qudag-network 0.4.0

P2P networking layer for QuDAG - LibP2P with onion routing, dark addressing, and quantum encryption
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
# QuDAG Network Implementation Plan

## Overview

This document provides detailed implementation guidance for the QuDAG networking layer, with specific code examples and integration patterns for each component.

## 1. Enhanced libp2p Transport Implementation

### 1.1 Quantum-Secure Transport Wrapper

```rust
// File: src/transport/quantum_secure.rs

use libp2p::{Transport, core::upgrade};
use crate::quantum_crypto::{MLKEMKeyPair, SharedSecret};

pub struct QuantumSecureTransport<T> {
    inner_transport: T,
    ml_kem_keypair: MLKEMKeyPair,
    security_level: MLKEMSecurityLevel,
}

impl<T> QuantumSecureTransport<T> 
where 
    T: Transport,
{
    pub fn new(transport: T, security_level: MLKEMSecurityLevel) -> Self {
        Self {
            inner_transport: transport,
            ml_kem_keypair: MLKEMKeyPair::generate(security_level),
            security_level,
        }
    }
    
    // Upgrade connection with post-quantum handshake
    async fn quantum_handshake<C>(&self, conn: C) -> Result<QuantumConnection<C>> 
    where 
        C: AsyncRead + AsyncWrite + Unpin,
    {
        // 1. Send our ML-KEM public key
        let our_public_key = self.ml_kem_keypair.public_key();
        conn.write_all(&our_public_key.to_bytes()).await?;
        
        // 2. Receive peer's ML-KEM public key
        let mut peer_public_key_bytes = vec![0u8; ML_KEM_PUBLIC_KEY_SIZE];
        conn.read_exact(&mut peer_public_key_bytes).await?;
        let peer_public_key = MLKEMPublicKey::from_bytes(&peer_public_key_bytes)?;
        
        // 3. Generate shared secret
        let (ciphertext, shared_secret) = peer_public_key.encapsulate()?;
        conn.write_all(&ciphertext.to_bytes()).await?;
        
        // 4. Derive session keys
        let session_keys = self.derive_session_keys(&shared_secret);
        
        Ok(QuantumConnection {
            inner: conn,
            encryption_key: session_keys.encryption,
            decryption_key: session_keys.decryption,
            nonce_counter: AtomicU64::new(0),
        })
    }
}
```

### 1.2 QUIC Transport with ML-KEM

```rust
// File: src/transport/quic.rs

use quinn::{Endpoint, ClientConfig, ServerConfig};
use rustls::{Certificate, PrivateKey};

pub struct QuicTransport {
    endpoint: Endpoint,
    ml_kem_integration: MLKEMIntegration,
}

impl QuicTransport {
    pub async fn new(config: QuicConfig) -> Result<Self> {
        // Configure QUIC with custom crypto
        let mut transport_config = quinn::TransportConfig::default();
        transport_config
            .max_concurrent_bidi_streams(256u16.into())
            .max_concurrent_uni_streams(256u16.into())
            .max_idle_timeout(Some(Duration::from_secs(300).try_into()?))
            .keep_alive_interval(Some(Duration::from_secs(30)));
        
        // Create TLS config with post-quantum crypto
        let tls_config = Self::create_quantum_tls_config()?;
        
        // Build endpoint
        let server_config = ServerConfig::with_crypto(Arc::new(tls_config));
        let endpoint = Endpoint::server(server_config, config.listen_addr)?;
        
        Ok(Self {
            endpoint,
            ml_kem_integration: MLKEMIntegration::new(config.security_level),
        })
    }
    
    fn create_quantum_tls_config() -> Result<rustls::ServerConfig> {
        // Custom TLS configuration with ML-KEM integration
        let config = rustls::ServerConfig::builder()
            .with_safe_defaults()
            .with_custom_certificate_verifier(Arc::new(QuantumCertVerifier::new()))
            .with_single_cert(cert_chain, key)?;
            
        Ok(config)
    }
}
```

## 2. Kademlia DHT Implementation

### 2.1 Enhanced Kademlia with Dark Addressing

```rust
// File: src/discovery/kademlia.rs

use libp2p::kad::{Kademlia, KademliaConfig, store::MemoryStore, Record};
use libp2p::PeerId;

pub struct EnhancedKademlia {
    kademlia: Kademlia<MemoryStore>,
    dark_resolver: Arc<DarkResolver>,
    reputation_manager: Arc<ReputationManager>,
}

impl EnhancedKademlia {
    pub fn new(peer_id: PeerId, config: EnhancedKademliaConfig) -> Self {
        let store = MemoryStore::new(peer_id);
        
        let mut kad_config = KademliaConfig::default();
        kad_config.set_replication_factor(NonZeroUsize::new(20).unwrap());
        kad_config.set_query_timeout(Duration::from_secs(60));
        kad_config.set_record_ttl(Some(Duration::from_secs(86400))); // 24 hours
        
        let kademlia = Kademlia::with_config(peer_id, store, kad_config);
        
        Self {
            kademlia,
            dark_resolver: Arc::new(DarkResolver::new()),
            reputation_manager: Arc::new(ReputationManager::new()),
        }
    }
    
    // Store dark address mapping
    pub async fn store_dark_address(&mut self, dark_addr: DarkAddress, endpoint: NetworkEndpoint) -> Result<()> {
        // Create DHT record
        let key = self.dark_address_to_key(&dark_addr);
        let value = self.encrypt_endpoint(&endpoint)?;
        
        let record = Record {
            key,
            value,
            publisher: None,
            expires: Some(Instant::now() + Duration::from_secs(86400)),
        };
        
        self.kademlia.put_record(record, Quorum::One)?;
        Ok(())
    }
    
    // Resolve dark address
    pub async fn resolve_dark_address(&mut self, dark_addr: &DarkAddress) -> Result<NetworkEndpoint> {
        let key = self.dark_address_to_key(dark_addr);
        
        match self.kademlia.get_record(&key) {
            Ok(record) => {
                let endpoint = self.decrypt_endpoint(&record.value)?;
                Ok(endpoint)
            }
            Err(_) => Err(NetworkError::DarkAddressNotFound),
        }
    }
    
    // Reputation-weighted peer discovery
    pub async fn find_peers_weighted(&mut self, key: &[u8], count: usize) -> Vec<PeerId> {
        let raw_peers = self.kademlia.get_closest_peers(key);
        
        // Sort by reputation
        let mut scored_peers: Vec<(PeerId, f64)> = raw_peers
            .into_iter()
            .map(|peer| {
                let reputation = self.reputation_manager.get_reputation(&peer);
                (peer, reputation)
            })
            .collect();
            
        scored_peers.sort_by(|a, b| b.1.partial_cmp(&a.1).unwrap());
        
        scored_peers
            .into_iter()
            .take(count)
            .map(|(peer, _)| peer)
            .collect()
    }
}
```

### 2.2 Bootstrap Process

```rust
// File: src/discovery/bootstrap.rs

pub struct BootstrapManager {
    bootstrap_peers: Vec<Multiaddr>,
    kad: Arc<Mutex<EnhancedKademlia>>,
    connection_manager: Arc<ConnectionManager>,
}

impl BootstrapManager {
    pub async fn bootstrap(&self) -> Result<()> {
        info!("Starting bootstrap process");
        
        // Phase 1: Connect to bootstrap nodes
        let mut successful_connections = 0;
        for addr in &self.bootstrap_peers {
            match self.connection_manager.connect_to_address(addr).await {
                Ok(peer_id) => {
                    info!("Connected to bootstrap peer: {}", peer_id);
                    self.kad.lock().await.add_address(&peer_id, addr.clone());
                    successful_connections += 1;
                }
                Err(e) => {
                    warn!("Failed to connect to bootstrap peer {}: {}", addr, e);
                }
            }
        }
        
        if successful_connections == 0 {
            return Err(NetworkError::BootstrapFailed);
        }
        
        // Phase 2: Random walk to populate routing table
        let random_peer_id = PeerId::random();
        self.kad.lock().await.get_closest_peers(random_peer_id);
        
        // Phase 3: Announce our presence
        let our_info = self.create_peer_info();
        self.kad.lock().await.put_record(our_info).await?;
        
        Ok(())
    }
}
```

## 3. Onion Routing Implementation

### 3.1 Circuit Construction

```rust
// File: src/onion/circuit.rs

pub struct CircuitBuilder {
    peer_selector: Arc<PeerSelector>,
    ml_kem: Arc<QuantumKeyExchange>,
    max_circuit_length: usize,
}

impl CircuitBuilder {
    pub async fn build_circuit(&self, destination: &PeerId, hops: usize) -> Result<Circuit> {
        // Select relay nodes
        let relays = self.select_relay_nodes(hops).await?;
        
        let mut circuit_hops = Vec::new();
        let mut layer_keys = Vec::new();
        
        // Build circuit hop by hop
        for (i, relay) in relays.iter().enumerate() {
            // Establish encrypted channel with relay
            let (shared_secret, hop_info) = self.establish_hop(relay, i == 0).await?;
            
            circuit_hops.push(hop_info);
            layer_keys.push(shared_secret);
        }
        
        // Add destination as final hop
        let dest_hop = self.create_destination_hop(destination).await?;
        circuit_hops.push(dest_hop);
        
        Ok(Circuit {
            id: CircuitId::generate(),
            hops: circuit_hops,
            layer_keys,
            created_at: Instant::now(),
            state: CircuitState::Active,
        })
    }
    
    async fn establish_hop(&self, relay: &RelayNode, is_entry: bool) -> Result<(SharedSecret, CircuitHop)> {
        // ML-KEM key exchange with relay
        let (ciphertext, shared_secret) = relay.public_key.encapsulate()?;
        
        // Send CREATE cell
        let create_cell = CreateCell {
            circuit_id: CircuitId::generate(),
            kem_ciphertext: ciphertext,
            handshake_data: self.create_handshake_data(is_entry),
        };
        
        let response = relay.send_create_cell(create_cell).await?;
        
        // Verify response and extract hop info
        let hop_info = CircuitHop {
            peer_id: relay.peer_id,
            shared_secret: shared_secret.clone(),
            next_hop_encrypted: None,
        };
        
        Ok((shared_secret, hop_info))
    }
}
```

### 3.2 Message Encryption and Routing

```rust
// File: src/onion/routing.rs

pub struct OnionRouter {
    circuits: Arc<DashMap<CircuitId, Circuit>>,
    cell_crypto: CellCrypto,
    mixer: TrafficMixer,
}

impl OnionRouter {
    pub async fn send_message(&self, message: &[u8], circuit_id: CircuitId) -> Result<()> {
        let circuit = self.circuits.get(&circuit_id)
            .ok_or(OnionError::CircuitNotFound)?;
        
        // Fragment into fixed-size cells
        let cells = self.fragment_message(message);
        
        // Apply onion encryption
        let encrypted_cells = self.encrypt_cells(cells, &circuit)?;
        
        // Add to mixing pool
        for cell in encrypted_cells {
            self.mixer.add_cell(cell).await;
        }
        
        Ok(())
    }
    
    fn encrypt_cells(&self, cells: Vec<Cell>, circuit: &Circuit) -> Result<Vec<EncryptedCell>> {
        let mut encrypted_cells = Vec::new();
        
        for cell in cells {
            let mut encrypted_payload = cell.payload;
            
            // Apply encryption layers in reverse order
            for (i, key) in circuit.layer_keys.iter().enumerate().rev() {
                encrypted_payload = self.cell_crypto.encrypt_layer(
                    &encrypted_payload,
                    key,
                    circuit.hops[i].peer_id,
                )?;
            }
            
            encrypted_cells.push(EncryptedCell {
                circuit_id: circuit.id,
                encrypted_payload,
                cell_type: cell.cell_type,
            });
        }
        
        Ok(encrypted_cells)
    }
}

// Traffic mixing for timing analysis resistance
pub struct TrafficMixer {
    cell_queue: Arc<Mutex<VecDeque<MixedCell>>>,
    mix_delay: Duration,
    batch_size: usize,
}

impl TrafficMixer {
    pub async fn add_cell(&self, cell: EncryptedCell) {
        let mixed_cell = MixedCell {
            cell,
            added_at: Instant::now(),
            send_at: Instant::now() + self.random_delay(),
        };
        
        self.cell_queue.lock().await.push_back(mixed_cell);
    }
    
    pub async fn mix_and_send_loop(&self) {
        loop {
            sleep(self.mix_delay).await;
            
            let cells_to_send = self.get_cells_to_send().await;
            
            if cells_to_send.len() >= self.batch_size {
                self.send_batch(cells_to_send).await;
            }
        }
    }
}
```

## 4. Dark Addressing Implementation

### 4.1 Address Generation and Management

```rust
// File: src/dark_addressing/generator.rs

pub struct DarkAddressManager {
    identity_keys: MLDSAKeyPair,
    address_cache: Arc<DashMap<DarkAddress, AddressMetadata>>,
    resolver: Arc<DarkResolver>,
}

impl DarkAddressManager {
    pub fn generate_address(&self, network_type: NetworkType) -> DarkAddress {
        // Generate ephemeral identity
        let ephemeral_key = MLDSAKeyPair::generate();
        
        // Create address components
        let components = AddressComponents {
            version: DARK_ADDRESS_VERSION,
            network_type,
            identity_commitment: self.create_identity_commitment(&ephemeral_key),
            timestamp: SystemTime::now(),
        };
        
        // Encode address
        let address = self.encode_address(components);
        
        // Store metadata
        let metadata = AddressMetadata {
            ephemeral_key,
            created_at: Instant::now(),
            last_used: None,
            resolution_count: 0,
        };
        
        self.address_cache.insert(address.clone(), metadata);
        
        address
    }
    
    fn create_identity_commitment(&self, ephemeral_key: &MLDSAKeyPair) -> [u8; 32] {
        let mut hasher = Blake3::new();
        hasher.update(&ephemeral_key.public_key().to_bytes());
        hasher.update(&self.identity_keys.public_key().to_bytes());
        hasher.update(&SystemTime::now().duration_since(UNIX_EPOCH).unwrap().as_secs().to_le_bytes());
        
        let hash = hasher.finalize();
        let mut commitment = [0u8; 32];
        commitment.copy_from_slice(hash.as_bytes());
        commitment
    }
    
    pub async fn publish_address(&self, address: &DarkAddress, endpoint: &NetworkEndpoint) -> Result<()> {
        // Create resolution proof
        let proof = self.create_resolution_proof(address, endpoint)?;
        
        // Encrypt endpoint information
        let encrypted_endpoint = self.encrypt_endpoint(endpoint, address)?;
        
        // Create DHT record
        let record = DarkAddressRecord {
            address: address.clone(),
            encrypted_endpoint,
            proof,
            expires_at: SystemTime::now() + Duration::from_secs(86400),
        };
        
        // Publish to DHT
        self.resolver.publish_record(record).await
    }
}
```

### 4.2 Resolution Protocol

```rust
// File: src/dark_addressing/resolver.rs

pub struct DarkResolver {
    dht: Arc<EnhancedKademlia>,
    cache: Arc<TimedCache<DarkAddress, ResolvedEndpoint>>,
    privacy_config: PrivacyConfig,
}

impl DarkResolver {
    pub async fn resolve(&self, address: &DarkAddress) -> Result<ResolvedEndpoint> {
        // Check cache first
        if let Some(cached) = self.cache.get(address).await {
            return Ok(cached);
        }
        
        // Add privacy measures
        if self.privacy_config.enable_dummy_queries {
            self.send_dummy_queries().await;
        }
        
        // Add random delay
        let delay = self.privacy_config.random_delay();
        sleep(delay).await;
        
        // Query DHT
        let record = self.query_dht(address).await?;
        
        // Verify proof
        self.verify_resolution_proof(&record)?;
        
        // Decrypt endpoint
        let endpoint = self.decrypt_endpoint(&record.encrypted_endpoint, address)?;
        
        // Cache result
        self.cache.insert(address.clone(), endpoint.clone()).await;
        
        Ok(endpoint)
    }
    
    async fn send_dummy_queries(&self) {
        let num_dummies = thread_rng().gen_range(2..5);
        
        for _ in 0..num_dummies {
            let dummy_address = DarkAddress::random();
            
            // Fire and forget dummy query
            let dht = self.dht.clone();
            tokio::spawn(async move {
                let _ = dht.query(&dummy_address.to_key()).await;
            });
        }
    }
}
```

## 5. NAT Traversal Implementation

### 5.1 Multi-Strategy NAT Traversal

```rust
// File: src/nat/traversal.rs

pub struct NATTraversal {
    strategies: Vec<Box<dyn NATStrategy>>,
    stun_client: StunClient,
    upnp_client: Option<UpnpClient>,
    relay_manager: RelayManager,
}

impl NATTraversal {
    pub async fn establish_connection(&self, peer: &PeerId) -> Result<NATConnection> {
        // Try strategies in order of preference
        
        // 1. Try direct connection first
        if let Ok(conn) = self.try_direct_connection(peer).await {
            return Ok(conn);
        }
        
        // 2. STUN for address discovery
        let external_addr = self.stun_client.get_external_address().await?;
        
        // 3. Try UPnP if available
        if let Some(upnp) = &self.upnp_client {
            if let Ok(mapping) = upnp.create_port_mapping(external_addr.port()).await {
                if let Ok(conn) = self.try_mapped_connection(peer, mapping).await {
                    return Ok(conn);
                }
            }
        }
        
        // 4. Hole punching
        if let Ok(conn) = self.try_hole_punching(peer, external_addr).await {
            return Ok(conn);
        }
        
        // 5. Fallback to relay
        self.establish_relayed_connection(peer).await
    }
    
    async fn try_hole_punching(&self, peer: &PeerId, our_addr: SocketAddr) -> Result<NATConnection> {
        // Coordinate via signaling server
        let peer_addr = self.exchange_addresses(peer, our_addr).await?;
        
        // Simultaneous open
        let socket = UdpSocket::bind(our_addr).await?;
        
        // Send packets to create NAT mapping
        for _ in 0..5 {
            socket.send_to(b"PUNCH", peer_addr).await?;
            sleep(Duration::from_millis(100)).await;
        }
        
        // Try to receive from peer
        let mut buf = [0u8; 1024];
        match timeout(Duration::from_secs(5), socket.recv_from(&mut buf)).await {
            Ok(Ok((len, addr))) if addr == peer_addr => {
                // Success! Upgrade to full connection
                self.upgrade_punched_connection(socket, peer_addr).await
            }
            _ => Err(NetworkError::HolePunchingFailed),
        }
    }
}
```

### 5.2 Relay Protocol

```rust
// File: src/nat/relay.rs

pub struct RelayManager {
    relay_nodes: Vec<RelayNode>,
    active_circuits: Arc<DashMap<PeerId, RelayCircuit>>,
}

impl RelayManager {
    pub async fn establish_relayed_connection(&self, target: &PeerId) -> Result<RelayedConnection> {
        // Select best relay based on latency and load
        let relay = self.select_optimal_relay(target).await?;
        
        // Establish circuit through relay
        let circuit = relay.create_circuit(target).await?;
        
        // Store active circuit
        self.active_circuits.insert(*target, circuit.clone());
        
        Ok(RelayedConnection {
            circuit,
            relay_node: relay,
            bandwidth_limit: self.calculate_bandwidth_limit(&relay),
        })
    }
    
    async fn select_optimal_relay(&self, target: &PeerId) -> Result<RelayNode> {
        let mut candidates = Vec::new();
        
        // Evaluate each relay
        for relay in &self.relay_nodes {
            let score = self.evaluate_relay(relay, target).await?;
            candidates.push((relay.clone(), score));
        }
        
        // Sort by score
        candidates.sort_by(|a, b| b.1.partial_cmp(&a.1).unwrap());
        
        candidates
            .into_iter()
            .next()
            .map(|(relay, _)| relay)
            .ok_or(NetworkError::NoRelayAvailable)
    }
}
```

## 6. Testing Strategy

### 6.1 Integration Test Setup

```rust
// File: tests/network_integration.rs

#[tokio::test]
async fn test_full_network_stack() {
    // Create test network
    let mut network = TestNetwork::new(10).await;
    
    // Bootstrap nodes
    network.bootstrap_all().await;
    
    // Test Kademlia DHT
    let test_key = b"test_key";
    let test_value = b"test_value";
    
    let node1 = &network.nodes[0];
    node1.kad.put_record(test_key, test_value).await.unwrap();
    
    let node2 = &network.nodes[5];
    let result = node2.kad.get_record(test_key).await.unwrap();
    assert_eq!(result, test_value);
    
    // Test onion routing
    let circuit = node1.build_circuit(&node2.peer_id(), 3).await.unwrap();
    node1.send_onion_message(b"secret message", circuit).await.unwrap();
    
    // Test dark addressing
    let dark_addr = node1.generate_dark_address().await;
    node1.publish_dark_address(&dark_addr).await.unwrap();
    
    let resolved = node2.resolve_dark_address(&dark_addr).await.unwrap();
    assert_eq!(resolved.peer_id, node1.peer_id());
}
```

### 6.2 Performance Benchmarks

```rust
// File: benches/network_performance.rs

#[bench]
fn bench_ml_kem_handshake(b: &mut Bencher) {
    let runtime = Runtime::new().unwrap();
    
    b.iter(|| {
        runtime.block_on(async {
            let transport = QuantumSecureTransport::new();
            let conn = create_test_connection();
            transport.quantum_handshake(conn).await.unwrap()
        })
    });
}

#[bench]
fn bench_onion_encryption(b: &mut Bencher) {
    let router = OnionRouter::new();
    let circuit = create_test_circuit(5); // 5 hops
    let message = vec![0u8; 1024]; // 1KB message
    
    b.iter(|| {
        router.encrypt_message(&message, &circuit).unwrap()
    });
}

#[bench] 
fn bench_dht_lookup(b: &mut Bencher) {
    let runtime = Runtime::new().unwrap();
    let mut kad = create_test_kad();
    populate_kad(&mut kad, 1000); // 1000 nodes
    
    b.iter(|| {
        runtime.block_on(async {
            let key = random_key();
            kad.get_record(&key).await
        })
    });
}
```

## 7. Monitoring and Metrics

### 7.1 Network Metrics Collection

```rust
// File: src/metrics/network.rs

pub struct NetworkMetricsCollector {
    connection_metrics: ConnectionMetrics,
    routing_metrics: RoutingMetrics,
    dht_metrics: DHTMetrics,
    security_metrics: SecurityMetrics,
}

impl NetworkMetricsCollector {
    pub fn record_connection_established(&self, peer: &PeerId, duration: Duration) {
        self.connection_metrics.connections_total.inc();
        self.connection_metrics.connection_duration.observe(duration.as_secs_f64());
        self.connection_metrics.active_connections.inc();
    }
    
    pub fn record_message_sent(&self, size: usize, encryption_type: &str) {
        self.routing_metrics.messages_sent.inc();
        self.routing_metrics.bytes_sent.inc_by(size as u64);
        self.routing_metrics.messages_by_type
            .with_label_values(&[encryption_type])
            .inc();
    }
    
    pub fn record_dht_operation(&self, op_type: &str, success: bool, duration: Duration) {
        let labels = &[op_type, if success { "success" } else { "failure" }];
        self.dht_metrics.operations
            .with_label_values(labels)
            .inc();
        self.dht_metrics.operation_duration
            .with_label_values(&[op_type])
            .observe(duration.as_secs_f64());
    }
}
```

## Conclusion

This implementation plan provides concrete code examples and patterns for building the QuDAG networking layer. Each component is designed to be modular and testable, with clear interfaces between layers. The use of libp2p as a foundation, enhanced with post-quantum cryptography and anonymous routing, creates a robust and future-proof networking stack.