, start: &BytesStart) -> bool;
3408}
3409
3410/// XML input source that reads from a std::io input stream.
3411///
3412/// You cannot create it, it is created automatically when you call
3413/// [`Deserializer::from_reader`]
3414pub struct IoReader<R: BufRead> {
3415    reader: NsReader<R>,
3416    buf: Vec<u8>,
3417}
3418
3419impl<R: BufRead> IoReader<R> {
3420    /// Returns the underlying XML reader.
3421    ///
3422    /// ```
3423    /// # use pretty_assertions::assert_eq;
3424    /// use serde::Deserialize;
3425    /// use std::io::Cursor;
3426    /// use quick_xml::de::Deserializer;
3427    /// use quick_xml::NsReader;
3428    ///
3429    /// #[derive(Deserialize)]
3430    /// struct SomeStruct {
3431    ///     field1: String,
3432    ///     field2: String,
3433    /// }
3434    ///
3435    /// // Try to deserialize from broken XML
3436    /// let mut de = Deserializer::from_reader(Cursor::new(
3437    ///     "<SomeStruct><field1><field2></SomeStruct>"
3438    /// //   0                           ^= 28        ^= 41
3439    /// ));
3440    ///
3441    /// let err = SomeStruct::deserialize(&mut de);
3442    /// assert!(err.is_err());
3443    ///
3444    /// let reader: &NsReader<Cursor<&str>> = de.get_ref().get_ref();
3445    ///
3446    /// assert_eq!(reader.error_position(), 28);
3447    /// assert_eq!(reader.buffer_position(), 41);
3448    /// ```
3449    pub const fn get_ref(&self) -> &NsReader<R> {
3450        &self.reader
3451    }
3452}
3453
3454impl<'i, R: BufRead> XmlRead<'i> for IoReader<R> {
3455    fn next(&mut self) -> Result<PayloadEvent<'static>, DeError> {
3456        loop {
3457            self.buf.clear();
3458
3459            let event = self.reader.read_event_into(&mut self.buf)?;
3460            if let Some(event) = skip_uninterested(event) {
3461                return Ok(event.into_owned());
3462            }
3463        }
3464    }
3465
3466    fn read_to_end(&mut self, name: QName) -> Result<(), DeError> {
3467        match self.reader.read_to_end_into(name, &mut self.buf) {
3468            Err(e) => Err(e.into()),
3469            Ok(_) => Ok(()),
3470        }
3471    }
3472
3473    fn decoder(&self) -> Decoder {
3474        self.reader.decoder()
3475    }
3476
3477    fn has_nil_attr(&self, start: &BytesStart) -> bool {
3478        start.attributes().has_nil(&self.reader)
3479    }
3480}
3481
3482/// XML input source that reads from a slice of bytes and can borrow from it.
3483///
3484/// You cannot create it, it is created automatically when you call
3485/// [`Deserializer::from_str`].
3486pub struct SliceReader<'de> {
3487    reader: NsReader<&'de [u8]>,
3488}
3489
3490impl<'de> SliceReader<'de> {
3491    /// Returns the underlying XML reader.
3492    ///
3493    /// ```
3494    /// # use pretty_assertions::assert_eq;
3495    /// use serde::Deserialize;
3496    /// use quick_xml::de::Deserializer;
3497    /// use quick_xml::NsReader;
3498    ///
3499    /// #[derive(Deserialize)]
3500    /// struct SomeStruct {
3501    ///     field1: String,
3502    ///     field2: String,
3503    /// }
3504    ///
3505    /// // Try to deserialize from broken XML
3506    /// let mut de = Deserializer::from_str(
3507    ///     "<SomeStruct><field1><field2></SomeStruct>"
3508    /// //   0                           ^= 28        ^= 41
3509    /// );
3510    ///
3511    /// let err = SomeStruct::deserialize(&mut de);
3512    /// assert!(err.is_err());
3513    ///
3514    /// let reader: &NsReader<&[u8]> = de.get_ref().get_ref();
3515    ///
3516    /// assert_eq!(reader.error_position(), 28);
3517    /// assert_eq!(reader.buffer_position(), 41);
3518    /// ```
3519    pub const fn get_ref(&self) -> &NsReader<&'de [u8]> {
3520        &self.reader
3521    }
3522}
3523
3524impl<'de> XmlRead<'de> for SliceReader<'de> {
3525    fn next(&mut self) -> Result<PayloadEvent<'de>, DeError> {
3526        loop {
3527            let event = self.reader.read_event()?;
3528            if let Some(event) = skip_uninterested(event) {
3529                return Ok(event);
3530            }
3531        }
3532    }
3533
3534    fn read_to_end(&mut self, name: QName) -> Result<(), DeError> {
3535        match self.reader.read_to_end(name) {
3536            Err(e) => Err(e.into()),
3537            Ok(_) => Ok(()),
3538        }
3539    }
3540
3541    fn decoder(&self) -> Decoder {
3542        self.reader.decoder()
3543    }
3544
3545    fn has_nil_attr(&self, start: &BytesStart) -> bool {
3546        start.attributes().has_nil(&self.reader)
3547    }
3548}
3549
3550#[cfg(test)]
3551mod tests {
3552    use super::*;
3553    use crate::errors::IllFormedError;
3554    use pretty_assertions::assert_eq;
3555
3556    fn make_de<'de>(source: &'de str) -> Deserializer<'de, SliceReader<'de>> {
3557        dbg!(source);
3558        Deserializer::from_str(source)
3559    }
3560
3561    #[cfg(feature = "overlapped-lists")]
3562    mod skip {
3563        use super::*;
3564        use crate::de::DeEvent::*;
3565        use crate::events::BytesEnd;
3566        use pretty_assertions::assert_eq;
3567
3568        /// Checks that `peek()` and `read()` behaves correctly after `skip()`
3569        #[test]
3570        fn read_and_peek() {
3571            let mut de = make_de(
3572                "\
3573                <root>\
3574                    <inner>\
3575                        text\
3576                        <inner/>\
3577                    </inner>\
3578                    <next/>\
3579                    <target/>\
3580                </root>\
3581                ",
3582            );
3583
3584            // Initial conditions - both are empty
3585            assert_eq!(de.read, vec![]);
3586            assert_eq!(de.write, vec![]);
3587
3588            assert_eq!(de.next().unwrap(), Start(BytesStart::new("root")));
3589            assert_eq!(de.peek().unwrap(), &Start(BytesStart::new("inner")));
3590
3591            // Mark that start_replay() should begin replay from this point
3592            let checkpoint = de.skip_checkpoint();
3593            assert_eq!(checkpoint, 0);
3594
3595            // Should skip first <inner> tree
3596            de.skip().unwrap();
3597            assert_eq!(de.read, vec![]);
3598            assert_eq!(
3599                de.write,
3600                vec![
3601                    Start(BytesStart::new("inner")),
3602                    Text("text".into()),
3603                    Start(BytesStart::new("inner")),
3604                    End(BytesEnd::new("inner")),
3605                    End(BytesEnd::new("inner")),
3606                ]
3607            );
3608
3609            // Consume <next/>. Now unconsumed XML looks like:
3610            //
3611            //   <inner>
3612            //     text
3613            //     <inner/>
3614            //   </inner>
3615            //   <target/>
3616            // </root>
3617            assert_eq!(de.next().unwrap(), Start(BytesStart::new("next")));
3618            assert_eq!(de.next().unwrap(), End(BytesEnd::new("next")));
3619
3620            // We finish writing. Next call to `next()` should start replay that messages:
3621            //
3622            //   <inner>
3623            //     text
3624            //     <inner/>
3625            //   </inner>
3626            //
3627            // and after that stream that messages:
3628            //
3629            //   <target/>
3630            // </root>
3631            de.start_replay(checkpoint);
3632            assert_eq!(
3633                de.read,
3634                vec![
3635                    Start(BytesStart::new("inner")),
3636                    Text("text".into()),
3637                    Start(BytesStart::new("inner")),
3638                    End(BytesEnd::new("inner")),
3639                    End(BytesEnd::new("inner")),
3640                ]
3641            );
3642            assert_eq!(de.write, vec![]);
3643            assert_eq!(de.next().unwrap(), Start(BytesStart::new("inner")));
3644
3645            // Mark that start_replay() should begin replay from this point
3646            let checkpoint = de.skip_checkpoint();
3647            assert_eq!(checkpoint, 0);
3648
3649            // Skip `$text` node and consume <inner/> after it
3650            de.skip().unwrap();
3651            assert_eq!(
3652                de.read,
3653                vec![
3654                    Start(BytesStart::new("inner")),
3655                    End(BytesEnd::new("inner")),
3656                    End(BytesEnd::new("inner")),
3657                ]
3658            );
3659            assert_eq!(
3660                de.write,
3661                vec![
3662                    // This comment here to keep the same formatting of both arrays
3663                    // otherwise rustfmt suggest one-line it
3664                    Text("text".into()),
3665                ]
3666            );
3667
3668            assert_eq!(de.next().unwrap(), Start(BytesStart::new("inner")));
3669            assert_eq!(de.next().unwrap(), End(BytesEnd::new("inner")));
3670
3671            // We finish writing. Next call to `next()` should start replay messages:
3672            //
3673            //     text
3674            //   </inner>
3675            //
3676            // and after that stream that messages:
3677            //
3678            //   <target/>
3679            // </root>
3680            de.start_replay(checkpoint);
3681            assert_eq!(
3682                de.read,
3683                vec![
3684                    // This comment here to keep the same formatting as others
3685                    // otherwise rustfmt suggest one-line it
3686                    Text("text".into()),
3687                    End(BytesEnd::new("inner")),
3688                ]
3689            );
3690            assert_eq!(de.write, vec![]);
3691            assert_eq!(de.next().unwrap(), Text("text".into()));
3692            assert_eq!(de.next().unwrap(), End(BytesEnd::new("inner")));
3693            assert_eq!(de.next().unwrap(), Start(BytesStart::new("target")));
3694            assert_eq!(de.next().unwrap(), End(BytesEnd::new("target")));
3695            assert_eq!(de.next().unwrap(), End(BytesEnd::new("root")));
3696            assert_eq!(de.next().unwrap(), Eof);
3697        }
3698
3699        /// Checks that `read_to_end()` behaves correctly after `skip()`
3700        #[test]
3701        fn read_to_end() {
3702            let mut de = make_de(
3703                "\
3704                <root>\
3705                    <skip>\
3706                        text\
3707                        <skip/>\
3708                    </skip>\
3709                    <target>\
3710                        <target/>\
3711                    </target>\
3712                </root>\
3713                ",
3714            );
3715
3716            // Initial conditions - both are empty
3717            assert_eq!(de.read, vec![]);
3718            assert_eq!(de.write, vec![]);
3719
3720            assert_eq!(de.next().unwrap(), Start(BytesStart::new("root")));
3721
3722            // Mark that start_replay() should begin replay from this point
3723            let checkpoint = de.skip_checkpoint();
3724            assert_eq!(checkpoint, 0);
3725
3726            // Skip the <skip> tree
3727            de.skip().unwrap();
3728            assert_eq!(de.read, vec![]);
3729            assert_eq!(
3730                de.write,
3731                vec![
3732                    Start(BytesStart::new("skip")),
3733                    Text("text".into()),
3734                    Start(BytesStart::new("skip")),
3735                    End(BytesEnd::new("skip")),
3736                    End(BytesEnd::new("skip")),
3737                ]
3738            );
3739
3740            // Drop all events that represents <target> tree. Now unconsumed XML looks like:
3741            //
3742            //   <skip>
3743            //     text
3744            //     <skip/>
3745            //   </skip>
3746            // </root>
3747            assert_eq!(de.next().unwrap(), Start(BytesStart::new("target")));
3748            de.read_to_end(QName(b"target")).unwrap();
3749            assert_eq!(de.read, vec![]);
3750            assert_eq!(
3751                de.write,
3752                vec![
3753                    Start(BytesStart::new("skip")),
3754                    Text("text".into()),
3755                    Start(BytesStart::new("skip")),
3756                    End(BytesEnd::new("skip")),
3757                    End(BytesEnd::new("skip")),
3758                ]
3759            );
3760
3761            // We finish writing. Next call to `next()` should start replay that messages:
3762            //
3763            //   <skip>
3764            //     text
3765            //     <skip/>
3766            //   </skip>
3767            //
3768            // and after that stream that messages:
3769            //
3770            // </root>
3771            de.start_replay(checkpoint);
3772            assert_eq!(
3773                de.read,
3774                vec![
3775                    Start(BytesStart::new("skip")),
3776                    Text("text".into()),
3777                    Start(BytesStart::new("skip")),
3778                    End(BytesEnd::new("skip")),
3779                    End(BytesEnd::new("skip")),
3780                ]
3781            );
3782            assert_eq!(de.write, vec![]);
3783
3784            assert_eq!(de.next().unwrap(), Start(BytesStart::new("skip")));
3785            de.read_to_end(QName(b"skip")).unwrap();
3786
3787            assert_eq!(de.next().unwrap(), End(BytesEnd::new("root")));
3788            assert_eq!(de.next().unwrap(), Eof);
3789        }
3790
3791        /// Checks that replay replayes only part of events
3792        /// Test for https://github.com/tafia/quick-xml/issues/435
3793        #[test]
3794        fn partial_replay() {
3795            let mut de = make_de(
3796                "\
3797                <root>\
3798                    <skipped-1/>\
3799                    <skipped-2/>\
3800                    <inner>\
3801                        <skipped-3/>\
3802                        <skipped-4/>\
3803                        <target-2/>\
3804                    </inner>\
3805                    <target-1/>\
3806                </root>\
3807                ",
3808            );
3809
3810            // Initial conditions - both are empty
3811            assert_eq!(de.read, vec![]);
3812            assert_eq!(de.write, vec![]);
3813
3814            assert_eq!(de.next().unwrap(), Start(BytesStart::new("root")));
3815
3816            // start_replay() should start replay from this point
3817            let checkpoint1 = de.skip_checkpoint();
3818            assert_eq!(checkpoint1, 0);
3819
3820            // Should skip first and second <skipped-N/> elements
3821            de.skip().unwrap(); // skipped-1
3822            de.skip().unwrap(); // skipped-2
3823            assert_eq!(de.read, vec![]);
3824            assert_eq!(
3825                de.write,
3826                vec![
3827                    Start(BytesStart::new("skipped-1")),
3828                    End(BytesEnd::new("skipped-1")),
3829                    Start(BytesStart::new("skipped-2")),
3830                    End(BytesEnd::new("skipped-2")),
3831                ]
3832            );
3833
3834            ////////////////////////////////////////////////////////////////////////////////////////
3835
3836            assert_eq!(de.next().unwrap(), Start(BytesStart::new("inner")));
3837            assert_eq!(de.peek().unwrap(), &Start(BytesStart::new("skipped-3")));
3838            assert_eq!(
3839                de.read,
3840                vec![
3841                    // This comment here to keep the same formatting of both arrays
3842                    // otherwise rustfmt suggest one-line it
3843                    Start(BytesStart::new("skipped-3")),
3844                ]
3845            );
3846            assert_eq!(
3847                de.write,
3848                vec![
3849                    Start(BytesStart::new("skipped-1")),
3850                    End(BytesEnd::new("skipped-1")),
3851                    Start(BytesStart::new("skipped-2")),
3852                    End(BytesEnd::new("skipped-2")),
3853                ]
3854            );
3855
3856            // start_replay() should start replay from this point
3857            let checkpoint2 = de.skip_checkpoint();
3858            assert_eq!(checkpoint2, 4);
3859
3860            // Should skip third and forth <skipped-N/> elements
3861            de.skip().unwrap(); // skipped-3
3862            de.skip().unwrap(); // skipped-4
3863            assert_eq!(de.read, vec![]);
3864            assert_eq!(
3865                de.write,
3866                vec![
3867                    // checkpoint 1
3868                    Start(BytesStart::new("skipped-1")),
3869                    End(BytesEnd::new("skipped-1")),
3870                    Start(BytesStart::new("skipped-2")),
3871                    End(BytesEnd::new("skipped-2")),
3872                    // checkpoint 2
3873                    Start(BytesStart::new("skipped-3")),
3874                    End(BytesEnd::new("skipped-3")),
3875                    Start(BytesStart::new("skipped-4")),
3876                    End(BytesEnd::new("skipped-4")),
3877                ]
3878            );
3879            assert_eq!(de.next().unwrap(), Start(BytesStart::new("target-2")));
3880            assert_eq!(de.next().unwrap(), End(BytesEnd::new("target-2")));
3881            assert_eq!(de.peek().unwrap(), &End(BytesEnd::new("inner")));
3882            assert_eq!(
3883                de.read,
3884                vec![
3885                    // This comment here to keep the same formatting of both arrays
3886                    // otherwise rustfmt suggest one-line it
3887                    End(BytesEnd::new("inner")),
3888                ]
3889            );
3890            assert_eq!(
3891                de.write,
3892                vec![
3893                    // checkpoint 1
3894                    Start(BytesStart::new("skipped-1")),
3895                    End(BytesEnd::new("skipped-1")),
3896                    Start(BytesStart::new("skipped-2")),
3897                    End(BytesEnd::new("skipped-2")),
3898                    // checkpoint 2
3899                    Start(BytesStart::new("skipped-3")),
3900                    End(BytesEnd::new("skipped-3")),
3901                    Start(BytesStart::new("skipped-4")),
3902                    End(BytesEnd::new("skipped-4")),
3903                ]
3904            );
3905
3906            // Start replay events from checkpoint 2
3907            de.start_replay(checkpoint2);
3908            assert_eq!(
3909                de.read,
3910                vec![
3911                    Start(BytesStart::new("skipped-3")),
3912                    End(BytesEnd::new("skipped-3")),
3913                    Start(BytesStart::new("skipped-4")),
3914                    End(BytesEnd::new("skipped-4")),
3915                    End(BytesEnd::new("inner")),
3916                ]
3917            );
3918            assert_eq!(
3919                de.write,
3920                vec![
3921                    Start(BytesStart::new("skipped-1")),
3922                    End(BytesEnd::new("skipped-1")),
3923                    Start(BytesStart::new("skipped-2")),
3924                    End(BytesEnd::new("skipped-2")),
3925                ]
3926            );
3927
3928            // Replayed events
3929            assert_eq!(de.next().unwrap(), Start(BytesStart::new("skipped-3")));
3930            assert_eq!(de.next().unwrap(), End(BytesEnd::new("skipped-3")));
3931            assert_eq!(de.next().unwrap(), Start(BytesStart::new("skipped-4")));
3932            assert_eq!(de.next().unwrap(), End(BytesEnd::new("skipped-4")));
3933
3934            assert_eq!(de.next().unwrap(), End(BytesEnd::new("inner")));
3935            assert_eq!(de.read, vec![]);
3936            assert_eq!(
3937                de.write,
3938                vec![
3939                    Start(BytesStart::new("skipped-1")),
3940                    End(BytesEnd::new("skipped-1")),
3941                    Start(BytesStart::new("skipped-2")),
3942                    End(BytesEnd::new("skipped-2")),
3943                ]
3944            );
3945
3946            ////////////////////////////////////////////////////////////////////////////////////////
3947
3948            // New events
3949            assert_eq!(de.next().unwrap(), Start(BytesStart::new("target-1")));
3950            assert_eq!(de.next().unwrap(), End(BytesEnd::new("target-1")));
3951
3952            assert_eq!(de.read, vec![]);
3953            assert_eq!(
3954                de.write,
3955                vec![
3956                    Start(BytesStart::new("skipped-1")),
3957                    End(BytesEnd::new("skipped-1")),
3958                    Start(BytesStart::new("skipped-2")),
3959                    End(BytesEnd::new("skipped-2")),
3960                ]
3961            );
3962
3963            // Start replay events from checkpoint 1
3964            de.start_replay(checkpoint1);
3965            assert_eq!(
3966                de.read,
3967                vec![
3968                    Start(BytesStart::new("skipped-1")),
3969                    End(BytesEnd::new("skipped-1")),
3970                    Start(BytesStart::new("skipped-2")),
3971                    End(BytesEnd::new("skipped-2")),
3972                ]
3973            );
3974            assert_eq!(de.write, vec![]);
3975
3976            // Replayed events
3977            assert_eq!(de.next().unwrap(), Start(BytesStart::new("skipped-1")));
3978            assert_eq!(de.next().unwrap(), End(BytesEnd::new("skipped-1")));
3979            assert_eq!(de.next().unwrap(), Start(BytesStart::new("skipped-2")));
3980            assert_eq!(de.next().unwrap(), End(BytesEnd::new("skipped-2")));
3981
3982            assert_eq!(de.read, vec![]);
3983            assert_eq!(de.write, vec![]);
3984
3985            // New events
3986            assert_eq!(de.next().unwrap(), End(BytesEnd::new("root")));
3987            assert_eq!(de.next().unwrap(), Eof);
3988        }
3989
3990        /// Checks that limiting buffer size works correctly
3991        #[test]
3992        fn limit() {
3993            use serde::Deserialize;
3994
3995            #[derive(Debug, Deserialize)]
3996            #[allow(unused)]
3997            struct List {
3998                item: Vec<()>,
3999            }
4000
4001            let mut de = make_de(
4002                "\
4003                <any-name>\
4004                    <item/>\
4005                    <another-item>\
4006                        <some-element>with text</some-element>\
4007                        <yet-another-element/>\
4008                    </another-item>\
4009                    <item/>\
4010                    <item/>\
4011                </any-name>\
4012                ",
4013            );
4014            de.event_buffer_size(NonZeroUsize::new(3));
4015
4016            match List::deserialize(&mut de) {
4017                Err(DeError::TooManyEvents(count)) => assert_eq!(count.get(), 3),
4018                e => panic!("Expected `Err(TooManyEvents(3))`, but got `{:?}`", e),
4019            }
4020        }
4021
4022        /// Without handling Eof in `skip` this test failed with memory allocation
4023        #[test]
4024        fn invalid_xml() {
4025            use crate::de::DeEvent::*;
4026
4027            let mut de = make_de("<root>");
4028
4029            // Cache all events
4030            let checkpoint = de.skip_checkpoint();
4031            de.skip().unwrap();
4032            de.start_replay(checkpoint);
4033            assert_eq!(de.read, vec![Start(BytesStart::new("root")), Eof]);
4034        }
4035    }
4036
4037    mod read_to_end {
4038        use super::*;
4039        use crate::de::DeEvent::*;
4040        use pretty_assertions::assert_eq;
4041
4042        #[test]
4043        fn complex() {
4044            let mut de = make_de(
4045                r#"
4046                <root>
4047                    <tag a="1"><tag>text</tag>content</tag>
4048                    <tag a="2"><![CDATA[cdata content]]></tag>
4049                    <self-closed/>
4050                </root>
4051                "#,
4052            );
4053
4054            assert_eq!(de.next().unwrap(), Text("\n                ".into()));
4055            assert_eq!(de.next().unwrap(), Start(BytesStart::new("root")));
4056
4057            assert_eq!(de.next().unwrap(), Text("\n                    ".into()));
4058            assert_eq!(
4059                de.next().unwrap(),
4060                Start(BytesStart::from_content(r#"tag a="1""#, 3))
4061            );
4062            assert_eq!(de.read_to_end(QName(b"tag")).unwrap(), ());
4063
4064            assert_eq!(de.next().unwrap(), Text("\n                    ".into()));
4065            assert_eq!(
4066                de.next().unwrap(),
4067                Start(BytesStart::from_content(r#"tag a="2""#, 3))
4068            );
4069            assert_eq!(de.next().unwrap(), Text("cdata content".into()));
4070            assert_eq!(de.next().unwrap(), End(BytesEnd::new("tag")));
4071
4072            assert_eq!(de.next().unwrap(), Text("\n                    ".into()));
4073            assert_eq!(de.next().unwrap(), Start(BytesStart::new("self-closed")));
4074            assert_eq!(de.read_to_end(QName(b"self-closed")).unwrap(), ());
4075
4076            assert_eq!(de.next().unwrap(), Text("\n                ".into()));
4077            assert_eq!(de.next().unwrap(), End(BytesEnd::new("root")));
4078            assert_eq!(de.next().unwrap(), Text("\n                ".into()));
4079            assert_eq!(de.next().unwrap(), Eof);
4080        }
4081
4082        #[test]
4083        fn invalid_xml1() {
4084            let mut de = make_de("<tag><tag></tag>");
4085
4086            assert_eq!(de.next().unwrap(), Start(BytesStart::new("tag")));
4087            assert_eq!(de.peek().unwrap(), &Start(BytesStart::new("tag")));
4088
4089            match de.read_to_end(QName(b"tag")) {
4090                Err(DeError::InvalidXml(Error::IllFormed(cause))) => {
4091                    assert_eq!(cause, IllFormedError::MissingEndTag("tag".into()))
4092                }
4093                x => panic!(
4094                    "Expected `Err(InvalidXml(IllFormed(_)))`, but got `{:?}`",
4095                    x
4096                ),
4097            }
4098            assert_eq!(de.next().unwrap(), Eof);
4099        }
4100
4101        #[test]
4102        fn invalid_xml2() {
4103            let mut de = make_de("<tag><![CDATA[]]><tag></tag>");
4104
4105            assert_eq!(de.next().unwrap(), Start(BytesStart::new("tag")));
4106            assert_eq!(de.peek().unwrap(), &Text("".into()));
4107
4108            match de.read_to_end(QName(b"tag")) {
4109                Err(DeError::InvalidXml(Error::IllFormed(cause))) => {
4110                    assert_eq!(cause, IllFormedError::MissingEndTag("tag".into()))
4111                }
4112                x => panic!(
4113                    "Expected `Err(InvalidXml(IllFormed(_)))`, but got `{:?}`",
4114                    x
4115                ),
4116            }
4117            assert_eq!(de.next().unwrap(), Eof);
4118        }
4119    }
4120
4121    #[test]
4122    fn borrowing_reader_parity() {
4123        let s = r#"
4124            <item name="hello" source="world.rs">Some text</item>
4125            <item2/>
4126            <item3 value="world" />
4127        "#;
4128
4129        let mut reader1 = IoReader {
4130            reader: NsReader::from_reader(s.as_bytes()),
4131            buf: Vec::new(),
4132        };
4133        let mut reader2 = SliceReader {
4134            reader: NsReader::from_str(s),
4135        };
4136
4137        loop {
4138            let event1 = reader1.next().unwrap();
4139            let event2 = reader2.next().unwrap();
4140
4141            if let (PayloadEvent::Eof, PayloadEvent::Eof) = (&event1, &event2) {
4142                break;
4143            }
4144
4145            assert_eq!(event1, event2);
4146        }
4147    }
4148
4149    #[test]
4150    fn borrowing_reader_events() {
4151        let s = r#"
4152            <item name="hello" source="world.rs">Some text</item>
4153            <item2></item2>
4154            <item3/>
4155            <item4 value="world" />
4156        "#;
4157
4158        let mut reader = SliceReader {
4159            reader: NsReader::from_str(s),
4160        };
4161
4162        let config = reader.reader.config_mut();
4163        config.expand_empty_elements = true;
4164
4165        let mut events = Vec::new();
4166
4167        loop {
4168            let event = reader.next().unwrap();
4169            if let PayloadEvent::Eof = event {
4170                break;
4171            }
4172            events.push(event);
4173        }
4174
4175        use crate::de::PayloadEvent::*;
4176
4177        assert_eq!(
4178            events,
4179            vec![
4180                Text(BytesText::from_escaped("\n            ")),
4181                Start(BytesStart::from_content(
4182                    r#"item name="hello" source="world.rs""#,
4183                    4
4184                )),
4185                Text(BytesText::from_escaped("Some text")),
4186                End(BytesEnd::new("item")),
4187                Text(BytesText::from_escaped("\n            ")),
4188                Start(BytesStart::from_content("item2", 5)),
4189                End(BytesEnd::new("item2")),
4190                Text(BytesText::from_escaped("\n            ")),
4191                Start(BytesStart::from_content("item3", 5)),
4192                End(BytesEnd::new("item3")),
4193                Text(BytesText::from_escaped("\n            ")),
4194                Start(BytesStart::from_content(r#"item4 value="world" "#, 5)),
4195                End(BytesEnd::new("item4")),
4196                Text(BytesText::from_escaped("\n        ")),
4197            ]
4198        )
4199    }
4200
4201    /// Ensures, that [`Deserializer::read_string()`] never can get an `End` event,
4202    /// because parser reports error early
4203    #[test]
4204    fn read_string() {
4205        match from_str::<String>(r#"</root>"#) {
4206            Err(DeError::InvalidXml(Error::IllFormed(cause))) => {
4207                assert_eq!(cause, IllFormedError::UnmatchedEndTag("root".into()));
4208            }
4209            x => panic!(
4210                "Expected `Err(InvalidXml(IllFormed(_)))`, but got `{:?}`",
4211                x
4212            ),
4213        }
4214
4215        let s: String = from_str(r#"<root></root>"#).unwrap();
4216        assert_eq!(s, "");
4217
4218        match from_str::<String>(r#"<root></other>"#) {
4219            Err(DeError::InvalidXml(Error::IllFormed(cause))) => assert_eq!(
4220                cause,
4221                IllFormedError::MismatchedEndTag {
4222                    expected: "root".into(),
4223                    found: "other".into(),
4224                }
4225            ),
4226            x => panic!("Expected `Err(InvalidXml(IllFormed(_))`, but got `{:?}`", x),
4227        }
4228    }
4229
4230    /// Tests for https://github.com/tafia/quick-xml/issues/474.
4231    ///
4232    /// That tests ensures that comments and processed instructions is ignored
4233    /// and can split one logical string in pieces.
4234    mod merge_text {
4235        use super::*;
4236        use pretty_assertions::assert_eq;
4237
4238        #[test]
4239        fn text() {
4240            let mut de = make_de("text");
4241            assert_eq!(de.next().unwrap(), DeEvent::Text("text".into()));
4242        }
4243
4244        #[test]
4245        fn cdata() {
4246            let mut de = make_de("<![CDATA[cdata]]>");
4247            assert_eq!(de.next().unwrap(), DeEvent::Text("cdata".into()));
4248        }
4249
4250        #[test]
4251        fn text_and_cdata() {
4252            let mut de = make_de("text and <![CDATA[cdata]]>");
4253            assert_eq!(de.next().unwrap(), DeEvent::Text("text and cdata".into()));
4254        }
4255
4256        #[test]
4257        fn text_and_empty_cdata() {
4258            let mut de = make_de("text and <![CDATA[]]>");
4259            assert_eq!(de.next().unwrap(), DeEvent::Text("text and ".into()));
4260        }
4261
4262        #[test]
4263        fn cdata_and_text() {
4264            let mut de = make_de("<![CDATA[cdata]]> and text");
4265            assert_eq!(de.next().unwrap(), DeEvent::Text("cdata and text".into()));
4266        }
4267
4268        #[test]
4269        fn empty_cdata_and_text() {
4270            let mut de = make_de("<![CDATA[]]> and text");
4271            assert_eq!(de.next().unwrap(), DeEvent::Text(" and text".into()));
4272        }
4273
4274        #[test]
4275        fn cdata_and_cdata() {
4276            let mut de = make_de(
4277                "\
4278                    <![CDATA[cdata]]]]>\
4279                    <![CDATA[>cdata]]>\
4280                ",
4281            );
4282            assert_eq!(de.next().unwrap(), DeEvent::Text("cdata]]>cdata".into()));
4283        }
4284
4285        mod comment_between {
4286            use super::*;
4287            use pretty_assertions::assert_eq;
4288
4289            #[test]
4290            fn text() {
4291                let mut de = make_de(
4292                    "\
4293                        text \
4294                        <!--comment 1--><!--comment 2--> \
4295                        text\
4296                    ",
4297                );
4298                assert_eq!(de.next().unwrap(), DeEvent::Text("text  text".into()));
4299            }
4300
4301            #[test]
4302            fn cdata() {
4303                let mut de = make_de(
4304                    "\
4305                        <![CDATA[cdata]]]]>\
4306                        <!--comment 1--><!--comment 2-->\
4307                        <![CDATA[>cdata]]>\
4308                    ",
4309                );
4310                assert_eq!(de.next().unwrap(), DeEvent::Text("cdata]]>cdata".into()));
4311            }
4312
4313            #[test]
4314            fn text_and_cdata() {
4315                let mut de = make_de(
4316                    "\
4317                        text \
4318                        <!--comment 1--><!--comment 2-->\
4319                        <![CDATA[ cdata]]>\
4320                    ",
4321                );
4322                assert_eq!(de.next().unwrap(), DeEvent::Text("text  cdata".into()));
4323            }
4324
4325            #[test]
4326            fn text_and_empty_cdata() {
4327                let mut de = make_de(
4328                    "\
4329                        text \
4330                        <!--comment 1--><!--comment 2-->\
4331                        <![CDATA[]]>\
4332                    ",
4333                );
4334                assert_eq!(de.next().unwrap(), DeEvent::Text("text ".into()));
4335            }
4336
4337            #[test]
4338            fn cdata_and_text() {
4339                let mut de = make_de(
4340                    "\
4341                        <![CDATA[cdata ]]>\
4342                        <!--comment 1--><!--comment 2--> \
4343                        text \
4344                    ",
4345                );
4346                assert_eq!(de.next().unwrap(), DeEvent::Text("cdata  text ".into()));
4347            }
4348
4349            #[test]
4350            fn empty_cdata_and_text() {
4351                let mut de = make_de(
4352                    "\
4353                        <![CDATA[]]>\
4354                        <!--comment 1--><!--comment 2--> \
4355                        text \
4356                    ",
4357                );
4358                assert_eq!(de.next().unwrap(), DeEvent::Text(" text ".into()));
4359            }
4360
4361            #[test]
4362            fn cdata_and_cdata() {
4363                let mut de = make_de(
4364                    "\
4365                        <![CDATA[cdata]]]>\
4366                        <!--comment 1--><!--comment 2-->\
4367                        <![CDATA[]>cdata]]>\
4368                    ",
4369                );
4370                assert_eq!(de.next().unwrap(), DeEvent::Text("cdata]]>cdata".into()));
4371            }
4372        }
4373
4374        mod pi_between {
4375            use super::*;
4376            use pretty_assertions::assert_eq;
4377
4378            #[test]
4379            fn text() {
4380                let mut de = make_de(
4381                    "\
4382                        text \
4383                        <?pi 1?><?pi 2?> \
4384                        text\
4385                    ",
4386                );
4387                assert_eq!(de.next().unwrap(), DeEvent::Text("text  text".into()));
4388            }
4389
4390            #[test]
4391            fn cdata() {
4392                let mut de = make_de(
4393                    "\
4394                        <![CDATA[cdata]]]]>\
4395                        <?pi 1?><?pi 2?>\
4396                        <![CDATA[>cdata]]>\
4397                    ",
4398                );
4399                assert_eq!(de.next().unwrap(), DeEvent::Text("cdata]]>cdata".into()));
4400            }
4401
4402            #[test]
4403            fn text_and_cdata() {
4404                let mut de = make_de(
4405                    "\
4406                        text \
4407                        <?pi 1?><?pi 2?>\
4408                        <![CDATA[ cdata]]>\
4409                    ",
4410                );
4411                assert_eq!(de.next().unwrap(), DeEvent::Text("text  cdata".into()));
4412            }
4413
4414            #[test]
4415            fn text_and_empty_cdata() {
4416                let mut de = make_de(
4417                    "\
4418                        text \
4419                        <?pi 1?><?pi 2?>\
4420                        <![CDATA[]]>\
4421                    ",
4422                );
4423                assert_eq!(de.next().unwrap(), DeEvent::Text("text ".into()));
4424            }
4425
4426            #[test]
4427            fn cdata_and_text() {
4428                let mut de = make_de(
4429                    "\
4430                        <![CDATA[cdata ]]>\
4431                        <?pi 1?><?pi 2?> \
4432                        text \
4433                    ",
4434                );
4435                assert_eq!(de.next().unwrap(), DeEvent::Text("cdata  text ".into()));
4436            }
4437
4438            #[test]
4439            fn empty_cdata_and_text() {
4440                let mut de = make_de(
4441                    "\
4442                        <![CDATA[]]>\
4443                        <?pi 1?><?pi 2?> \
4444                        text \
4445                    ",
4446                );
4447                assert_eq!(de.next().unwrap(), DeEvent::Text(" text ".into()));
4448            }
4449
4450            #[test]
4451            fn cdata_and_cdata() {
4452                let mut de = make_de(
4453                    "\
4454                        <![CDATA[cdata]]]>\
4455                        <?pi 1?><?pi 2?>\
4456                        <![CDATA[]>cdata]]>\
4457                    ",
4458                );
4459                assert_eq!(de.next().unwrap(), DeEvent::Text("cdata]]>cdata".into()));
4460            }
4461        }
4462    }
4463
4464    /// Tests for https://github.com/tafia/quick-xml/issues/474.
4465    ///
4466    /// This tests ensures that any combination of payload data is processed
4467    /// as expected.
4468    mod triples {
4469        use super::*;
4470        use pretty_assertions::assert_eq;
4471
4472        mod start {
4473            use super::*;
4474
4475            /// <tag1><tag2>...
4476            // The same name is intentional
4477            #[allow(clippy::module_inception)]
4478            mod start {
4479                use super::*;
4480                use pretty_assertions::assert_eq;
4481
4482                #[test]
4483                fn start() {
4484                    let mut de = make_de("<tag1><tag2><tag3>");
4485                    assert_eq!(de.next().unwrap(), DeEvent::Start(BytesStart::new("tag1")));
4486                    assert_eq!(de.next().unwrap(), DeEvent::Start(BytesStart::new("tag2")));
4487                    assert_eq!(de.next().unwrap(), DeEvent::Start(BytesStart::new("tag3")));
4488                    assert_eq!(de.next().unwrap(), DeEvent::Eof);
4489                }
4490
4491                /// Not matching end tag will result to error
4492                #[test]
4493                fn end() {
4494                    let mut de = make_de("<tag1><tag2></tag2>");
4495                    assert_eq!(de.next().unwrap(), DeEvent::Start(BytesStart::new("tag1")));
4496                    assert_eq!(de.next().unwrap(), DeEvent::Start(BytesStart::new("tag2")));
4497                    assert_eq!(de.next().unwrap(), DeEvent::End(BytesEnd::new("tag2")));
4498                    assert_eq!(de.next().unwrap(), DeEvent::Eof);
4499                }
4500
4501                #[test]
4502                fn text() {
4503                    let mut de = make_de("<tag1><tag2> text ");
4504                    assert_eq!(de.next().unwrap(), DeEvent::Start(BytesStart::new("tag1")));
4505                    assert_eq!(de.next().unwrap(), DeEvent::Start(BytesStart::new("tag2")));
4506                    assert_eq!(de.next().unwrap(), DeEvent::Text(" text ".into()));
4507                    assert_eq!(de.next().unwrap(), DeEvent::Eof);
4508                }
4509
4510                #[test]
4511                fn cdata() {
4512                    let mut de = make_de("<tag1><tag2><![CDATA[ cdata ]]>");
4513                    assert_eq!(de.next().unwrap(), DeEvent::Start(BytesStart::new("tag1")));
4514                    assert_eq!(de.next().unwrap(), DeEvent::Start(BytesStart::new("tag2")));
4515                    assert_eq!(de.next().unwrap(), DeEvent::Text(" cdata ".into()));
4516                    assert_eq!(de.next().unwrap(), DeEvent::Eof);
4517                }
4518
4519                #[test]
4520                fn eof() {
4521                    let mut de = make_de("<tag1><tag2>");
4522                    assert_eq!(de.next().unwrap(), DeEvent::Start(BytesStart::new("tag1")));
4523                    assert_eq!(de.next().unwrap(), DeEvent::Start(BytesStart::new("tag2")));
4524                    assert_eq!(de.next().unwrap(), DeEvent::Eof);
4525                    assert_eq!(de.next().unwrap(), DeEvent::Eof);
4526                }
4527            }
4528
4529            /// <tag></tag>...
4530            mod end {
4531                use super::*;
4532                use pretty_assertions::assert_eq;
4533
4534                #[test]
4535                fn start() {
4536                    let mut de = make_de("<tag></tag><tag2>");
4537                    assert_eq!(de.next().unwrap(), DeEvent::Start(BytesStart::new("tag")));
4538                    assert_eq!(de.next().unwrap(), DeEvent::End(BytesEnd::new("tag")));
4539                    assert_eq!(de.next().unwrap(), DeEvent::Start(BytesStart::new("tag2")));
4540                    assert_eq!(de.next().unwrap(), DeEvent::Eof);
4541                }
4542
4543                #[test]
4544                fn end() {
4545                    let mut de = make_de("<tag></tag></tag2>");
4546                    assert_eq!(de.next().unwrap(), DeEvent::Start(BytesStart::new("tag")));
4547                    assert_eq!(de.next().unwrap(), DeEvent::End(BytesEnd::new("tag")));
4548                    match de.next() {
4549                        Err(DeError::InvalidXml(Error::IllFormed(cause))) => {
4550                            assert_eq!(cause, IllFormedError::UnmatchedEndTag("tag2".into()));
4551                        }
4552                        x => panic!(
4553                            "Expected `Err(InvalidXml(IllFormed(_)))`, but got `{:?}`",
4554                            x
4555                        ),
4556                    }
4557                    assert_eq!(de.next().unwrap(), DeEvent::Eof);
4558                }
4559
4560                #[test]
4561                fn text() {
4562                    let mut de = make_de("<tag></tag> text ");
4563                    assert_eq!(de.next().unwrap(), DeEvent::Start(BytesStart::new("tag")));
4564                    assert_eq!(de.next().unwrap(), DeEvent::End(BytesEnd::new("tag")));
4565                    assert_eq!(de.next().unwrap(), DeEvent::Text(" text ".into()));
4566                    assert_eq!(de.next().unwrap(), DeEvent::Eof);
4567                }
4568
4569                #[test]
4570                fn cdata() {
4571                    let mut de = make_de("<tag></tag><![CDATA[ cdata ]]>");
4572                    assert_eq!(de.next().unwrap(), DeEvent::Start(BytesStart::new("tag")));
4573                    assert_eq!(de.next().unwrap(), DeEvent::End(BytesEnd::new("tag")));
4574                    assert_eq!(de.next().unwrap(), DeEvent::Text(" cdata ".into()));
4575                    assert_eq!(de.next().unwrap(), DeEvent::Eof);
4576                }
4577
4578                #[test]
4579                fn eof() {
4580                    let mut de = make_de("<tag></tag>");
4581                    assert_eq!(de.next().unwrap(), DeEvent::Start(BytesStart::new("tag")));
4582                    assert_eq!(de.next().unwrap(), DeEvent::End(BytesEnd::new("tag")));
4583                    assert_eq!(de.next().unwrap(), DeEvent::Eof);
4584                    assert_eq!(de.next().unwrap(), DeEvent::Eof);
4585                }
4586            }
4587
4588            /// <tag> text ...
4589            mod text {
4590                use super::*;
4591                use pretty_assertions::assert_eq;
4592
4593                #[test]
4594                fn start() {
4595                    let mut de = make_de("<tag> text <tag2>");
4596                    assert_eq!(de.next().unwrap(), DeEvent::Start(BytesStart::new("tag")));
4597                    assert_eq!(de.next().unwrap(), DeEvent::Text(" text ".into()));
4598                    assert_eq!(de.next().unwrap(), DeEvent::Start(BytesStart::new("tag2")));
4599                    assert_eq!(de.next().unwrap(), DeEvent::Eof);
4600                }
4601
4602                #[test]
4603                fn end() {
4604                    let mut de = make_de("<tag> text </tag>");
4605                    assert_eq!(de.next().unwrap(), DeEvent::Start(BytesStart::new("tag")));
4606                    assert_eq!(de.next().unwrap(), DeEvent::Text(" text ".into()));
4607                    assert_eq!(de.next().unwrap(), DeEvent::End(BytesEnd::new("tag")));
4608                    assert_eq!(de.next().unwrap(), DeEvent::Eof);
4609                }
4610
4611                // start::text::text has no difference from start::text
4612
4613                #[test]
4614                fn cdata() {
4615                    let mut de = make_de("<tag> text <![CDATA[ cdata ]]>");
4616                    assert_eq!(de.next().unwrap(), DeEvent::Start(BytesStart::new("tag")));
4617                    assert_eq!(de.next().unwrap(), DeEvent::Text(" text  cdata ".into()));
4618                    assert_eq!(de.next().unwrap(), DeEvent::Eof);
4619                }
4620
4621                #[test]
4622                fn eof() {
4623                    let mut de = make_de("<tag> text ");
4624                    assert_eq!(de.next().unwrap(), DeEvent::Start(BytesStart::new("tag")));
4625                    assert_eq!(de.next().unwrap(), DeEvent::Text(" text ".into()));
4626                    assert_eq!(de.next().unwrap(), DeEvent::Eof);
4627                    assert_eq!(de.next().unwrap(), DeEvent::Eof);
4628                }
4629            }
4630
4631            /// <tag><![CDATA[ cdata ]]>...
4632            mod cdata {
4633                use super::*;
4634                use pretty_assertions::assert_eq;
4635
4636                #[test]
4637                fn start() {
4638                    let mut de = make_de("<tag><![CDATA[ cdata ]]><tag2>");
4639                    assert_eq!(de.next().unwrap(), DeEvent::Start(BytesStart::new("tag")));
4640                    assert_eq!(de.next().unwrap(), DeEvent::Text(" cdata ".into()));
4641                    assert_eq!(de.next().unwrap(), DeEvent::Start(BytesStart::new("tag2")));
4642                    assert_eq!(de.next().unwrap(), DeEvent::Eof);
4643                }
4644
4645                #[test]
4646                fn end() {
4647                    let mut de = make_de("<tag><![CDATA[ cdata ]]></tag>");
4648                    assert_eq!(de.next().unwrap(), DeEvent::Start(BytesStart::new("tag")));
4649                    assert_eq!(de.next().unwrap(), DeEvent::Text(" cdata ".into()));
4650                    assert_eq!(de.next().unwrap(), DeEvent::End(BytesEnd::new("tag")));
4651                    assert_eq!(de.next().unwrap(), DeEvent::Eof);
4652                }
4653
4654                #[test]
4655                fn text() {
4656                    let mut de = make_de("<tag><![CDATA[ cdata ]]> text ");
4657                    assert_eq!(de.next().unwrap(), DeEvent::Start(BytesStart::new("tag")));
4658                    assert_eq!(de.next().unwrap(), DeEvent::Text(" cdata  text ".into()));
4659                    assert_eq!(de.next().unwrap(), DeEvent::Eof);
4660                }
4661
4662                #[test]
4663                fn cdata() {
4664                    let mut de = make_de("<tag><![CDATA[ cdata ]]><![CDATA[ cdata2 ]]>");
4665                    assert_eq!(de.next().unwrap(), DeEvent::Start(BytesStart::new("tag")));
4666                    assert_eq!(de.next().unwrap(), DeEvent::Text(" cdata  cdata2 ".into()));
4667                    assert_eq!(de.next().unwrap(), DeEvent::Eof);
4668                }
4669
4670                #[test]
4671                fn eof() {
4672                    let mut de = make_de("<tag><![CDATA[ cdata ]]>");
4673                    assert_eq!(de.next().unwrap(), DeEvent::Start(BytesStart::new("tag")));
4674                    assert_eq!(de.next().unwrap(), DeEvent::Text(" cdata ".into()));
4675                    assert_eq!(de.next().unwrap(), DeEvent::Eof);
4676                    assert_eq!(de.next().unwrap(), DeEvent::Eof);
4677                }
4678            }
4679        }
4680
4681        /// Start from End event will always generate an error
4682        #[test]
4683        fn end() {
4684            let mut de = make_de("</tag>");
4685            match de.next() {
4686                Err(DeError::InvalidXml(Error::IllFormed(cause))) => {
4687                    assert_eq!(cause, IllFormedError::UnmatchedEndTag("tag".into()));
4688                }
4689                x => panic!(
4690                    "Expected `Err(InvalidXml(IllFormed(_)))`, but got `{:?}`",
4691                    x
4692                ),
4693            }
4694            assert_eq!(de.next().unwrap(), DeEvent::Eof);
4695        }
4696
4697        mod text {
4698            use super::*;
4699            use pretty_assertions::assert_eq;
4700
4701            mod start {
4702                use super::*;
4703                use pretty_assertions::assert_eq;
4704
4705                #[test]
4706                fn start() {
4707                    let mut de = make_de(" text <tag1><tag2>");
4708                    assert_eq!(de.next().unwrap(), DeEvent::Text(" text ".into()));
4709                    assert_eq!(de.next().unwrap(), DeEvent::Start(BytesStart::new("tag1")));
4710                    assert_eq!(de.next().unwrap(), DeEvent::Start(BytesStart::new("tag2")));
4711                    assert_eq!(de.next().unwrap(), DeEvent::Eof);
4712                }
4713
4714                /// Not matching end tag will result in error
4715                #[test]
4716                fn end() {
4717                    let mut de = make_de(" text <tag></tag>");
4718                    assert_eq!(de.next().unwrap(), DeEvent::Text(" text ".into()));
4719                    assert_eq!(de.next().unwrap(), DeEvent::Start(BytesStart::new("tag")));
4720                    assert_eq!(de.next().unwrap(), DeEvent::End(BytesEnd::new("tag")));
4721                    assert_eq!(de.next().unwrap(), DeEvent::Eof);
4722                }
4723
4724                #[test]
4725                fn text() {
4726                    let mut de = make_de(" text <tag> text2 ");
4727                    assert_eq!(de.next().unwrap(), DeEvent::Text(" text ".into()));
4728                    assert_eq!(de.next().unwrap(), DeEvent::Start(BytesStart::new("tag")));
4729                    assert_eq!(de.next().unwrap(), DeEvent::Text(" text2 ".into()));
4730                    assert_eq!(de.next().unwrap(), DeEvent::Eof);
4731                }
4732
4733                #[test]
4734                fn cdata() {
4735                    let mut de = make_de(" text <tag><![CDATA[ cdata ]]>");
4736                    assert_eq!(de.next().unwrap(), DeEvent::Text(" text ".into()));
4737                    assert_eq!(de.next().unwrap(), DeEvent::Start(BytesStart::new("tag")));
4738                    assert_eq!(de.next().unwrap(), DeEvent::Text(" cdata ".into()));
4739                    assert_eq!(de.next().unwrap(), DeEvent::Eof);
4740                }
4741
4742                #[test]
4743                fn eof() {
4744                    let mut de = make_de(" text <tag>");
4745                    assert_eq!(de.next().unwrap(), DeEvent::Text(" text ".into()));
4746                    assert_eq!(de.next().unwrap(), DeEvent::Start(BytesStart::new("tag")));
4747                    assert_eq!(de.next().unwrap(), DeEvent::Eof);
4748                    assert_eq!(de.next().unwrap(), DeEvent::Eof);
4749                }
4750            }
4751
4752            /// End event without corresponding start event will always generate an error
4753            #[test]
4754            fn end() {
4755                let mut de = make_de(" text </tag>");
4756                assert_eq!(de.next().unwrap(), DeEvent::Text(" text ".into()));
4757                match de.next() {
4758                    Err(DeError::InvalidXml(Error::IllFormed(cause))) => {
4759                        assert_eq!(cause, IllFormedError::UnmatchedEndTag("tag".into()));
4760                    }
4761                    x => panic!(
4762                        "Expected `Err(InvalidXml(IllFormed(_)))`, but got `{:?}`",
4763                        x
4764                    ),
4765                }
4766                assert_eq!(de.next().unwrap(), DeEvent::Eof);
4767            }
4768
4769            // text::text::something is equivalent to text::something
4770
4771            mod cdata {
4772                use super::*;
4773                use pretty_assertions::assert_eq;
4774
4775                #[test]
4776                fn start() {
4777                    let mut de = make_de(" text <![CDATA[ cdata ]]><tag>");
4778                    assert_eq!(de.next().unwrap(), DeEvent::Text(" text  cdata ".into()));
4779                    assert_eq!(de.next().unwrap(), DeEvent::Start(BytesStart::new("tag")));
4780                    assert_eq!(de.next().unwrap(), DeEvent::Eof);
4781                }
4782
4783                #[test]
4784                fn end() {
4785                    let mut de = make_de(" text <![CDATA[ cdata ]]></tag>");
4786                    assert_eq!(de.next().unwrap(), DeEvent::Text(" text  cdata ".into()));
4787                    match de.next() {
4788                        Err(DeError::InvalidXml(Error::IllFormed(cause))) => {
4789                            assert_eq!(cause, IllFormedError::UnmatchedEndTag("tag".into()));
4790                        }
4791                        x => panic!(
4792                            "Expected `Err(InvalidXml(IllFormed(_)))`, but got `{:?}`",
4793                            x
4794                        ),
4795                    }
4796                    assert_eq!(de.next().unwrap(), DeEvent::Eof);
4797                }
4798
4799                #[test]
4800                fn text() {
4801                    let mut de = make_de(" text <![CDATA[ cdata ]]> text2 ");
4802                    assert_eq!(
4803                        de.next().unwrap(),
4804                        DeEvent::Text(" text  cdata  text2 ".into())
4805                    );
4806                    assert_eq!(de.next().unwrap(), DeEvent::Eof);
4807                }
4808
4809                #[test]
4810                fn cdata() {
4811                    let mut de = make_de(" text <![CDATA[ cdata ]]><![CDATA[ cdata2 ]]>");
4812                    assert_eq!(
4813                        de.next().unwrap(),
4814                        DeEvent::Text(" text  cdata  cdata2 ".into())
4815                    );
4816                    assert_eq!(de.next().unwrap(), DeEvent::Eof);
4817                }
4818
4819                #[test]
4820                fn eof() {
4821                    let mut de = make_de(" text <![CDATA[ cdata ]]>");
4822                    assert_eq!(de.next().unwrap(), DeEvent::Text(" text  cdata ".into()));
4823                    assert_eq!(de.next().unwrap(), DeEvent::Eof);
4824                    assert_eq!(de.next().unwrap(), DeEvent::Eof);
4825                }
4826            }
4827        }
4828
4829        mod cdata {
4830            use super::*;
4831            use pretty_assertions::assert_eq;
4832
4833            mod start {
4834                use super::*;
4835                use pretty_assertions::assert_eq;
4836
4837                #[test]
4838                fn start() {
4839                    let mut de = make_de("<![CDATA[ cdata ]]><tag1><tag2>");
4840                    assert_eq!(de.next().unwrap(), DeEvent::Text(" cdata ".into()));
4841                    assert_eq!(de.next().unwrap(), DeEvent::Start(BytesStart::new("tag1")));
4842                    assert_eq!(de.next().unwrap(), DeEvent::Start(BytesStart::new("tag2")));
4843                    assert_eq!(de.next().unwrap(), DeEvent::Eof);
4844                }
4845
4846                /// Not matching end tag will result in error
4847                #[test]
4848                fn end() {
4849                    let mut de = make_de("<![CDATA[ cdata ]]><tag></tag>");
4850                    assert_eq!(de.next().unwrap(), DeEvent::Text(" cdata ".into()));
4851                    assert_eq!(de.next().unwrap(), DeEvent::Start(BytesStart::new("tag")));
4852                    assert_eq!(de.next().unwrap(), DeEvent::End(BytesEnd::new("tag")));
4853                    assert_eq!(de.next().unwrap(), DeEvent::Eof);
4854                }
4855
4856                #[test]
4857                fn text() {
4858                    let mut de = make_de("<![CDATA[ cdata ]]><tag> text ");
4859                    assert_eq!(de.next().unwrap(), DeEvent::Text(" cdata ".into()));
4860                    assert_eq!(de.next().unwrap(), DeEvent::Start(BytesStart::new("tag")));
4861                    assert_eq!(de.next().unwrap(), DeEvent::Text(" text ".into()));
4862                    assert_eq!(de.next().unwrap(), DeEvent::Eof);
4863                }
4864
4865                #[test]
4866                fn cdata() {
4867                    let mut de = make_de("<![CDATA[ cdata ]]><tag><![CDATA[ cdata2 ]]>");
4868                    assert_eq!(de.next().unwrap(), DeEvent::Text(" cdata ".into()));
4869                    assert_eq!(de.next().unwrap(), DeEvent::Start(BytesStart::new("tag")));
4870                    assert_eq!(de.next().unwrap(), DeEvent::Text(" cdata2 ".into()));
4871                    assert_eq!(de.next().unwrap(), DeEvent::Eof);
4872                }
4873
4874                #[test]
4875                fn eof() {
4876                    let mut de = make_de("<![CDATA[ cdata ]]><tag>");
4877                    assert_eq!(de.next().unwrap(), DeEvent::Text(" cdata ".into()));
4878                    assert_eq!(de.next().unwrap(), DeEvent::Start(BytesStart::new("tag")));
4879                    assert_eq!(de.next().unwrap(), DeEvent::Eof);
4880                    assert_eq!(de.next().unwrap(), DeEvent::Eof);
4881                }
4882            }
4883
4884            /// End event without corresponding start event will always generate an error
4885            #[test]
4886            fn end() {
4887                let mut de = make_de("<![CDATA[ cdata ]]></tag>");
4888                assert_eq!(de.next().unwrap(), DeEvent::Text(" cdata ".into()));
4889                match de.next() {
4890                    Err(DeError::InvalidXml(Error::IllFormed(cause))) => {
4891                        assert_eq!(cause, IllFormedError::UnmatchedEndTag("tag".into()));
4892                    }
4893                    x => panic!(
4894                        "Expected `Err(InvalidXml(IllFormed(_)))`, but got `{:?}`",
4895                        x
4896                    ),
4897                }
4898                assert_eq!(de.next().unwrap(), DeEvent::Eof);
4899            }
4900
4901            mod text {
4902                use super::*;
4903                use pretty_assertions::assert_eq;
4904
4905                #[test]
4906                fn start() {
4907                    let mut de = make_de("<![CDATA[ cdata ]]> text <tag>");
4908                    assert_eq!(de.next().unwrap(), DeEvent::Text(" cdata  text ".into()));
4909                    assert_eq!(de.next().unwrap(), DeEvent::Start(BytesStart::new("tag")));
4910                    assert_eq!(de.next().unwrap(), DeEvent::Eof);
4911                }
4912
4913                #[test]
4914                fn end() {
4915                    let mut de = make_de("<![CDATA[ cdata ]]> text </tag>");
4916                    assert_eq!(de.next().unwrap(), DeEvent::Text(" cdata  text ".into()));
4917                    match de.next() {
4918                        Err(DeError::InvalidXml(Error::IllFormed(cause))) => {
4919                            assert_eq!(cause, IllFormedError::UnmatchedEndTag("tag".into()));
4920                        }
4921                        x => panic!(
4922                            "Expected `Err(InvalidXml(IllFormed(_)))`, but got `{:?}`",
4923                            x
4924                        ),
4925                    }
4926                    assert_eq!(de.next().unwrap(), DeEvent::Eof);
4927                }
4928
4929                // cdata::text::text is equivalent to cdata::text
4930
4931                #[test]
4932                fn cdata() {
4933                    let mut de = make_de("<![CDATA[ cdata ]]> text <![CDATA[ cdata2 ]]>");
4934                    assert_eq!(
4935                        de.next().unwrap(),
4936                        DeEvent::Text(" cdata  text  cdata2 ".into())
4937                    );
4938                    assert_eq!(de.next().unwrap(), DeEvent::Eof);
4939                }
4940
4941                #[test]
4942                fn eof() {
4943                    let mut de = make_de("<![CDATA[ cdata ]]> text ");
4944                    assert_eq!(de.next().unwrap(), DeEvent::Text(" cdata  text ".into()));
4945                    assert_eq!(de.next().unwrap(), DeEvent::Eof);
4946                    assert_eq!(de.next().unwrap(), DeEvent::Eof);
4947                }
4948            }
4949
4950            // The same name is intentional
4951            #[allow(clippy::module_inception)]
4952            mod cdata {
4953                use super::*;
4954                use pretty_assertions::assert_eq;
4955
4956                #[test]
4957                fn start() {
4958                    let mut de = make_de("<![CDATA[ cdata ]]><![CDATA[ cdata2 ]]><tag>");
4959                    assert_eq!(de.next().unwrap(), DeEvent::Text(" cdata  cdata2 ".into()));
4960                    assert_eq!(de.next().unwrap(), DeEvent::Start(BytesStart::new("tag")));
4961                    assert_eq!(de.next().unwrap(), DeEvent::Eof);
4962                }
4963
4964                #[test]
4965                fn end() {
4966                    let mut de = make_de("<![CDATA[ cdata ]]><![CDATA[ cdata2 ]]></tag>");
4967                    assert_eq!(de.next().unwrap(), DeEvent::Text(" cdata  cdata2 ".into()));
4968                    match de.next() {
4969                        Err(DeError::InvalidXml(Error::IllFormed(cause))) => {
4970                            assert_eq!(cause, IllFormedError::UnmatchedEndTag("tag".into()));
4971                        }
4972                        x => panic!(
4973                            "Expected `Err(InvalidXml(IllFormed(_)))`, but got `{:?}`",
4974                            x
4975                        ),
4976                    }
4977                    assert_eq!(de.next().unwrap(), DeEvent::Eof);
4978                }
4979
4980                #[test]
4981                fn text() {
4982                    let mut de = make_de("<![CDATA[ cdata ]]><![CDATA[ cdata2 ]]> text ");
4983                    assert_eq!(
4984                        de.next().unwrap(),
4985                        DeEvent::Text(" cdata  cdata2  text ".into())
4986                    );
4987                    assert_eq!(de.next().unwrap(), DeEvent::Eof);
4988                }
4989
4990                #[test]
4991                fn cdata() {
4992                    let mut de =
4993                        make_de("<![CDATA[ cdata ]]><![CDATA[ cdata2 ]]><![CDATA[ cdata3 ]]>");
4994                    assert_eq!(
4995                        de.next().unwrap(),
4996                        DeEvent::Text(" cdata  cdata2  cdata3 ".into())
4997                    );
4998                    assert_eq!(de.next().unwrap(), DeEvent::Eof);
4999                }
5000
5001                #[test]
5002                fn eof() {
5003                    let mut de = make_de("<![CDATA[ cdata ]]><![CDATA[ cdata2 ]]>");
5004                    assert_eq!(de.next().unwrap(), DeEvent::Text(" cdata  cdata2 ".into()));
5005                    assert_eq!(de.next().unwrap(), DeEvent::Eof);
5006                    assert_eq!(de.next().unwrap(), DeEvent::Eof);
5007                }
5008            }
5009        }
5010    }
5011}