qudag-network 0.1.0

P2P networking layer for QuDAG - LibP2P with onion routing, dark addressing, and quantum encryption
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
# QuDAG Network Architecture: Comprehensive P2P Implementation Guide

## Executive Summary

This document outlines the comprehensive P2P networking architecture for QuDAG, leveraging libp2p for robust, scalable, and secure peer-to-peer communication. The architecture integrates post-quantum cryptography (ML-KEM/ML-DSA), anonymous routing via onion layers, and a sophisticated dark addressing system for enhanced privacy.

## Current State Analysis

### Existing Components
1. **Basic libp2p Integration**: Foundation with TCP transport, Noise protocol, and Yamux multiplexing
2. **Quantum Cryptography Module**: ML-KEM implementation for post-quantum key exchange
3. **Onion Routing Framework**: Basic structure for anonymous message routing
4. **Discovery System**: Placeholder for Kademlia DHT and multiple discovery methods
5. **Connection Management**: Circuit breaker patterns and health monitoring
6. **Dark Addressing**: Shadow address system for anonymous endpoints

### Identified Gaps
- Incomplete Kademlia DHT implementation
- Missing NAT traversal strategies
- Partial onion routing implementation
- Incomplete integration between quantum crypto and transport layer
- Missing gossipsub protocol for message propagation
- Incomplete peer reputation and scoring system

## Proposed Architecture

### 1. Core Network Stack

```
┌─────────────────────────────────────────────────────────┐
│                    Application Layer                     │
│         (DAG Consensus, State Management, RPC)          │
├─────────────────────────────────────────────────────────┤
│                   Network Manager                        │
│    (Orchestration, Peer Management, Reputation)         │
├─────────────────────────────────────────────────────────┤
│                  Protocol Layer                          │
│ ┌─────────────┐ ┌──────────────┐ ┌──────────────────┐ │
│ │  Gossipsub  │ │   Kademlia   │ │  Custom Protos   │ │
│ │  (Messages) │ │    (DHT)     │ │ (Onion, Dark)    │ │
│ └─────────────┘ └──────────────┘ └──────────────────┘ │
├─────────────────────────────────────────────────────────┤
│                 Security Layer                           │
│ ┌─────────────┐ ┌──────────────┐ ┌──────────────────┐ │
│ │   ML-KEM    │ │    ML-DSA    │ │  Onion Routing   │ │
│ │ (Key Exch)  │ │    (Auth)    │ │   (Anonymous)    │ │
│ └─────────────┘ └──────────────┘ └──────────────────┘ │
├─────────────────────────────────────────────────────────┤
│                  Transport Layer                         │
│ ┌─────────────┐ ┌──────────────┐ ┌──────────────────┐ │
│ │    QUIC     │ │  WebSocket   │ │   TCP/Noise      │ │
│ │   (Main)    │ │  (Browser)   │ │   (Fallback)     │ │
│ └─────────────┘ └──────────────┘ └──────────────────┘ │
└─────────────────────────────────────────────────────────┘
```

### 2. libp2p Integration Strategy

#### 2.1 Transport Configuration

```rust
// Primary transport stack with QUIC and quantum-resistant crypto
pub struct TransportConfig {
    // QUIC with ML-KEM for post-quantum security
    quic: QuicConfig {
        ml_kem_level: MlKemSecurityLevel::High,
        keep_alive: Duration::from_secs(30),
        max_idle_timeout: Duration::from_secs(300),
        congestion_control: CongestionControl::BBR,
    },
    
    // WebSocket for browser compatibility
    websocket: WebSocketConfig {
        tls_config: TlsConfig::with_ml_dsa(),
        compression: true,
    },
    
    // TCP fallback with Noise protocol
    tcp: TcpConfig {
        nodelay: true,
        keepalive: Some(Duration::from_secs(60)),
        noise_config: NoiseConfig::XX,
    },
}
```

#### 2.2 Multiplexing Strategy

- **Primary**: QUIC's native stream multiplexing
- **Secondary**: Yamux over TCP/WebSocket connections
- **Optimization**: Stream prioritization for consensus messages

#### 2.3 Security Integration

```rust
// Post-quantum security wrapper for libp2p
pub struct QuantumSecureTransport<T> {
    inner: T,
    ml_kem: QuantumKeyExchange,
    ml_dsa: MLDSAAuthenticator,
}

impl<T: Transport> Transport for QuantumSecureTransport<T> {
    // Upgrade connections with post-quantum handshake
    fn upgrade(&self, conn: T::Output) -> QuantumConnection {
        // 1. Classical handshake (Noise/TLS)
        // 2. ML-KEM key exchange
        // 3. ML-DSA authentication
        // 4. Establish quantum-secure channel
    }
}
```

### 3. Kademlia DHT Implementation

#### 3.1 Enhanced Kademlia Configuration

```rust
pub struct KademliaConfig {
    // Standard Kademlia parameters
    replication_factor: NonZeroUsize,        // k=20 for robustness
    query_parallelism: NonZeroUsize,         // α=3 for efficiency
    record_ttl: Duration,                    // 24 hours default
    
    // QuDAG-specific enhancements
    dark_addressing_support: bool,           // Enable shadow address lookups
    quantum_resistant_ids: bool,             // Use ML-DSA for node IDs
    reputation_weighted_routing: bool,       // Prefer high-reputation peers
    
    // Performance optimizations
    caching_strategy: CachingStrategy {
        max_cache_size: 10_000,
        cache_ttl: Duration::from_secs(3600),
        popularity_tracking: true,
    },
}
```

#### 3.2 DHT Operations

1. **Peer Discovery**
   - Bootstrap from known peers
   - Recursive lookups with reputation weighting
   - Dark address resolution via DHT

2. **Content Routing**
   - Store DAG vertex locations
   - Provider records for data availability
   - Encrypted metadata for privacy

3. **Network Maintenance**
   - Periodic bucket refresh
   - Stale peer eviction
   - Reputation-based peer selection

### 4. Onion Routing Architecture

#### 4.1 Circuit Construction

```rust
pub struct OnionCircuit {
    // Circuit parameters
    hops: Vec<CircuitHop>,
    circuit_id: CircuitId,
    created_at: Instant,
    
    // Security parameters
    layer_keys: Vec<MLKEMSharedSecret>,
    return_path: Option<Vec<CircuitHop>>,
}

pub struct CircuitHop {
    peer_id: PeerId,
    public_key: MLKEMPublicKey,
    layer_key: Option<SharedSecret>,
    routing_info: EncryptedRoutingInfo,
}

// Circuit construction protocol
impl OnionRouter {
    pub async fn build_circuit(&self, destination: &PeerId) -> Result<OnionCircuit> {
        // 1. Select relay nodes based on reputation and geography
        let relays = self.select_relays(3)?;
        
        // 2. Negotiate keys with each hop using ML-KEM
        let mut layer_keys = Vec::new();
        for relay in &relays {
            let shared_secret = self.ml_kem_handshake(relay).await?;
            layer_keys.push(shared_secret);
        }
        
        // 3. Construct layered encryption
        let circuit = self.create_layered_circuit(relays, layer_keys)?;
        
        Ok(circuit)
    }
}
```

#### 4.2 Message Routing

```rust
pub struct OnionMessage {
    // Fixed-size cells for traffic analysis resistance
    cells: Vec<OnionCell>,
    circuit_id: CircuitId,
    
    // Timing obfuscation
    send_time: Option<Instant>,
    artificial_delay: Duration,
}

impl OnionRouter {
    pub async fn send_message(&self, msg: &[u8], circuit: &OnionCircuit) -> Result<()> {
        // 1. Fragment message into fixed-size cells
        let cells = self.fragment_message(msg)?;
        
        // 2. Apply layered encryption
        let encrypted_cells = self.apply_onion_layers(cells, circuit)?;
        
        // 3. Add timing obfuscation
        let onion_msg = OnionMessage {
            cells: encrypted_cells,
            circuit_id: circuit.circuit_id,
            send_time: Some(Instant::now() + self.random_delay()),
            artificial_delay: self.calculate_mix_delay(),
        };
        
        // 4. Send through first hop
        self.send_to_entry_node(onion_msg, &circuit.hops[0]).await?;
        
        Ok(())
    }
}
```

### 5. Dark Addressing System

#### 5.1 Address Generation

```rust
pub struct DarkAddressGenerator {
    // Cryptographic components
    ml_dsa_keypair: MLDSAKeyPair,
    hash_function: Blake3,
    
    // Address parameters
    network_prefix: [u8; 4],
    version: u8,
}

impl DarkAddressGenerator {
    pub fn generate_address(&self) -> DarkAddress {
        // 1. Generate ephemeral identity
        let ephemeral_key = MLDSAKeyPair::generate();
        
        // 2. Create address commitment
        let commitment = self.hash_function.hash(&[
            &ephemeral_key.public_key(),
            &self.ml_dsa_keypair.public_key(),
            &self.network_prefix,
        ]);
        
        // 3. Encode with error correction
        let address = DarkAddress {
            version: self.version,
            network: NetworkType::Mainnet,
            commitment: commitment[..20].try_into().unwrap(),
            checksum: self.calculate_checksum(&commitment),
        };
        
        address
    }
}
```

#### 5.2 Address Resolution

```rust
pub struct DarkResolver {
    // DHT integration for resolution
    dht: Arc<Kademlia>,
    
    // Caching layer
    resolution_cache: Arc<DashMap<DarkAddress, ResolvedEndpoint>>,
    
    // Privacy parameters
    dummy_queries: bool,
    query_mixing_delay: Duration,
}

impl DarkResolver {
    pub async fn resolve(&self, addr: &DarkAddress) -> Result<ResolvedEndpoint> {
        // 1. Check cache
        if let Some(cached) = self.resolution_cache.get(addr) {
            return Ok(cached.clone());
        }
        
        // 2. Generate dummy queries for privacy
        if self.dummy_queries {
            self.send_dummy_queries().await;
        }
        
        // 3. Query DHT with mixing delay
        sleep(self.query_mixing_delay).await;
        let endpoint = self.dht_lookup(addr).await?;
        
        // 4. Verify resolution proof
        self.verify_resolution_proof(&endpoint, addr)?;
        
        // 5. Cache result
        self.resolution_cache.insert(*addr, endpoint.clone());
        
        Ok(endpoint)
    }
}
```

### 6. Connection Management & NAT Traversal

#### 6.1 Comprehensive NAT Strategy

```rust
pub struct NATTraversalManager {
    // Multiple traversal methods
    strategies: Vec<Box<dyn NATStrategy>>,
    
    // Connection state tracking
    connection_state: Arc<DashMap<PeerId, ConnectionState>>,
    
    // Health monitoring
    health_monitor: HealthMonitor,
}

pub enum NATStrategy {
    // STUN/TURN for address discovery
    StunTurn {
        stun_servers: Vec<String>,
        turn_servers: Vec<TurnCredentials>,
    },
    
    // UPnP for router configuration
    UPnP {
        enabled: bool,
        lease_duration: Duration,
    },
    
    // Relay nodes for fallback
    Relay {
        relay_nodes: Vec<PeerId>,
        max_bandwidth: u64,
    },
    
    // Hole punching coordination
    HolePunching {
        signaling_server: String,
        retry_attempts: u32,
    },
}
```

#### 6.2 Connection Lifecycle

```rust
pub struct ConnectionManager {
    // Connection pooling
    connection_pool: Arc<DashMap<PeerId, Connection>>,
    max_connections: usize,
    
    // Circuit breaker for fault tolerance
    circuit_breakers: Arc<DashMap<PeerId, CircuitBreaker>>,
    
    // Bandwidth management
    bandwidth_limiter: BandwidthLimiter,
    
    // Metrics collection
    metrics: Arc<NetworkMetrics>,
}

impl ConnectionManager {
    pub async fn connect(&self, peer: &PeerId) -> Result<Connection> {
        // 1. Check circuit breaker
        if let Some(breaker) = self.circuit_breakers.get(peer) {
            breaker.check()?;
        }
        
        // 2. Try direct connection
        match self.try_direct_connection(peer).await {
            Ok(conn) => return Ok(conn),
            Err(_) => {
                // 3. Attempt NAT traversal
                let conn = self.traverse_nat(peer).await?;
                
                // 4. Apply bandwidth limits
                let limited_conn = self.bandwidth_limiter.wrap(conn);
                
                // 5. Update metrics
                self.metrics.record_connection(peer);
                
                Ok(limited_conn)
            }
        }
    }
}
```

### 7. Implementation Roadmap

#### Phase 1: Foundation (Weeks 1-4)
1. **Week 1-2**: Enhanced libp2p transport layer
   - Implement QUIC transport with ML-KEM integration
   - Add WebSocket support for browser nodes
   - Integrate post-quantum handshake

2. **Week 3-4**: Kademlia DHT implementation
   - Basic DHT operations (PUT/GET)
   - Peer discovery mechanisms
   - Bootstrap node configuration

#### Phase 2: Security Layer (Weeks 5-8)
1. **Week 5-6**: Onion routing implementation
   - Circuit construction protocol
   - Layered encryption with ML-KEM
   - Traffic analysis resistance

2. **Week 7-8**: Dark addressing system
   - Address generation and encoding
   - DHT-based resolution
   - Privacy-preserving lookups

#### Phase 3: Robustness (Weeks 9-12)
1. **Week 9-10**: NAT traversal strategies
   - STUN/TURN integration
   - UPnP support
   - Relay fallback system

2. **Week 11-12**: Connection management
   - Circuit breaker implementation
   - Bandwidth management
   - Health monitoring

#### Phase 4: Optimization (Weeks 13-16)
1. **Week 13-14**: Performance tuning
   - Connection pooling
   - Message batching
   - Compression strategies

2. **Week 15-16**: Testing and hardening
   - Load testing
   - Security audits
   - Documentation

### 8. Integration Points

#### 8.1 Crypto Module Integration
```rust
// Seamless integration with existing crypto module
use qudag_crypto::{MLKEMKeyPair, MLDSAKeyPair, Fingerprint};

pub struct CryptoIntegratedTransport {
    ml_kem: MLKEMKeyPair,
    ml_dsa: MLDSAKeyPair,
    fingerprint: Fingerprint,
}
```

#### 8.2 DAG Module Integration
```rust
// Network layer provides DAG synchronization
pub trait DAGNetworkSync {
    async fn broadcast_vertex(&self, vertex: &Vertex) -> Result<()>;
    async fn request_vertex(&self, id: &VertexId) -> Result<Vertex>;
    async fn sync_dag_state(&self, peer: &PeerId) -> Result<()>;
}
```

#### 8.3 Protocol Module Integration
```rust
// Protocol-level message handling
pub trait ProtocolHandler {
    async fn handle_consensus_message(&self, msg: ConsensusMessage) -> Result<()>;
    async fn handle_sync_request(&self, req: SyncRequest) -> Result<SyncResponse>;
}
```

### 9. Security Considerations

1. **Post-Quantum Security**: All key exchanges use ML-KEM-768 or higher
2. **Anonymous Routing**: Onion routing with minimum 3 hops
3. **Traffic Analysis**: Fixed-size cells and timing obfuscation
4. **Sybil Resistance**: Reputation system and proof-of-work for new nodes
5. **Eclipse Attacks**: Diverse peer selection and geographic distribution

### 10. Performance Targets

- **Connection Establishment**: < 100ms (direct), < 500ms (NAT traversal)
- **Message Latency**: < 50ms (p95) for consensus messages
- **Throughput**: > 100 Mbps per connection
- **Concurrent Connections**: > 1000 peers
- **DHT Lookup Time**: < 2 seconds (p95)

### 11. Testing Strategy

1. **Unit Tests**: Component-level testing with mocks
2. **Integration Tests**: Multi-node test networks
3. **Chaos Testing**: Network partition simulation
4. **Load Testing**: 10,000+ node simulations
5. **Security Testing**: Penetration testing and fuzzing

### 12. Monitoring and Metrics

```rust
pub struct NetworkMetrics {
    // Connection metrics
    active_connections: Gauge,
    connection_attempts: Counter,
    connection_failures: Counter,
    
    // Performance metrics
    message_latency: Histogram,
    bandwidth_usage: Gauge,
    
    // DHT metrics
    dht_lookups: Counter,
    dht_lookup_latency: Histogram,
    
    // Security metrics
    failed_authentications: Counter,
    circuit_constructions: Counter,
}
```

## Conclusion

This architecture provides a robust, secure, and scalable P2P networking layer for QuDAG. By leveraging libp2p's proven components and enhancing them with post-quantum cryptography and anonymous routing, we create a network that is both future-proof and privacy-preserving. The modular design allows for incremental implementation while maintaining clear interfaces between components.