query-flow-macros 0.9.0

Procedural macros for query-flow.
Documentation

query-flow

GitHub MIT/Apache 2.0 Crates.io docs.rs GitHub Repo stars

A high-level query framework for incremental computation in Rust.

[!WARNING] This is WIP

Features

  • Async-agnostic queries: Write sync query logic, run with sync or async runtime
  • Automatic caching: Query results are cached and invalidated based on dependencies
  • Suspense pattern: Handle async loading with LoadingState without coloring functions
  • Type-safe: Per-query-type caching with compile-time guarantees
  • Early cutoff: Skip downstream recomputation when values don't change
  • Lock-free: Built on whale, a lock-free dependency-tracking primitive

Quick Start

use query_flow::{query, QueryContext, QueryError, QueryRuntime};

#[query]
fn add(ctx: &mut QueryContext, a: i32, b: i32) -> Result<i32, QueryError> {
    Ok(a + b)
}

let runtime = QueryRuntime::new();
let result = runtime.query(Add::new(1, 2)).unwrap();
assert_eq!(*result, 3);

Defining Queries

Using the #[query] Macro

The #[query] macro transforms a function into a query struct implementing the Query trait:

use query_flow::{query, QueryContext, QueryError};

// Basic query - generates `Add` struct
#[query]
fn add(ctx: &mut QueryContext, a: i32, b: i32) -> Result<i32, QueryError> {
    Ok(a + b)
}

// Query with dependencies
#[query]
fn double_sum(ctx: &mut QueryContext, a: i32, b: i32) -> Result<i32, QueryError> {
    let sum = ctx.query(Add::new(*a, *b))?;
    Ok(*sum * 2)
}

Macro Options

// Custom durability (0-3, higher = changes less frequently)
#[query(durability = 2)]
fn stable_query(ctx: &mut QueryContext, id: u64) -> Result<Data, QueryError> { ... }

// Selective cache keys - only `id` is part of the key
#[query(keys(id))]
fn fetch_user(ctx: &mut QueryContext, id: u64, include_deleted: bool) -> Result<User, QueryError> {
    // Queries with same `id` share cache, regardless of `include_deleted`
}

// Custom struct name
#[query(name = "FetchUserById")]
fn fetch_user(ctx: &mut QueryContext, id: u64) -> Result<User, QueryError> { ... }

// Custom output equality (for types without PartialEq)
#[query(output_eq = my_custom_eq)]
fn complex_query(ctx: &mut QueryContext) -> Result<ComplexType, QueryError> { ... }

Manual Query Implementation

For full control, implement the Query trait directly:

use query_flow::{Query, QueryContext, QueryError, Key};

struct Add { a: i32, b: i32 }

impl Query for Add {
    type CacheKey = (i32, i32);
    type Output = i32;

    fn cache_key(&self) -> Self::CacheKey {
        (self.a, self.b)
    }

    fn query(&self, _ctx: &mut QueryContext) -> Result<Self::Output, QueryError> {
        Ok(self.a + self.b)
    }

    fn output_eq(old: &Self::Output, new: &Self::Output) -> bool {
        old == new
    }
}

Error Handling

query-flow supports both system errors and user errors through QueryError:

  • System errors: Suspend, Cycle, Cancelled, MissingDependency
  • User errors: UserError(Arc<anyhow::Error>) - cached like successful results
// User errors with ? operator - errors are automatically converted
#[query]
fn parse_int(ctx: &mut QueryContext, input: String) -> Result<i32, QueryError> {
    let num: i32 = input.parse()?;  // ParseIntError -> QueryError::UserError
    Ok(num)
}

// System errors propagate automatically
#[query]
fn process(ctx: &mut QueryContext, id: u64) -> Result<Output, QueryError> {
    let data = ctx.query(FetchData::new(id))?;  // Propagates Suspend, Cycle, UserError, etc.
    Ok(transform(*data))
}

Error Comparator for Early Cutoff

By default, all UserError values are considered different (conservative). Use QueryRuntimeBuilder to customize:

let runtime = QueryRuntime::builder()
    .error_comparator(|a, b| {
        // Treat errors as equal if they have the same message
        a.to_string() == b.to_string()
    })
    .build();

Assets: External Inputs

Assets represent external resources (files, network data) that queries can depend on:

Defining Asset Keys

use query_flow::{asset_key, AssetKey, DurabilityLevel};
use std::path::PathBuf;

// Using the macro
#[asset_key(asset = String)]
pub struct ConfigFile(pub PathBuf);

// With durability hint
#[asset_key(asset = String, durability = constant)]
pub struct BundledAsset(pub PathBuf);

// Manual implementation
pub struct TextureId(pub u32);

impl AssetKey for TextureId {
    type Asset = ImageData;

    fn asset_eq(old: &Self::Asset, new: &Self::Asset) -> bool {
        old.bytes == new.bytes
    }

    fn durability(&self) -> DurabilityLevel {
        DurabilityLevel::Stable
    }
}

Using Assets in Queries

#[query]
fn process_config(ctx: &mut QueryContext, path: PathBuf) -> Result<Config, QueryError> {
    // Get asset - returns LoadingState<Arc<String>>
    let content = ctx.asset(&ConfigFile(path.clone()))?;

    // Suspend if not ready (propagates to caller)
    let content = content.suspend()?;

    // Parse and return
    Ok(parse_config(&content))
}

Asset Loading Flow

let runtime = QueryRuntime::new();

// Optional: Register a locator for immediate resolution
runtime.register_asset_locator(MyFileLocator::new());

// Execute query - may return Err(Suspend) if assets are loading
match runtime.query(ProcessConfig::new(path)) {
    Ok(result) => println!("Done: {:?}", result),
    Err(QueryError::Suspend) => {
        // Handle pending assets
        for pending in runtime.pending_assets() {
            if let Some(path) = pending.key::<ConfigFile>() {
                let content = std::fs::read_to_string(&path.0)?;
                runtime.resolve_asset(path.clone(), content);
            }
        }
        // Retry query
        let result = runtime.query(ProcessConfig::new(path))?;
    }
    Err(e) => return Err(e),
}

Asset Invalidation

// File was modified externally
runtime.invalidate_asset(&ConfigFile(path));
// Dependent queries will now suspend until resolved

// Remove asset entirely
runtime.remove_asset(&ConfigFile(path));

Suspense Pattern

The suspense pattern allows sync query code to handle async operations:

/// LoadingState<T> represents async loading state
pub enum LoadingState<T> {
    Loading,
    Ready(T),
}

impl<T> LoadingState<T> {
    /// Convert to Result - Loading becomes Err(Suspend)
    pub fn suspend(self) -> Result<T, QueryError>;

    pub fn is_loading(&self) -> bool;
    pub fn is_ready(&self) -> bool;
    pub fn get(&self) -> Option<&T>;
    pub fn map<U>(self, f: impl FnOnce(T) -> U) -> LoadingState<U>;
}

Durability Levels

Durability hints help optimize invalidation propagation:

Level Value Description
Volatile 0 Changes frequently (default)
Session 1 Stable within a session
Stable 2 Changes rarely
Constant 3 Never changes (bundled assets)

QueryRuntime API

let runtime = QueryRuntime::new();

// Execute queries
let result = runtime.query(MyQuery::new(...))?;

// Invalidation
runtime.invalidate::<MyQuery>(&cache_key);
runtime.clear_cache();

// Asset management
runtime.register_asset_locator(locator);
runtime.resolve_asset(key, value);
runtime.invalidate_asset(&key);
runtime.remove_asset(&key);

// Pending assets
runtime.pending_assets();           // All pending
runtime.pending_assets_of::<K>();   // Filtered by type
runtime.has_pending_assets();

Crates

Crate Description
query-flow High-level query framework with automatic caching and dependency tracking
query-flow-macros Procedural macros for defining queries
query-flow-inspector Debugging and inspection tools
whale Low-level lock-free dependency-tracking primitive

Whale

Whale is the low-level primitive that powers query-flow. It provides lock-free dependency tracking without opinions about what queries are or how to store their results.

When to Use Whale Directly

Use query-flow if you want a batteries-included incremental computation framework. Use whale directly if you need:

  • Full control over query representation and storage
  • Custom invalidation strategies
  • Integration with existing systems
  • Maximum flexibility

Whale Design

Whale is designed to be a minimal primitive for building high-level incremental computing systems. It does not provide:

  • What actually the "query" is
  • How to calculate a query ID
  • Any data storage to store the result of a query
  • Rich high-level APIs

Whale Architecture

Whale is built around a lock-free dependency graph where nodes represent computations and edges represent their dependencies.

Core Components:

  • Runtime: The central coordinator that manages the dependency graph. Lock-free and safe to clone across threads.
  • Node: A vertex representing a computation with version, dependencies, dependents, and invalidation state.
  • Pointer: A reference to a specific version of a computation (query ID + version).
  • RevisionPointer: An extended pointer including invalidation state for precise state tracking.

Lock-free Design:

The system uses atomic operations and immutable data structures:

  • Nodes are updated through atomic compare-and-swap operations
  • Dependencies and dependents are stored in immutable collections
  • Version numbers are managed through atomic counters

This allows multiple threads to concurrently query states, propagate invalidations, and modify the dependency graph.

Consistency Guarantees:

  • Version Monotonicity: Version numbers only increase per query
  • Cyclic Safety: Remains functional even with cycles in the dependency graph
  • Invalidation Guarantees: All dependents are notified of changes

Alternatives

  • salsa: A well-known library for incremental computing with a different design philosophy.

License

Licensed under either of

  • Apache License, Version 2.0
  • MIT license

at your option.