quantrs2 0.1.0-rc.1

Comprehensive Rust quantum computing framework - unified entry point for quantum simulation, algorithm development, and hardware interaction
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
# QuantRS2 Facade Crate - Feature Documentation

This document provides comprehensive documentation for the QuantRS2 facade crate features.

## Table of Contents

1. [Overview]#overview
2. [Hierarchical Prelude System]#hierarchical-prelude-system
3. [Configuration Management]#configuration-management
4. [System Diagnostics]#system-diagnostics
5. [Error Handling]#error-handling
6. [Utility Functions]#utility-functions
7. [Testing Helpers]#testing-helpers
8. [Version Management]#version-management
9. [Examples]#examples

## Overview

The QuantRS2 facade crate provides a unified entry point to the QuantRS2 quantum computing framework. It offers:

- **Zero-cost abstractions**: Feature-gated re-exports with no runtime overhead
- **Hierarchical preludes**: Import exactly what you need
- **System management**: Configuration, diagnostics, and version checking
- **Developer utilities**: Memory estimation, testing helpers, error handling

## Hierarchical Prelude System

### Prelude Levels

The facade provides 7 levels of preludes, each building on the previous:

```rust
// Level 1: Essentials (always available)
use quantrs2::prelude::essentials::*;

// Level 2: Circuit construction
use quantrs2::prelude::circuits::*;

// Level 3: Quantum simulation
use quantrs2::prelude::simulation::*;

// Level 4: Algorithms and ML
use quantrs2::prelude::algorithms::*;

// Level 5: Hardware integration
use quantrs2::prelude::hardware::*;

// Level 6: Quantum annealing
use quantrs2::prelude::quantum_annealing::*;

// Level 7: Tytan DSL
use quantrs2::prelude::tytan::*;

// Full: Everything available
use quantrs2::prelude::full::*;
```

### Choosing the Right Prelude

| Prelude | Use When | Compile Time | Features Included |
|---------|----------|--------------|-------------------|
| `essentials` | Type definitions only | Fastest | QubitId, Error types, Version |
| `circuits` | Building circuits | Fast | + Circuit, Gates |
| `simulation` | Running simulations | Medium | + Simulators, Backends |
| `algorithms` | VQE, QAOA, QML | Slow | + ML algorithms, Optimization |
| `hardware` | Real devices | Medium | + IBM, Azure, AWS |
| `quantum_annealing` | QUBO/Ising | Medium | + Annealing, D-Wave |
| `tytan` | High-level DSL | Medium | + Tytan API |
| `full` | Everything | Slowest | All features |

## Configuration Management

### Global Configuration

```rust
use quantrs2::config::Config;

// Get global singleton
let cfg = Config::global();

// Configure settings
cfg.set_num_threads(8);
cfg.set_memory_limit_gb(16);
cfg.set_log_level(LogLevel::Info);
cfg.set_default_backend(DefaultBackend::Auto);
cfg.set_gpu_enabled(true);
cfg.set_simd_enabled(true);
```

### Builder Pattern

```rust
use quantrs2::config::Config;

Config::builder()
    .num_threads(8)
    .log_level(LogLevel::Debug)
    .memory_limit_gb(32)
    .default_backend(DefaultBackend::Gpu)
    .enable_gpu(true)
    .enable_simd(true)
    .apply();
```

### Environment Variables

Configuration can also be set via environment variables:

```bash
export QUANTRS2_NUM_THREADS=8
export QUANTRS2_LOG_LEVEL=info
export QUANTRS2_MEMORY_LIMIT_GB=16
export QUANTRS2_BACKEND=gpu
export QUANTRS2_ENABLE_GPU=true
export QUANTRS2_ENABLE_SIMD=true
```

## System Diagnostics

### Running Diagnostics

```rust
use quantrs2::diagnostics;

// Run comprehensive diagnostics
let report = diagnostics::run_diagnostics();

// Check if system is ready
if report.is_ready() {
    println!("System ready for quantum simulation!");
} else {
    for error in report.errors() {
        eprintln!("ERROR: {}", error);
    }
    for warning in report.warnings() {
        eprintln!("WARNING: {}", warning);
    }
}

// Print full report
println!("{}", report);
```

### Diagnostic Information

The diagnostic report includes:

- **Version Information**: QuantRS2, SciRS2, Rust compiler versions
- **System Capabilities**: CPU cores, memory, GPU, SIMD support
- **Configuration**: Current settings
- **Issues**: Errors and warnings with suggestions

### Convenience Functions

```rust
// Quick check
if diagnostics::is_ready() {
    // Proceed with quantum simulation
}

// Print issues to stderr
diagnostics::print_issues();

// Print full report to stdout
diagnostics::print_report();

// Validate and panic if not ready
diagnostics::validate_or_panic();
```

## Error Handling

### Error Categories

All errors are categorized for easier handling:

```rust
use quantrs2::error::{ErrorCategory, QuantRS2ErrorExt};

let error = QuantRS2Error::InvalidQubitId(5);
match error.category() {
    ErrorCategory::Core => { /* core quantum operations */ },
    ErrorCategory::Circuit => { /* circuit validation */ },
    ErrorCategory::Simulation => { /* simulation errors */ },
    ErrorCategory::Hardware => { /* device errors */ },
    ErrorCategory::Algorithm => { /* optimization */ },
    ErrorCategory::Runtime => { /* I/O, network */ },
    _ => { /* other */ },
}
```

### Error Properties

```rust
// Check error properties
if error.is_recoverable() {
    // Retry the operation
}

if error.is_invalid_input() {
    // Validate and fix user input
}

if error.is_resource_error() {
    // Reduce problem size or allocate more resources
}

// Get user-friendly message
println!("{}", error.user_message());
```

### Adding Context

```rust
use quantrs2::error::with_context;

let error = QuantRS2Error::OptimizationFailed("gradient too small".into());
let error = with_context(error, "in QAOA layer 3");
let error = with_context(error, "while solving MaxCut problem");
```

## Utility Functions

### Memory Estimation

```rust
use quantrs2::utils;

// Estimate memory for N qubits
let memory_bytes = utils::estimate_statevector_memory(30);
println!("30 qubits: {}", utils::format_memory(memory_bytes));

// Check if configuration is valid
if utils::is_valid_qubit_count(25, available_memory) {
    println!("25 qubits will fit in available memory");
}

// Find maximum qubits for available memory
let max_qubits = utils::max_qubits_for_memory(16 * 1024 * 1024 * 1024);
println!("Can simulate {} qubits with 16 GB", max_qubits);
```

### Formatting Utilities

```rust
use quantrs2::utils;
use std::time::Duration;

// Format memory
let mem_str = utils::format_memory(1024 * 1024 * 1024); // "1.00 GB"

// Format duration
let dur_str = utils::format_duration(Duration::from_millis(1500)); // "1.5s"
```

### Mathematical Utilities

```rust
use quantrs2::utils;

// Binomial coefficient
let c = utils::binomial(10, 5); // C(10, 5) = 252

// Factorial
let f = utils::factorial(5); // 5! = 120

// Range validation
let valid = utils::is_in_range(&5, &0, &10); // true
```

## Testing Helpers

### Floating-Point Assertions

```rust
use quantrs2::testing;

// Assert approximate equality
testing::assert_approx_eq(1.0, 1.0000001, 1e-6);

// Assert vector equality
let a = vec![1.0, 2.0, 3.0];
let b = vec![1.0000001, 2.0000001, 3.0000001];
testing::assert_vec_approx_eq(&a, &b, 1e-6);
```

### Measurement Assertions

```rust
use quantrs2::testing;
use std::collections::HashMap;

// For stochastic quantum algorithms
let mut actual = HashMap::new();
actual.insert("00".to_string(), 495);
actual.insert("11".to_string(), 505);

let mut expected = HashMap::new();
expected.insert("00".to_string(), 500);
expected.insert("11".to_string(), 500);

// Allow 5% deviation
testing::assert_measurement_counts_close(&actual, &expected, 0.05);
```

### Test Data Generation

```rust
use quantrs2::testing;

// Generate reproducible test data
let seed = testing::test_seed(); // Always 42
let data = testing::generate_random_test_data(100, seed);

// Temporary directories
let temp_dir = testing::create_temp_test_dir();
```

## Version Management

### Version Information

```rust
use quantrs2::version;

// Version constants
println!("QuantRS2: {}", version::QUANTRS2_VERSION);
println!("SciRS2: {}", version::SCIRS2_VERSION);
println!("Rust: {}", version::RUSTC_VERSION);
println!("Build: {}", version::BUILD_TIMESTAMP);

// Detailed version info
let info = version::VersionInfo::current();
println!("{}", info.detailed_version_string());
```

### Compatibility Checking

```rust
use quantrs2::version;

match version::check_compatibility() {
    Ok(()) => println!("All compatibility checks passed!"),
    Err(issues) => {
        for issue in issues {
            eprintln!("Compatibility issue: {}", issue);
        }
    }
}

// Validate and panic if incompatible
version::validate_environment();
```

## Examples

### Running Examples

The facade crate includes 8 comprehensive examples:

```bash
# Basic facade usage
cargo run --example basic_usage

# Configuration management
cargo run --example configuration

# System diagnostics
cargo run --example diagnostics

# Utility functions
cargo run --example utility_functions

# Prelude hierarchy
cargo run --example prelude_hierarchy

# Memory estimation and capacity planning
cargo run --example memory_estimation

# Error handling patterns
cargo run --example error_handling

# Testing helpers
cargo run --example testing_helpers
```

### Example Output

Each example provides detailed, formatted output demonstrating the feature's capabilities. Run them to see:

- Memory requirements for different qubit counts
- System capability detection
- Error handling and recovery patterns
- Configuration options
- Testing utilities in action

## Comprehensive Feature Flag Guide

### Feature Flags Overview

QuantRS2 provides granular control over functionality through Cargo feature flags:

| Feature | Description | Dependencies | Enables |
|---------|-------------|--------------|---------|
| `core` | Core quantum types and traits | *(always enabled)* | Basic quantum primitives |
| `circuit` | Circuit representation and DSL | `core` | Circuit builder, gates, optimization |
| `sim` | Quantum simulators | `circuit` | State-vector, stabilizer, tensor network |
| `device` | Hardware backends | `circuit` | IBM, Azure, AWS quantum computers |
| `anneal` | Quantum annealing | `circuit` | QUBO, Ising models, simulated annealing |
| `ml` | Quantum machine learning | `sim`, `anneal` | VQE, QAOA, QNNs, QGANs |
| `tytan` | Tytan high-level API | `anneal` | DSL for optimization problems |
| `symengine` | Symbolic computation | `core` | Parametric gates, symbolic optimization |
| `full` | All features | *all above* | Complete QuantRS2 functionality |

### Feature Dependencies Diagram

```
core (always enabled)
  ├─ circuit
  │   ├─ sim
  │   │   └─ ml (also requires anneal)
  │   ├─ device
  │   └─ anneal
  │       ├─ ml (also requires sim)
  │       └─ tytan
  └─ symengine
```

### Feature Selection Decision Tree

```
START: What do you need to do?

├─ Circuit construction only
│  └─ features = ["circuit"]
│     Compilation: ~8s
│     Use Case: Building and exporting circuits
│
├─ Quantum simulation
│  └─ features = ["sim"]  # auto-enables circuit
│     Compilation: ~15s
│     Use Case: Algorithm research, prototyping
│
├─ Quantum machine learning
│  └─ features = ["ml"]   # auto-enables sim, anneal, circuit
│     Compilation: ~30s
│     Use Case: VQE, QAOA, QNN training
│
├─ Quantum annealing optimization
│  └─ features = ["tytan"]  # auto-enables anneal, circuit
│     Compilation: ~12s
│     Use Case: QUBO, TSP, portfolio optimization
│
├─ Real quantum hardware
│  └─ features = ["device", "sim"]
│     Compilation: ~20s
│     Use Case: IBM/Azure/AWS quantum computers
│
├─ Symbolic computation
│  └─ features = ["circuit", "symengine"]
│     Compilation: ~10s
│     Use Case: Parametric gates, symbolic derivatives
│
└─ Production application
   └─ features = ["full"]
      Compilation: ~45s
      Use Case: Complete quantum computing platform
```

### Feature Combinations for Common Scenarios

#### 1. Research & Prototyping

```toml
# Minimal for quick iteration
[dependencies]
quantrs2 = { version = "0.1.0-beta.3", features = ["circuit"] }
```

**When to use:**
- Circuit design and visualization
- Quick algorithm sketching
- Educational purposes
- Fast compilation required

**Available APIs:**
- Circuit builder
- Gate operations
- Circuit optimization
- QASM export/import

#### 2. Algorithm Development & Benchmarking

```toml
# Simulation for testing
[dependencies]
quantrs2 = { version = "0.1.0-beta.3", features = ["sim"] }
```

**When to use:**
- Algorithm development
- Performance benchmarking
- Noise analysis
- State vector simulation

**Available APIs:**
- All circuit APIs
- State-vector simulator
- Stabilizer simulator
- Tensor network simulator
- Noise models

#### 3. Quantum Machine Learning

```toml
# Full ML stack
[dependencies]
quantrs2 = { version = "0.1.0-beta.3", features = ["ml"] }
```

**When to use:**
- VQE for chemistry
- QAOA for optimization
- Quantum neural networks
- Hybrid quantum-classical ML

**Available APIs:**
- All simulation APIs
- VQE algorithms
- QAOA optimizers
- Quantum neural networks
- Autodiff support (via SciRS2)

#### 4. Optimization Problems

```toml
# High-level annealing
[dependencies]
quantrs2 = { version = "0.1.0-beta.3", features = ["tytan"] }
```

**When to use:**
- QUBO formulations
- Ising model problems
- Combinatorial optimization
- Portfolio optimization

**Available APIs:**
- Tytan DSL
- QUBO/Ising converters
- Simulated annealing
- GPU-accelerated solvers
- D-Wave integration (when available)

#### 5. Hardware Integration

```toml
# Real quantum devices
[dependencies]
quantrs2 = { version = "0.1.0-beta.3", features = ["device", "sim"] }
```

**When to use:**
- Running on IBM Quantum
- Azure Quantum integration
- AWS Braket execution
- Hardware noise characterization

**Available APIs:**
- All simulation APIs (for testing)
- IBM backend
- Azure backend
- AWS backend
- Automatic transpilation
- Error mitigation

#### 6. Production Deployment

```toml
# Everything
[dependencies]
quantrs2 = { version = "0.1.0-beta.3", features = ["full"] }
```

**When to use:**
- Production quantum services
- Multi-tenant platforms
- Quantum cloud APIs
- Complete quantum SDK

**Available APIs:**
- All QuantRS2 features
- Comprehensive diagnostics
- Production error handling
- Performance monitoring

### Feature Flag Performance Implications

| Feature Set | Compilation | Binary Size | Runtime Overhead | Memory Overhead |
|-------------|-------------|-------------|------------------|-----------------|
| `circuit` | ~8s | ~2 MB | 0% | Minimal |
| `sim` | ~15s | ~5 MB | 0% | State-dependent |
| `ml` | ~30s | ~12 MB | 0% | Optimizer-dependent |
| `tytan` | ~12s | ~4 MB | 0% | Problem-dependent |
| `device` | ~10s | ~3 MB | Network I/O | Minimal |
| `full` | ~45s | ~20 MB | 0% | Feature-dependent |

**Note**: All overhead values are **0%** because QuantRS2 uses zero-cost abstractions. Unused features are optimized out at compile time.

### Advanced Feature Configurations

#### Minimal Build for CI/CD

```toml
# Fastest compilation for testing
[dependencies]
quantrs2 = { version = "0.1.0-beta.3", default-features = false }
```

**Compilation time**: ~3s
**Use case**: Type checking, quick validation

#### Selective Feature Enabling

```toml
# Only what you need
[dependencies]
quantrs2 = { version = "0.1.0-beta.3", features = ["circuit", "symengine"] }
```

**Use case**: Parametric circuit optimization with symbolic derivatives

#### Platform-Specific Features (Future)

```toml
# Example of conditional features (not yet implemented)
[target.'cfg(target_arch = "x86_64")'.dependencies]
quantrs2 = { version = "0.1.0-beta.3", features = ["sim", "ml"] }

[target.'cfg(target_os = "macos")'.dependencies]
quantrs2 = { version = "0.1.0-beta.3", features = ["device"] }
```

### Feature Flag Best Practices

#### ✅ DO:

```toml
# Enable features you need
quantrs2 = { features = ["sim"] }

# Use hierarchical approach
# Level 1: circuit
# Level 2: Add sim
# Level 3: Add ml if needed
```

```rust
// Use appropriate prelude for features
#[cfg(feature = "sim")]
use quantrs2::prelude::simulation::*;

#[cfg(feature = "ml")]
use quantrs2::prelude::algorithms::*;
```

#### ❌ DON'T:

```toml
# Don't enable full if you only need circuit
quantrs2 = { features = ["full"] }  # 45s compile for 8s functionality

# Don't manually specify transitive dependencies
quantrs2 = { features = ["circuit", "sim"] }  # sim already enables circuit
```

```rust
// Don't use full prelude unnecessarily
use quantrs2::prelude::full::*;  // Brings in everything

// Don't forget feature gates in library code
pub fn requires_ml() {
    // Will fail to compile without ml feature!
    use quantrs2::ml::VQE;
}
```

### Feature Testing Strategy

Test your crate with different feature combinations:

```bash
# Test minimal features
cargo test --no-default-features

# Test individual features
cargo test --features circuit
cargo test --features sim
cargo test --features ml

# Test feature combinations
cargo test --features "sim,device"
cargo test --features "ml,symengine"

# Test everything
cargo test --features full
```

### SciRS2 Feature Integration

All features leverage SciRS2 for scientific computing:

```rust
// Unified SciRS2 usage across features
use scirs2_core::{Complex64, Complex32};  // Complex numbers
use scirs2_core::ndarray::*;              // Arrays
use scirs2_core::random::prelude::*;      // RNG

// Feature-specific SciRS2 integration
#[cfg(feature = "sim")]
use scirs2_linalg::*;                     // Linear algebra for simulation

#[cfg(feature = "ml")]
use scirs2_autograd::*;                   // Autodiff for VQE/QAOA

#[cfg(feature = "anneal")]
use scirs2_optimize::*;                   // Optimization for annealing
```

## Best Practices

### 1. Choose Appropriate Prelude

```rust
// ✓ GOOD: Use specific prelude for your needs
use quantrs2::prelude::simulation::*;

// ✗ AVOID: Using full prelude when not needed
use quantrs2::prelude::full::*; // Slower compilation
```

### 2. Validate System Before Heavy Computation

```rust
use quantrs2::diagnostics;

// Check system readiness
if !diagnostics::is_ready() {
    diagnostics::print_issues();
    return Err("System not ready".into());
}

// Proceed with quantum computation
```

### 3. Configure for Your Workload

```rust
use quantrs2::config::Config;

let cfg = Config::global();

// For memory-intensive workloads
cfg.set_memory_limit_gb(32);
cfg.set_num_threads(8);

// For GPU acceleration
cfg.set_gpu_enabled(true);
cfg.set_default_backend(DefaultBackend::Gpu);
```

### 4. Handle Errors with Context

```rust
use quantrs2::error::with_context;

fn my_operation() -> QuantRS2Result<()> {
    some_operation()
        .map_err(|e| with_context(e, "in my_operation"))?;
    Ok(())
}
```

### 5. Use Testing Helpers for Quantum Tests

```rust
#[cfg(test)]
mod tests {
    use quantrs2::testing;

    #[test]
    fn test_vqe_convergence() {
        let expected = -1.137;
        let result = run_vqe();
        testing::assert_approx_eq(expected, result, 1e-5);
    }
}
```

## Performance Considerations

### Compilation Time

Preludes are ordered by compilation time:
- `essentials`: < 1 second
- `circuits`: ~2-3 seconds
- `simulation`: ~5-10 seconds
- `algorithms`: ~15-30 seconds
- `full`: ~30-60 seconds

### Memory Overhead

The facade crate adds **zero runtime overhead**. All re-exports are inlined.

### Feature Selection

Enable only the features you need in `Cargo.toml`:

```toml
[dependencies]
quantrs2 = { version = "0.1.0-beta.3", features = ["circuit", "sim"] }
```

## Troubleshooting

### Common Issues

1. **Compilation errors with features**
   - Ensure feature dependencies are met (e.g., `sim` requires `circuit`)
   - Check `version::check_compatibility()` for issues

2. **Memory errors during simulation**
   - Use `utils::max_qubits_for_memory()` to estimate capacity
   - Consider tensor network or stabilizer simulation for larger systems

3. **Performance issues**
   - Enable SIMD: `cfg.set_simd_enabled(true)`
   - Use GPU backend: `cfg.set_default_backend(DefaultBackend::Gpu)`
   - Check `diagnostics::run_diagnostics()` for system issues

### Getting Help

- Review examples in `examples/` directory
- Check CLAUDE.md for development guidelines
- See SCIRS2_INTEGRATION_POLICY.md for SciRS2 usage patterns

## Version: 0.1.0-beta.3

Last updated: 2025-11-18