quantrs2_tytan/applications/
materials.rs

1//! Materials science applications: Crystal structure prediction and optimization.
2//!
3//! This module provides quantum optimization tools for materials science
4//! including crystal structure prediction, phase transitions, and property optimization.
5
6// Sampler types available for materials applications
7#![allow(dead_code)]
8
9use scirs2_core::ndarray::Array2;
10use std::collections::HashMap;
11use std::f64::consts::PI;
12
13/// Crystal structure predictor
14pub struct CrystalStructurePredictor {
15    /// Chemical composition
16    composition: ChemicalComposition,
17    /// Prediction method
18    method: PredictionMethod,
19    /// Constraints
20    constraints: StructureConstraints,
21    /// Energy model
22    energy_model: EnergyModel,
23    /// Search strategy
24    search_strategy: SearchStrategy,
25}
26
27#[derive(Debug, Clone)]
28pub struct ChemicalComposition {
29    /// Elements and their counts
30    pub elements: HashMap<String, usize>,
31    /// Total atoms in unit cell
32    pub total_atoms: usize,
33    /// Stoichiometry constraints
34    pub stoichiometry: Option<Vec<f64>>,
35    /// Oxidation states
36    pub oxidation_states: Option<HashMap<String, i32>>,
37}
38
39#[derive(Debug, Clone)]
40pub enum PredictionMethod {
41    /// Global optimization
42    GlobalOptimization {
43        algorithm: GlobalOptAlgorithm,
44        max_iterations: usize,
45    },
46    /// Data mining
47    DataMining {
48        database: StructureDatabase,
49        similarity_threshold: f64,
50    },
51    /// Evolutionary algorithm
52    Evolutionary {
53        population_size: usize,
54        generations: usize,
55        mutation_rate: f64,
56    },
57    /// Machine learning
58    MachineLearning {
59        model: MLModel,
60        confidence_threshold: f64,
61    },
62    /// Ab initio random structure searching
63    AIRSS {
64        num_searches: usize,
65        symmetry_constraints: bool,
66    },
67}
68
69#[derive(Debug, Clone)]
70pub enum GlobalOptAlgorithm {
71    SimulatedAnnealing,
72    BasinHopping,
73    ParticleSwarm,
74    GeneticAlgorithm,
75    MinimumHopping,
76}
77
78#[derive(Debug, Clone)]
79pub struct StructureDatabase {
80    /// Database source
81    pub source: DatabaseSource,
82    /// Number of structures
83    pub size: usize,
84    /// Filters applied
85    pub filters: Vec<DatabaseFilter>,
86}
87
88#[derive(Debug, Clone)]
89pub enum DatabaseSource {
90    /// Materials Project
91    MaterialsProject,
92    /// ICSD
93    ICSD,
94    /// COD
95    COD,
96    /// Custom database
97    Custom { path: String },
98}
99
100#[derive(Debug, Clone)]
101pub enum DatabaseFilter {
102    /// Element filter
103    Elements {
104        required: Vec<String>,
105        forbidden: Vec<String>,
106    },
107    /// Space group filter
108    SpaceGroup { allowed: Vec<u32> },
109    /// Property filter
110    Property { name: String, min: f64, max: f64 },
111    /// Stability filter
112    Stability { max_above_hull: f64 },
113}
114
115#[derive(Debug, Clone)]
116pub struct MLModel {
117    /// Model type
118    pub model_type: MLModelType,
119    /// Feature representation
120    pub features: FeatureRepresentation,
121    /// Training data size
122    pub training_size: usize,
123    /// Validation accuracy
124    pub accuracy: f64,
125}
126
127#[derive(Debug, Clone)]
128pub enum MLModelType {
129    /// Graph neural network
130    GraphNN,
131    /// Crystal graph CNN
132    CGCNN,
133    /// SchNet
134    SchNet,
135    /// MEGNet
136    MEGNet,
137    /// Gaussian approximation potential
138    GAP,
139}
140
141#[derive(Debug, Clone)]
142pub enum FeatureRepresentation {
143    /// Coulomb matrix
144    CoulombMatrix,
145    /// Sine matrix
146    SineMatrix,
147    /// Many-body tensor
148    ManyBodyTensor { order: usize },
149    /// Smooth overlap of atomic positions
150    SOAP {
151        cutoff: f64,
152        n_max: usize,
153        l_max: usize,
154    },
155    /// Crystal graph
156    CrystalGraph,
157}
158
159#[derive(Debug, Clone)]
160pub struct StructureConstraints {
161    /// Lattice constraints
162    pub lattice: LatticeConstraints,
163    /// Symmetry constraints
164    pub symmetry: SymmetryConstraints,
165    /// Distance constraints
166    pub distances: DistanceConstraints,
167    /// Coordination constraints
168    pub coordination: CoordinationConstraints,
169    /// Pressure constraint
170    pub pressure: Option<f64>,
171}
172
173#[derive(Debug, Clone)]
174pub struct LatticeConstraints {
175    /// Minimum lattice parameters
176    pub min_lengths: Option<Vec3D>,
177    /// Maximum lattice parameters
178    pub max_lengths: Option<Vec3D>,
179    /// Angle constraints
180    pub angle_ranges: Option<Vec<(f64, f64)>>,
181    /// Volume constraint
182    pub volume_range: Option<(f64, f64)>,
183    /// Fixed lattice type
184    pub lattice_type: Option<LatticeType>,
185}
186
187#[derive(Debug, Clone)]
188pub enum LatticeType {
189    Cubic,
190    Tetragonal,
191    Orthorhombic,
192    Hexagonal,
193    Rhombohedral,
194    Monoclinic,
195    Triclinic,
196}
197
198#[derive(Debug, Clone)]
199pub struct Vec3D {
200    pub x: f64,
201    pub y: f64,
202    pub z: f64,
203}
204
205#[derive(Debug, Clone)]
206pub struct SymmetryConstraints {
207    /// Space group constraints
208    pub space_groups: Option<Vec<u32>>,
209    /// Point group constraints
210    pub point_groups: Option<Vec<String>>,
211    /// Minimum symmetry operations
212    pub min_symmetry: Option<usize>,
213    /// Wyckoff position constraints
214    pub wyckoff_positions: Option<Vec<WyckoffPosition>>,
215}
216
217#[derive(Debug, Clone)]
218pub struct WyckoffPosition {
219    /// Wyckoff letter
220    pub letter: char,
221    /// Multiplicity
222    pub multiplicity: usize,
223    /// Site symmetry
224    pub site_symmetry: String,
225    /// Coordinates
226    pub coordinates: Vec<Vec3D>,
227}
228
229#[derive(Debug, Clone)]
230pub struct DistanceConstraints {
231    /// Minimum distances between elements
232    pub min_distances: HashMap<(String, String), f64>,
233    /// Maximum distances
234    pub max_distances: HashMap<(String, String), f64>,
235    /// Bond length constraints
236    pub bond_lengths: Vec<BondConstraint>,
237}
238
239#[derive(Debug, Clone)]
240pub struct BondConstraint {
241    /// Atom types
242    pub atoms: (String, String),
243    /// Target length
244    pub target_length: f64,
245    /// Tolerance
246    pub tolerance: f64,
247    /// Bond order
248    pub bond_order: Option<f64>,
249}
250
251#[derive(Debug, Clone)]
252pub struct CoordinationConstraints {
253    /// Coordination numbers
254    pub coordination_numbers: HashMap<String, (usize, usize)>,
255    /// Coordination geometry
256    pub geometries: HashMap<String, CoordinationGeometry>,
257    /// Allowed ligands
258    pub allowed_ligands: HashMap<String, Vec<String>>,
259}
260
261#[derive(Debug, Clone)]
262pub enum CoordinationGeometry {
263    Linear,
264    Trigonal,
265    Tetrahedral,
266    SquarePlanar,
267    TrigonalBipyramidal,
268    Octahedral,
269    PentagonalBipyramidal,
270    CubicCoordination,
271    Custom { angles: Vec<f64> },
272}
273
274#[derive(Debug, Clone)]
275pub enum EnergyModel {
276    /// Empirical potentials
277    Empirical {
278        potential: EmpiricalPotential,
279        parameters: HashMap<String, f64>,
280    },
281    /// Density functional theory
282    DFT {
283        functional: String,
284        basis_set: String,
285        k_points: Vec<usize>,
286    },
287    /// Machine learning potential
288    MLPotential {
289        model: MLPotentialModel,
290        uncertainty_quantification: bool,
291    },
292    /// Tight binding
293    TightBinding {
294        parameterization: String,
295        k_points: Vec<usize>,
296    },
297}
298
299#[derive(Debug, Clone)]
300pub enum EmpiricalPotential {
301    /// Lennard-Jones
302    LennardJones,
303    /// Buckingham
304    Buckingham,
305    /// Morse
306    Morse,
307    /// Embedded atom method
308    EAM,
309    /// Tersoff
310    Tersoff,
311    /// Stillinger-Weber
312    StillingerWeber,
313}
314
315#[derive(Debug, Clone)]
316pub struct MLPotentialModel {
317    /// Model architecture
318    pub architecture: String,
319    /// Training error
320    pub training_rmse: f64,
321    /// Validation error
322    pub validation_rmse: f64,
323    /// Elements covered
324    pub elements: Vec<String>,
325}
326
327#[derive(Debug, Clone)]
328pub enum SearchStrategy {
329    /// Random search
330    Random { num_trials: usize },
331    /// Grid search
332    Grid { resolution: Vec<usize> },
333    /// Bayesian optimization
334    Bayesian {
335        acquisition_function: AcquisitionFunction,
336        num_initial: usize,
337    },
338    /// Metadynamics
339    Metadynamics {
340        collective_variables: Vec<CollectiveVariable>,
341        bias_factor: f64,
342    },
343}
344
345#[derive(Debug, Clone)]
346pub enum AcquisitionFunction {
347    /// Expected improvement
348    ExpectedImprovement,
349    /// Upper confidence bound
350    UCB { kappa: f64 },
351    /// Probability of improvement
352    ProbabilityOfImprovement,
353    /// Thompson sampling
354    ThompsonSampling,
355}
356
357#[derive(Debug, Clone)]
358pub enum CollectiveVariable {
359    /// Lattice parameter
360    LatticeParameter { index: usize },
361    /// Coordination number
362    CoordinationNumber { element: String },
363    /// Order parameter
364    OrderParameter { definition: String },
365    /// Density
366    Density,
367}
368
369impl CrystalStructurePredictor {
370    /// Create new crystal structure predictor
371    pub fn new(composition: ChemicalComposition, energy_model: EnergyModel) -> Self {
372        Self {
373            composition,
374            method: PredictionMethod::GlobalOptimization {
375                algorithm: GlobalOptAlgorithm::SimulatedAnnealing,
376                max_iterations: 1000,
377            },
378            constraints: StructureConstraints::default(),
379            energy_model,
380            search_strategy: SearchStrategy::Random { num_trials: 100 },
381        }
382    }
383
384    /// Set prediction method
385    pub fn with_method(mut self, method: PredictionMethod) -> Self {
386        self.method = method;
387        self
388    }
389
390    /// Set constraints
391    pub fn with_constraints(mut self, constraints: StructureConstraints) -> Self {
392        self.constraints = constraints;
393        self
394    }
395
396    /// Build QUBO for structure prediction
397    pub fn build_qubo(&self) -> Result<(Array2<f64>, HashMap<String, usize>), String> {
398        match &self.method {
399            PredictionMethod::GlobalOptimization { .. } => self.build_global_optimization_qubo(),
400            PredictionMethod::Evolutionary { .. } => self.build_evolutionary_qubo(),
401            _ => Err("QUBO formulation not available for this method".to_string()),
402        }
403    }
404
405    /// Build QUBO for global optimization
406    fn build_global_optimization_qubo(
407        &self,
408    ) -> Result<(Array2<f64>, HashMap<String, usize>), String> {
409        // Discretize unit cell parameters and atomic positions
410        let lattice_resolution = 10; // Number of discrete values per parameter
411        let position_resolution = 20; // Grid points per dimension
412
413        // Variables:
414        // - Lattice parameters (a, b, c, α, β, γ)
415        // - Atomic positions for each atom
416
417        let n_lattice_vars = 6 * lattice_resolution;
418        let n_atoms = self.composition.total_atoms;
419        let n_position_vars = n_atoms * 3 * position_resolution;
420        let n_vars = n_lattice_vars + n_position_vars;
421
422        let mut qubo = Array2::zeros((n_vars, n_vars));
423        let mut var_map = HashMap::new();
424
425        // Create variable mapping
426        self.create_lattice_variables(&mut var_map, lattice_resolution)?;
427        self.create_position_variables(&mut var_map, n_atoms, position_resolution, n_lattice_vars)?;
428
429        // Add energy terms
430        self.add_energy_objective(&mut qubo, &var_map)?;
431
432        // Add constraints
433        self.add_lattice_constraints(&mut qubo, &var_map, lattice_resolution)?;
434        self.add_distance_constraints(&mut qubo, &var_map)?;
435        self.add_symmetry_constraints(&mut qubo, &var_map)?;
436
437        Ok((qubo, var_map))
438    }
439
440    /// Create lattice parameter variables
441    fn create_lattice_variables(
442        &self,
443        var_map: &mut HashMap<String, usize>,
444        resolution: usize,
445    ) -> Result<(), String> {
446        let params = ["a", "b", "c", "alpha", "beta", "gamma"];
447        let mut var_idx = 0;
448
449        for param in &params {
450            for i in 0..resolution {
451                let var_name = format!("lattice_{param}_{i}");
452                var_map.insert(var_name, var_idx);
453                var_idx += 1;
454            }
455        }
456
457        Ok(())
458    }
459
460    /// Create atomic position variables
461    fn create_position_variables(
462        &self,
463        var_map: &mut HashMap<String, usize>,
464        n_atoms: usize,
465        resolution: usize,
466        offset: usize,
467    ) -> Result<(), String> {
468        let mut var_idx = offset;
469
470        for atom in 0..n_atoms {
471            for coord in ["x", "y", "z"] {
472                for i in 0..resolution {
473                    let var_name = format!("pos_{atom}_{coord}_{i}");
474                    var_map.insert(var_name, var_idx);
475                    var_idx += 1;
476                }
477            }
478        }
479
480        Ok(())
481    }
482
483    /// Add energy objective
484    fn add_energy_objective(
485        &self,
486        qubo: &mut Array2<f64>,
487        var_map: &HashMap<String, usize>,
488    ) -> Result<(), String> {
489        // Simplified: use pairwise interactions
490        match &self.energy_model {
491            EnergyModel::Empirical {
492                potential,
493                parameters,
494            } => self.add_empirical_energy(qubo, var_map, potential, parameters),
495            _ => {
496                // For other models, use surrogate approximation
497                self.add_surrogate_energy(qubo, var_map)
498            }
499        }
500    }
501
502    /// Add empirical potential energy
503    fn add_empirical_energy(
504        &self,
505        qubo: &mut Array2<f64>,
506        var_map: &HashMap<String, usize>,
507        potential: &EmpiricalPotential,
508        parameters: &HashMap<String, f64>,
509    ) -> Result<(), String> {
510        // Lennard-Jones example
511        if matches!(potential, EmpiricalPotential::LennardJones) {
512            let epsilon = parameters.get("epsilon").unwrap_or(&1.0);
513            let sigma = parameters.get("sigma").unwrap_or(&3.4);
514
515            // Add pairwise interactions
516            for i in 0..self.composition.total_atoms {
517                for j in i + 1..self.composition.total_atoms {
518                    // This would compute LJ potential based on distance
519                    // Simplified: add distance-dependent terms
520                    self.add_pairwise_energy(qubo, var_map, i, j, *epsilon, *sigma)?;
521                }
522            }
523        }
524
525        Ok(())
526    }
527
528    /// Add pairwise energy term
529    fn add_pairwise_energy(
530        &self,
531        qubo: &mut Array2<f64>,
532        var_map: &HashMap<String, usize>,
533        atom1: usize,
534        atom2: usize,
535        epsilon: f64,
536        _sigma: f64,
537    ) -> Result<(), String> {
538        // Discretized distance calculation
539        // This is a simplification - actual implementation would be more complex
540
541        for coord in ["x", "y", "z"] {
542            for i in 0..20 {
543                // position resolution
544                let var1 = format!("pos_{atom1}_{coord}_{i}");
545                let var2 = format!("pos_{atom2}_{coord}_{i}");
546
547                if let (Some(&idx1), Some(&idx2)) = (var_map.get(&var1), var_map.get(&var2)) {
548                    // Same position = zero distance contribution
549                    qubo[[idx1, idx2]] -= epsilon;
550                }
551            }
552        }
553
554        Ok(())
555    }
556
557    /// Add surrogate energy model
558    fn add_surrogate_energy(
559        &self,
560        qubo: &mut Array2<f64>,
561        var_map: &HashMap<String, usize>,
562    ) -> Result<(), String> {
563        // Use a simplified energy model based on:
564        // - Coordination preferences
565        // - Ideal bond lengths
566        // - Electrostatic interactions
567
568        // Add coordination energy
569        self.add_coordination_energy(qubo, var_map)?;
570
571        // Add electrostatic energy
572        self.add_electrostatic_energy(qubo, var_map)?;
573
574        Ok(())
575    }
576
577    /// Add coordination energy
578    fn add_coordination_energy(
579        &self,
580        qubo: &mut Array2<f64>,
581        var_map: &HashMap<String, usize>,
582    ) -> Result<(), String> {
583        // Penalize deviations from ideal coordination
584        if !self
585            .constraints
586            .coordination
587            .coordination_numbers
588            .is_empty()
589        {
590            let _coord_numbers = &self.constraints.coordination.coordination_numbers;
591            // Simplified: just favor certain distance ranges
592            let penalty = 10.0;
593
594            for i in 0..self.composition.total_atoms {
595                // Add terms that favor having neighbors at ideal distances
596                // This is highly simplified
597                for coord in ["x", "y", "z"] {
598                    for pos in 0..20 {
599                        let var_name = format!("pos_{i}_{coord}_{pos}");
600                        if let Some(&idx) = var_map.get(&var_name) {
601                            // Favor middle positions (simplified)
602                            let deviation = (pos as f64 - 10.0).abs();
603                            qubo[[idx, idx]] += penalty * deviation / 10.0;
604                        }
605                    }
606                }
607            }
608        }
609
610        Ok(())
611    }
612
613    /// Add electrostatic energy
614    fn add_electrostatic_energy(
615        &self,
616        qubo: &mut Array2<f64>,
617        var_map: &HashMap<String, usize>,
618    ) -> Result<(), String> {
619        if let Some(_oxidation_states) = &self.composition.oxidation_states {
620            // Add Coulomb repulsion/attraction
621            // Simplified: just use oxidation states
622
623            let _elements: Vec<_> = self.composition.elements.keys().collect();
624
625            for i in 0..self.composition.total_atoms {
626                for j in i + 1..self.composition.total_atoms {
627                    // Get charges (simplified assignment)
628                    let charge1 = 1.0; // Would map from oxidation states
629                    let charge2 = -1.0;
630
631                    // Electrostatic interaction
632                    let interaction = charge1 * charge2;
633
634                    // Add to QUBO (simplified)
635                    for coord in ["x", "y", "z"] {
636                        for pos in 0..20 {
637                            let var1 = format!("pos_{i}_{coord}_{pos}");
638                            let var2 = format!("pos_{j}_{coord}_{pos}");
639
640                            if let (Some(&idx1), Some(&idx2)) =
641                                (var_map.get(&var1), var_map.get(&var2))
642                            {
643                                if idx1 != idx2 {
644                                    qubo[[idx1, idx2]] += interaction * 0.1;
645                                }
646                            }
647                        }
648                    }
649                }
650            }
651        }
652
653        Ok(())
654    }
655
656    /// Add lattice constraints
657    fn add_lattice_constraints(
658        &self,
659        qubo: &mut Array2<f64>,
660        var_map: &HashMap<String, usize>,
661        resolution: usize,
662    ) -> Result<(), String> {
663        let penalty = 100.0;
664
665        // Enforce one-hot encoding for each lattice parameter
666        for param in ["a", "b", "c", "alpha", "beta", "gamma"] {
667            for i in 0..resolution {
668                for j in i + 1..resolution {
669                    let var1 = format!("lattice_{param}_{i}");
670                    let var2 = format!("lattice_{param}_{j}");
671
672                    if let (Some(&idx1), Some(&idx2)) = (var_map.get(&var1), var_map.get(&var2)) {
673                        qubo[[idx1, idx2]] += penalty;
674                    }
675                }
676            }
677        }
678
679        // Add lattice type constraints
680        if let Some(lattice_type) = &self.constraints.lattice.lattice_type {
681            self.add_lattice_type_constraints(qubo, var_map, lattice_type, resolution)?;
682        }
683
684        Ok(())
685    }
686
687    /// Add lattice type constraints
688    fn add_lattice_type_constraints(
689        &self,
690        qubo: &mut Array2<f64>,
691        var_map: &HashMap<String, usize>,
692        lattice_type: &LatticeType,
693        resolution: usize,
694    ) -> Result<(), String> {
695        let penalty = 200.0;
696
697        match lattice_type {
698            LatticeType::Cubic => {
699                // a = b = c, α = β = γ = 90°
700                for i in 0..resolution {
701                    let var_a = format!("lattice_a_{i}");
702                    let var_b = format!("lattice_b_{i}");
703                    let var_c = format!("lattice_c_{i}");
704
705                    // Encourage a = b = c
706                    if let (Some(&idx_a), Some(&idx_b), Some(&idx_c)) = (
707                        var_map.get(&var_a),
708                        var_map.get(&var_b),
709                        var_map.get(&var_c),
710                    ) {
711                        // Reward if all three are selected together
712                        qubo[[idx_a, idx_b]] -= penalty;
713                        qubo[[idx_b, idx_c]] -= penalty;
714                        qubo[[idx_a, idx_c]] -= penalty;
715                    }
716                }
717
718                // Fix angles at 90°
719                let angle_90_idx = resolution / 2; // Assuming middle index represents 90°
720                for angle in ["alpha", "beta", "gamma"] {
721                    let var_name = format!("lattice_{angle}_{angle_90_idx}");
722                    if let Some(&idx) = var_map.get(&var_name) {
723                        qubo[[idx, idx]] -= penalty * 2.0;
724                    }
725                }
726            }
727            LatticeType::Hexagonal => {
728                // a = b ≠ c, α = β = 90°, γ = 120°
729                // Similar constraints...
730            }
731            _ => {}
732        }
733
734        Ok(())
735    }
736
737    /// Add distance constraints
738    fn add_distance_constraints(
739        &self,
740        qubo: &mut Array2<f64>,
741        var_map: &HashMap<String, usize>,
742    ) -> Result<(), String> {
743        if !self.constraints.distances.min_distances.is_empty() {
744            let min_distances = &self.constraints.distances.min_distances;
745            let penalty = 50.0;
746
747            // Penalize configurations where atoms are too close
748            for ((_elem1, _elem2), &_min_dist) in min_distances {
749                // This would need proper element-to-atom mapping
750                // Simplified: penalize same positions
751                for i in 0..self.composition.total_atoms {
752                    for j in i + 1..self.composition.total_atoms {
753                        for coord in ["x", "y", "z"] {
754                            for pos in 0..20 {
755                                let var1 = format!("pos_{i}_{coord}_{pos}");
756                                let var2 = format!("pos_{j}_{coord}_{pos}");
757
758                                if let (Some(&idx1), Some(&idx2)) =
759                                    (var_map.get(&var1), var_map.get(&var2))
760                                {
761                                    if idx1 == idx2 {
762                                        // Same position - too close
763                                        qubo[[idx1, idx2]] += penalty;
764                                    }
765                                }
766                            }
767                        }
768                    }
769                }
770            }
771        }
772
773        Ok(())
774    }
775
776    /// Add symmetry constraints
777    fn add_symmetry_constraints(
778        &self,
779        qubo: &mut Array2<f64>,
780        var_map: &HashMap<String, usize>,
781    ) -> Result<(), String> {
782        if let Some(_space_groups) = &self.constraints.symmetry.space_groups {
783            // Simplified: encourage symmetric positions
784            let symmetry_bonus = -10.0;
785
786            // For high symmetry, atoms should be at special positions
787            // This is highly simplified
788            for i in 0..self.composition.total_atoms {
789                // Favor positions at 0, 0.5, etc.
790                for coord in ["x", "y", "z"] {
791                    for special_pos in [0, 10, 19] {
792                        // 0, 0.5, 1 in fractional
793                        let var_name = format!("pos_{i}_{coord}_{special_pos}");
794                        if let Some(&idx) = var_map.get(&var_name) {
795                            qubo[[idx, idx]] += symmetry_bonus;
796                        }
797                    }
798                }
799            }
800        }
801
802        Ok(())
803    }
804
805    /// Build QUBO for evolutionary algorithm
806    fn build_evolutionary_qubo(&self) -> Result<(Array2<f64>, HashMap<String, usize>), String> {
807        // Encode genetic representation
808        let genome_length = 100; // Simplified genome
809        let mut qubo = Array2::zeros((genome_length, genome_length));
810        let mut var_map = HashMap::new();
811
812        for i in 0..genome_length {
813            var_map.insert(format!("gene_{i}"), i);
814        }
815
816        // Add fitness function
817        self.add_fitness_function(&mut qubo, &var_map)?;
818
819        Ok((qubo, var_map))
820    }
821
822    /// Add fitness function for evolutionary algorithm
823    fn add_fitness_function(
824        &self,
825        qubo: &mut Array2<f64>,
826        _var_map: &HashMap<String, usize>,
827    ) -> Result<(), String> {
828        // Simplified fitness based on:
829        // - Energy (lower is better)
830        // - Constraint satisfaction
831        // - Diversity
832
833        // This would be problem-specific
834        for i in 0..qubo.shape()[0] {
835            qubo[[i, i]] = -1.0; // Favor diversity
836        }
837
838        Ok(())
839    }
840
841    /// Decode solution to crystal structure
842    pub fn decode_solution(
843        &self,
844        solution: &HashMap<String, bool>,
845    ) -> Result<CrystalStructure, String> {
846        // Extract lattice parameters
847        let lattice = self.decode_lattice(solution)?;
848
849        // Extract atomic positions
850        let positions = self.decode_positions(solution)?;
851
852        // Determine space group
853        let space_group = self.determine_space_group(&lattice, &positions)?;
854
855        Ok(CrystalStructure {
856            composition: self.composition.clone(),
857            lattice,
858            positions,
859            space_group,
860            energy: None,
861            properties: HashMap::new(),
862        })
863    }
864
865    /// Decode lattice parameters
866    fn decode_lattice(&self, solution: &HashMap<String, bool>) -> Result<Lattice, String> {
867        let mut params = HashMap::new();
868
869        for param in ["a", "b", "c", "alpha", "beta", "gamma"] {
870            for i in 0..10 {
871                // resolution
872                let var_name = format!("lattice_{param}_{i}");
873                if *solution.get(&var_name).unwrap_or(&false) {
874                    // Map index to value
875                    let value = match param {
876                        "a" | "b" | "c" => (i as f64).mul_add(0.5, 3.0), // 3-8 Å
877                        "alpha" | "beta" | "gamma" => (i as f64).mul_add(6.0, 60.0), // 60-120°
878                        _ => 0.0,
879                    };
880                    params.insert(param.to_string(), value);
881                    break;
882                }
883            }
884        }
885
886        Ok(Lattice {
887            a: params.get("a").copied().unwrap_or(5.0),
888            b: params.get("b").copied().unwrap_or(5.0),
889            c: params.get("c").copied().unwrap_or(5.0),
890            alpha: params.get("alpha").copied().unwrap_or(90.0),
891            beta: params.get("beta").copied().unwrap_or(90.0),
892            gamma: params.get("gamma").copied().unwrap_or(90.0),
893        })
894    }
895
896    /// Decode atomic positions
897    fn decode_positions(
898        &self,
899        solution: &HashMap<String, bool>,
900    ) -> Result<Vec<AtomicPosition>, String> {
901        let mut positions = Vec::new();
902
903        // Simplified: assign elements round-robin
904        let elements: Vec<_> = self.composition.elements.keys().cloned().collect();
905
906        for atom in 0..self.composition.total_atoms {
907            let mut coords = [0.0, 0.0, 0.0];
908
909            for (i, coord) in ["x", "y", "z"].iter().enumerate() {
910                for pos in 0..20 {
911                    let var_name = format!("pos_{atom}_{coord}_{pos}");
912                    if *solution.get(&var_name).unwrap_or(&false) {
913                        coords[i] = pos as f64 / 19.0; // Fractional coordinates
914                        break;
915                    }
916                }
917            }
918
919            positions.push(AtomicPosition {
920                element: elements[atom % elements.len()].clone(),
921                x: coords[0],
922                y: coords[1],
923                z: coords[2],
924                occupancy: 1.0,
925            });
926        }
927
928        Ok(positions)
929    }
930
931    /// Determine space group
932    fn determine_space_group(
933        &self,
934        lattice: &Lattice,
935        _positions: &[AtomicPosition],
936    ) -> Result<SpaceGroup, String> {
937        // Simplified: determine based on lattice type
938        let lattice_type = lattice.determine_type();
939
940        Ok(SpaceGroup {
941            number: 1, // P1 by default
942            symbol: "P1".to_string(),
943            lattice_type,
944            point_group: "1".to_string(),
945        })
946    }
947}
948
949impl Default for StructureConstraints {
950    fn default() -> Self {
951        Self {
952            lattice: LatticeConstraints {
953                min_lengths: None,
954                max_lengths: None,
955                angle_ranges: None,
956                volume_range: None,
957                lattice_type: None,
958            },
959            symmetry: SymmetryConstraints {
960                space_groups: None,
961                point_groups: None,
962                min_symmetry: None,
963                wyckoff_positions: None,
964            },
965            distances: DistanceConstraints {
966                min_distances: HashMap::new(),
967                max_distances: HashMap::new(),
968                bond_lengths: Vec::new(),
969            },
970            coordination: CoordinationConstraints {
971                coordination_numbers: HashMap::new(),
972                geometries: HashMap::new(),
973                allowed_ligands: HashMap::new(),
974            },
975            pressure: None,
976        }
977    }
978}
979
980#[derive(Debug, Clone)]
981pub struct Lattice {
982    pub a: f64,
983    pub b: f64,
984    pub c: f64,
985    pub alpha: f64,
986    pub beta: f64,
987    pub gamma: f64,
988}
989
990impl Lattice {
991    /// Calculate unit cell volume
992    pub fn volume(&self) -> f64 {
993        let alpha_rad = self.alpha.to_radians();
994        let beta_rad = self.beta.to_radians();
995        let gamma_rad = self.gamma.to_radians();
996
997        self.a
998            * self.b
999            * self.c
1000            * (2.0 * alpha_rad.cos() * beta_rad.cos())
1001                .mul_add(
1002                    gamma_rad.cos(),
1003                    gamma_rad.cos().mul_add(
1004                        -gamma_rad.cos(),
1005                        beta_rad.cos().mul_add(
1006                            -beta_rad.cos(),
1007                            alpha_rad.cos().mul_add(-alpha_rad.cos(), 1.0),
1008                        ),
1009                    ),
1010                )
1011                .sqrt()
1012    }
1013
1014    /// Determine lattice type
1015    pub fn determine_type(&self) -> LatticeType {
1016        let tol = 0.01;
1017
1018        if (self.a - self.b).abs() < tol && (self.b - self.c).abs() < tol {
1019            if (self.alpha - 90.0).abs() < tol
1020                && (self.beta - 90.0).abs() < tol
1021                && (self.gamma - 90.0).abs() < tol
1022            {
1023                LatticeType::Cubic
1024            } else if (self.alpha - self.beta).abs() < tol && (self.beta - self.gamma).abs() < tol {
1025                LatticeType::Rhombohedral
1026            } else {
1027                LatticeType::Triclinic
1028            }
1029        } else if (self.a - self.b).abs() < tol {
1030            if (self.alpha - 90.0).abs() < tol
1031                && (self.beta - 90.0).abs() < tol
1032                && (self.gamma - 120.0).abs() < tol
1033            {
1034                LatticeType::Hexagonal
1035            } else if (self.alpha - 90.0).abs() < tol
1036                && (self.beta - 90.0).abs() < tol
1037                && (self.gamma - 90.0).abs() < tol
1038            {
1039                LatticeType::Tetragonal
1040            } else {
1041                LatticeType::Monoclinic
1042            }
1043        } else if (self.alpha - 90.0).abs() < tol
1044            && (self.beta - 90.0).abs() < tol
1045            && (self.gamma - 90.0).abs() < tol
1046        {
1047            LatticeType::Orthorhombic
1048        } else if (self.alpha - 90.0).abs() < tol && (self.gamma - 90.0).abs() < tol {
1049            LatticeType::Monoclinic
1050        } else {
1051            LatticeType::Triclinic
1052        }
1053    }
1054
1055    /// Get transformation matrix
1056    pub fn transformation_matrix(&self) -> Array2<f64> {
1057        let alpha_rad = self.alpha.to_radians();
1058        let beta_rad = self.beta.to_radians();
1059        let gamma_rad = self.gamma.to_radians();
1060
1061        let mut matrix = Array2::zeros((3, 3));
1062
1063        matrix[[0, 0]] = self.a;
1064        matrix[[0, 1]] = self.b * gamma_rad.cos();
1065        matrix[[0, 2]] = self.c * beta_rad.cos();
1066
1067        matrix[[1, 0]] = 0.0;
1068        matrix[[1, 1]] = self.b * gamma_rad.sin();
1069        matrix[[1, 2]] =
1070            self.c * beta_rad.cos().mul_add(-gamma_rad.cos(), alpha_rad.cos()) / gamma_rad.sin();
1071
1072        matrix[[2, 0]] = 0.0;
1073        matrix[[2, 1]] = 0.0;
1074        matrix[[2, 2]] = self.c
1075            * (2.0 * alpha_rad.cos() * beta_rad.cos())
1076                .mul_add(
1077                    gamma_rad.cos(),
1078                    gamma_rad.cos().mul_add(
1079                        -gamma_rad.cos(),
1080                        beta_rad.cos().mul_add(
1081                            -beta_rad.cos(),
1082                            alpha_rad.cos().mul_add(-alpha_rad.cos(), 1.0),
1083                        ),
1084                    ),
1085                )
1086                .sqrt()
1087            / gamma_rad.sin();
1088
1089        matrix
1090    }
1091}
1092
1093#[derive(Debug, Clone)]
1094pub struct AtomicPosition {
1095    pub element: String,
1096    pub x: f64,
1097    pub y: f64,
1098    pub z: f64,
1099    pub occupancy: f64,
1100}
1101
1102#[derive(Debug, Clone)]
1103pub struct SpaceGroup {
1104    pub number: u32,
1105    pub symbol: String,
1106    pub lattice_type: LatticeType,
1107    pub point_group: String,
1108}
1109
1110#[derive(Debug, Clone)]
1111pub struct CrystalStructure {
1112    pub composition: ChemicalComposition,
1113    pub lattice: Lattice,
1114    pub positions: Vec<AtomicPosition>,
1115    pub space_group: SpaceGroup,
1116    pub energy: Option<f64>,
1117    pub properties: HashMap<String, f64>,
1118}
1119
1120impl CrystalStructure {
1121    /// Calculate density
1122    pub fn density(&self) -> f64 {
1123        let volume = self.lattice.volume();
1124        let mass = self.calculate_mass();
1125
1126        // Convert to g/cm³
1127        mass / volume * 1.66054
1128    }
1129
1130    /// Calculate formula unit mass
1131    fn calculate_mass(&self) -> f64 {
1132        // Atomic masses (simplified)
1133        let masses: HashMap<&str, f64> = [
1134            ("H", 1.008),
1135            ("C", 12.011),
1136            ("N", 14.007),
1137            ("O", 15.999),
1138            ("Na", 22.990),
1139            ("Mg", 24.305),
1140            ("Al", 26.982),
1141            ("Si", 28.085),
1142            ("Fe", 55.845),
1143        ]
1144        .iter()
1145        .copied()
1146        .collect();
1147
1148        self.composition
1149            .elements
1150            .iter()
1151            .map(|(elem, count)| masses.get(elem.as_str()).unwrap_or(&1.0) * *count as f64)
1152            .sum()
1153    }
1154
1155    /// Generate supercell
1156    pub fn supercell(&self, nx: usize, ny: usize, nz: usize) -> Self {
1157        let mut new_positions = Vec::new();
1158
1159        for i in 0..nx {
1160            for j in 0..ny {
1161                for k in 0..nz {
1162                    for pos in &self.positions {
1163                        new_positions.push(AtomicPosition {
1164                            element: pos.element.clone(),
1165                            x: (pos.x + i as f64) / nx as f64,
1166                            y: (pos.y + j as f64) / ny as f64,
1167                            z: (pos.z + k as f64) / nz as f64,
1168                            occupancy: pos.occupancy,
1169                        });
1170                    }
1171                }
1172            }
1173        }
1174
1175        let mut new_composition = self.composition.clone();
1176        for count in new_composition.elements.values_mut() {
1177            *count *= nx * ny * nz;
1178        }
1179        new_composition.total_atoms *= nx * ny * nz;
1180
1181        Self {
1182            composition: new_composition,
1183            lattice: Lattice {
1184                a: self.lattice.a * nx as f64,
1185                b: self.lattice.b * ny as f64,
1186                c: self.lattice.c * nz as f64,
1187                ..self.lattice.clone()
1188            },
1189            positions: new_positions,
1190            space_group: self.space_group.clone(),
1191            energy: None,
1192            properties: HashMap::new(),
1193        }
1194    }
1195}
1196
1197/// Phase transition analyzer
1198pub struct PhaseTransitionAnalyzer {
1199    /// Structures to analyze
1200    structures: Vec<CrystalStructure>,
1201    /// Analysis method
1202    method: TransitionMethod,
1203    /// Order parameters
1204    order_parameters: Vec<OrderParameter>,
1205}
1206
1207#[derive(Debug, Clone)]
1208pub enum TransitionMethod {
1209    /// Nudged elastic band
1210    NEB { images: usize, spring_constant: f64 },
1211    /// Metadynamics
1212    Metadynamics {
1213        bias_factor: f64,
1214        gaussian_width: f64,
1215    },
1216    /// Transition path sampling
1217    TPS { shooting_moves: usize },
1218    /// Machine learning
1219    ML { model: String },
1220}
1221
1222#[derive(Debug, Clone)]
1223pub struct OrderParameter {
1224    /// Parameter name
1225    pub name: String,
1226    /// Definition
1227    pub definition: OrderParameterDef,
1228    /// Range
1229    pub range: (f64, f64),
1230}
1231
1232#[derive(Debug, Clone)]
1233pub enum OrderParameterDef {
1234    /// Structural parameter
1235    Structural { description: String },
1236    /// Electronic parameter
1237    Electronic { property: String },
1238    /// Magnetic parameter
1239    Magnetic { moment_type: String },
1240    /// Custom function
1241    Custom,
1242}
1243
1244/// Defect modeler
1245pub struct DefectModeler {
1246    /// Host structure
1247    host: CrystalStructure,
1248    /// Defect types to consider
1249    defect_types: Vec<DefectType>,
1250    /// Defect interactions
1251    interactions: DefectInteractions,
1252}
1253
1254#[derive(Debug, Clone)]
1255pub enum DefectType {
1256    /// Vacancy
1257    Vacancy { site: usize },
1258    /// Interstitial
1259    Interstitial { element: String, position: Vec3D },
1260    /// Substitution
1261    Substitution { site: usize, new_element: String },
1262    /// Frenkel pair
1263    Frenkel {
1264        vacancy_site: usize,
1265        interstitial_pos: Vec3D,
1266    },
1267    /// Schottky defect
1268    Schottky { sites: Vec<usize> },
1269    /// Grain boundary
1270    GrainBoundary { plane: (i32, i32, i32), angle: f64 },
1271}
1272
1273#[derive(Debug, Clone)]
1274pub struct DefectInteractions {
1275    /// Interaction range
1276    pub cutoff: f64,
1277    /// Interaction model
1278    pub model: InteractionModel,
1279    /// Clustering tendency
1280    pub clustering: bool,
1281}
1282
1283#[derive(Debug, Clone)]
1284pub enum InteractionModel {
1285    /// Coulombic
1286    Coulombic,
1287    /// Elastic
1288    Elastic { elastic_constants: Array2<f64> },
1289    /// Combined
1290    Combined,
1291}
1292
1293#[cfg(test)]
1294mod tests {
1295    use super::*;
1296
1297    #[test]
1298    fn test_crystal_structure_predictor() {
1299        let composition = ChemicalComposition {
1300            elements: {
1301                let mut elements = HashMap::new();
1302                elements.insert("Na".to_string(), 1);
1303                elements.insert("Cl".to_string(), 1);
1304                elements
1305            },
1306            total_atoms: 2,
1307            stoichiometry: Some(vec![1.0, 1.0]),
1308            oxidation_states: Some({
1309                let mut states = HashMap::new();
1310                states.insert("Na".to_string(), 1);
1311                states.insert("Cl".to_string(), -1);
1312                states
1313            }),
1314        };
1315
1316        let energy_model = EnergyModel::Empirical {
1317            potential: EmpiricalPotential::LennardJones,
1318            parameters: {
1319                let mut params = HashMap::new();
1320                params.insert("epsilon".to_string(), 1.0);
1321                params.insert("sigma".to_string(), 3.4);
1322                params
1323            },
1324        };
1325
1326        let predictor = CrystalStructurePredictor::new(composition, energy_model);
1327        let mut result = predictor.build_qubo();
1328        assert!(result.is_ok());
1329    }
1330
1331    #[test]
1332    fn test_lattice() {
1333        let lattice = Lattice {
1334            a: 5.0,
1335            b: 5.0,
1336            c: 5.0,
1337            alpha: 90.0,
1338            beta: 90.0,
1339            gamma: 90.0,
1340        };
1341
1342        assert_eq!(lattice.determine_type() as u8, LatticeType::Cubic as u8);
1343        assert!((lattice.volume() - 125.0).abs() < 0.01);
1344    }
1345
1346    #[test]
1347    fn test_supercell() {
1348        let structure = CrystalStructure {
1349            composition: ChemicalComposition {
1350                elements: {
1351                    let mut elements = HashMap::new();
1352                    elements.insert("Si".to_string(), 1);
1353                    elements
1354                },
1355                total_atoms: 1,
1356                stoichiometry: None,
1357                oxidation_states: None,
1358            },
1359            lattice: Lattice {
1360                a: 5.0,
1361                b: 5.0,
1362                c: 5.0,
1363                alpha: 90.0,
1364                beta: 90.0,
1365                gamma: 90.0,
1366            },
1367            positions: vec![AtomicPosition {
1368                element: "Si".to_string(),
1369                x: 0.0,
1370                y: 0.0,
1371                z: 0.0,
1372                occupancy: 1.0,
1373            }],
1374            space_group: SpaceGroup {
1375                number: 225,
1376                symbol: "Fm-3m".to_string(),
1377                lattice_type: LatticeType::Cubic,
1378                point_group: "m-3m".to_string(),
1379            },
1380            energy: None,
1381            properties: HashMap::new(),
1382        };
1383
1384        let supercell = structure.supercell(2, 2, 2);
1385        assert_eq!(supercell.positions.len(), 8);
1386        assert_eq!(supercell.composition.total_atoms, 8);
1387    }
1388}