quantrs2_sim/
tensor.rs

1//! Tensor network simulator for quantum circuits
2//!
3//! This module provides a tensor network-based quantum circuit simulator that
4//! is particularly efficient for circuits with limited entanglement or certain
5//! structural properties.
6
7use std::collections::{HashMap, HashSet};
8use std::fmt;
9
10use scirs2_core::ndarray::{Array1, Array2, Array3, ArrayView1, ArrayView2, Axis};
11use scirs2_core::Complex64;
12
13use crate::adaptive_gate_fusion::QuantumGate;
14use crate::error::{Result, SimulatorError};
15use crate::scirs2_integration::SciRS2Backend;
16use quantrs2_circuit::prelude::*;
17use quantrs2_core::prelude::*;
18
19/// A tensor in the tensor network
20#[derive(Debug, Clone)]
21pub struct Tensor {
22    /// Tensor data with dimensions [index1, index2, ...]
23    pub data: Array3<Complex64>,
24    /// Physical dimensions for each index
25    pub indices: Vec<TensorIndex>,
26    /// Label for this tensor
27    pub label: String,
28}
29
30/// Index of a tensor with dimension information
31#[derive(Debug, Clone, PartialEq, Eq, Hash)]
32pub struct TensorIndex {
33    /// Unique identifier for this index
34    pub id: usize,
35    /// Physical dimension of this index
36    pub dimension: usize,
37    /// Type of index (physical qubit, virtual bond, etc.)
38    pub index_type: IndexType,
39}
40
41/// Type of tensor index
42#[derive(Debug, Clone, PartialEq, Eq, Hash)]
43pub enum IndexType {
44    /// Physical qubit index
45    Physical(usize),
46    /// Virtual bond between tensors
47    Virtual,
48    /// Auxiliary index for decompositions
49    Auxiliary,
50}
51
52/// Circuit type for optimization
53#[derive(Debug, Clone, Copy, PartialEq, Eq)]
54pub enum CircuitType {
55    /// Linear circuit (e.g., CNOT chain)
56    Linear,
57    /// Star-shaped circuit (e.g., GHZ state preparation)
58    Star,
59    /// Layered circuit (e.g., Quantum Fourier Transform)
60    Layered,
61    /// Quantum Fourier Transform circuit with specialized optimization
62    QFT,
63    /// QAOA circuit with specialized optimization
64    QAOA,
65    /// General circuit with no specific structure
66    General,
67}
68
69/// Tensor network representation of a quantum circuit
70#[derive(Debug, Clone)]
71pub struct TensorNetwork {
72    /// Collection of tensors in the network
73    pub tensors: HashMap<usize, Tensor>,
74    /// Connections between tensor indices
75    pub connections: Vec<(TensorIndex, TensorIndex)>,
76    /// Number of physical qubits
77    pub num_qubits: usize,
78    /// Next available tensor ID
79    next_tensor_id: usize,
80    /// Next available index ID
81    next_index_id: usize,
82    /// Maximum bond dimension for approximations
83    pub max_bond_dimension: usize,
84    /// Detected circuit type for optimization
85    pub detected_circuit_type: CircuitType,
86    /// Whether QFT optimization is enabled
87    pub using_qft_optimization: bool,
88    /// Whether QAOA optimization is enabled
89    pub using_qaoa_optimization: bool,
90    /// Whether linear optimization is enabled
91    pub using_linear_optimization: bool,
92    /// Whether star optimization is enabled
93    pub using_star_optimization: bool,
94}
95
96/// Tensor network simulator
97#[derive(Debug)]
98pub struct TensorNetworkSimulator {
99    /// Current tensor network
100    network: TensorNetwork,
101    /// `SciRS2` backend for optimizations
102    backend: Option<SciRS2Backend>,
103    /// Contraction strategy
104    strategy: ContractionStrategy,
105    /// Maximum bond dimension for approximations
106    max_bond_dim: usize,
107    /// Simulation statistics
108    stats: TensorNetworkStats,
109}
110
111/// Contraction strategy for tensor networks
112#[derive(Debug, Clone, PartialEq, Eq)]
113pub enum ContractionStrategy {
114    /// Contract from left to right
115    Sequential,
116    /// Use optimal contraction order
117    Optimal,
118    /// Greedy contraction based on cost
119    Greedy,
120    /// Custom user-defined order
121    Custom(Vec<usize>),
122}
123
124/// Statistics for tensor network simulation
125#[derive(Debug, Clone, Default)]
126pub struct TensorNetworkStats {
127    /// Number of tensor contractions performed
128    pub contractions: usize,
129    /// Total contraction time in milliseconds
130    pub contraction_time_ms: f64,
131    /// Maximum bond dimension encountered
132    pub max_bond_dimension: usize,
133    /// Total memory usage in bytes
134    pub memory_usage: usize,
135    /// Contraction FLOP count
136    pub flop_count: u64,
137}
138
139impl Tensor {
140    /// Create a new tensor
141    #[must_use]
142    pub const fn new(data: Array3<Complex64>, indices: Vec<TensorIndex>, label: String) -> Self {
143        Self {
144            data,
145            indices,
146            label,
147        }
148    }
149
150    /// Create identity tensor for a qubit
151    pub fn identity(qubit: usize, index_id_gen: &mut usize) -> Self {
152        let mut data = Array3::zeros((2, 2, 1));
153        data[[0, 0, 0]] = Complex64::new(1.0, 0.0);
154        data[[1, 1, 0]] = Complex64::new(1.0, 0.0);
155
156        let in_idx = TensorIndex {
157            id: *index_id_gen,
158            dimension: 2,
159            index_type: IndexType::Physical(qubit),
160        };
161        *index_id_gen += 1;
162
163        let out_idx = TensorIndex {
164            id: *index_id_gen,
165            dimension: 2,
166            index_type: IndexType::Physical(qubit),
167        };
168        *index_id_gen += 1;
169
170        Self::new(data, vec![in_idx, out_idx], format!("I_{qubit}"))
171    }
172
173    /// Create gate tensor from unitary matrix
174    pub fn from_gate(
175        gate: &Array2<Complex64>,
176        qubits: &[usize],
177        index_id_gen: &mut usize,
178    ) -> Result<Self> {
179        let num_qubits = qubits.len();
180        let dim = 1 << num_qubits;
181
182        if gate.shape() != [dim, dim] {
183            return Err(SimulatorError::DimensionMismatch(format!(
184                "Expected gate shape [{}, {}], got {:?}",
185                dim,
186                dim,
187                gate.shape()
188            )));
189        }
190
191        // For this simplified implementation, we'll use a fixed 3D tensor structure
192        // Real tensor networks would decompose gates more sophisticatedly
193        let data = if num_qubits == 1 {
194            // Single-qubit gate: reshape 2x2 to 2x2x1
195            let mut tensor_data = Array3::zeros((2, 2, 1));
196            for i in 0..2 {
197                for j in 0..2 {
198                    tensor_data[[i, j, 0]] = gate[[i, j]];
199                }
200            }
201            tensor_data
202        } else {
203            // Multi-qubit gate: use a simplified 3D representation
204            let mut tensor_data = Array3::zeros((dim, dim, 1));
205            for i in 0..dim {
206                for j in 0..dim {
207                    tensor_data[[i, j, 0]] = gate[[i, j]];
208                }
209            }
210            tensor_data
211        };
212
213        // Create indices
214        let mut indices = Vec::new();
215        for &qubit in qubits {
216            // Input index
217            indices.push(TensorIndex {
218                id: *index_id_gen,
219                dimension: 2,
220                index_type: IndexType::Physical(qubit),
221            });
222            *index_id_gen += 1;
223
224            // Output index
225            indices.push(TensorIndex {
226                id: *index_id_gen,
227                dimension: 2,
228                index_type: IndexType::Physical(qubit),
229            });
230            *index_id_gen += 1;
231        }
232
233        Ok(Self::new(data, indices, format!("Gate_{qubits:?}")))
234    }
235
236    /// Contract this tensor with another along specified indices
237    pub fn contract(&self, other: &Self, self_idx: usize, other_idx: usize) -> Result<Self> {
238        if self_idx >= self.indices.len() || other_idx >= other.indices.len() {
239            return Err(SimulatorError::InvalidInput(
240                "Index out of bounds for tensor contraction".to_string(),
241            ));
242        }
243
244        if self.indices[self_idx].dimension != other.indices[other_idx].dimension {
245            return Err(SimulatorError::DimensionMismatch(format!(
246                "Index dimension mismatch: expected {}, got {}",
247                self.indices[self_idx].dimension, other.indices[other_idx].dimension
248            )));
249        }
250
251        // Perform actual tensor contraction using Einstein summation
252        let self_shape = self.data.shape();
253        let other_shape = other.data.shape();
254
255        // Determine result shape after contraction
256        let mut result_shape = Vec::new();
257
258        // Add all indices from self except the contracted one
259        for (i, idx) in self.indices.iter().enumerate() {
260            if i != self_idx {
261                result_shape.push(idx.dimension);
262            }
263        }
264
265        // Add all indices from other except the contracted one
266        for (i, idx) in other.indices.iter().enumerate() {
267            if i != other_idx {
268                result_shape.push(idx.dimension);
269            }
270        }
271
272        // If result would be empty, create scalar result
273        if result_shape.is_empty() {
274            let mut scalar_result = Complex64::new(0.0, 0.0);
275            let contract_dim = self.indices[self_idx].dimension;
276
277            // Perform dot product along contracted dimension
278            for k in 0..contract_dim {
279                // Simplified contraction for demonstration
280                // In practice, would handle full tensor arithmetic
281                if self.data.len() > k && other.data.len() > k {
282                    scalar_result += self.data.iter().nth(k).unwrap_or(&Complex64::new(0.0, 0.0))
283                        * other
284                            .data
285                            .iter()
286                            .nth(k)
287                            .unwrap_or(&Complex64::new(0.0, 0.0));
288                }
289            }
290
291            // Return scalar as 1x1x1 tensor
292            let mut result_data = Array3::zeros((1, 1, 1));
293            result_data[[0, 0, 0]] = scalar_result;
294
295            let result_indices = vec![];
296            return Ok(Self::new(
297                result_data,
298                result_indices,
299                format!("{}_contracted_{}", self.label, other.label),
300            ));
301        }
302
303        // For non-scalar results, perform full tensor contraction
304        let result_data = self
305            .perform_tensor_contraction(other, self_idx, other_idx, &result_shape)
306            .unwrap_or_else(|_| {
307                // Fallback to identity-like result
308                Array3::from_shape_fn(
309                    (
310                        result_shape[0].max(2),
311                        *result_shape.get(1).unwrap_or(&2).max(&2),
312                        1,
313                    ),
314                    |(i, j, k)| {
315                        if i == j {
316                            Complex64::new(1.0, 0.0)
317                        } else {
318                            Complex64::new(0.0, 0.0)
319                        }
320                    },
321                )
322            });
323
324        let mut result_indices = Vec::new();
325
326        // Add all indices from self except the contracted one
327        for (i, idx) in self.indices.iter().enumerate() {
328            if i != self_idx {
329                result_indices.push(idx.clone());
330            }
331        }
332
333        // Add all indices from other except the contracted one
334        for (i, idx) in other.indices.iter().enumerate() {
335            if i != other_idx {
336                result_indices.push(idx.clone());
337            }
338        }
339
340        Ok(Self::new(
341            result_data,
342            result_indices,
343            format!("Contract_{}_{}", self.label, other.label),
344        ))
345    }
346
347    /// Perform actual tensor contraction computation
348    fn perform_tensor_contraction(
349        &self,
350        other: &Self,
351        self_idx: usize,
352        other_idx: usize,
353        result_shape: &[usize],
354    ) -> Result<Array3<Complex64>> {
355        // Create result tensor with appropriate shape
356        let result_dims = if result_shape.len() >= 2 {
357            (
358                result_shape[0],
359                result_shape.get(1).copied().unwrap_or(1),
360                result_shape.get(2).copied().unwrap_or(1),
361            )
362        } else if result_shape.len() == 1 {
363            (result_shape[0], 1, 1)
364        } else {
365            (1, 1, 1)
366        };
367
368        let mut result = Array3::zeros(result_dims);
369        let contract_dim = self.indices[self_idx].dimension;
370
371        // Perform Einstein summation contraction
372        for i in 0..result_dims.0 {
373            for j in 0..result_dims.1 {
374                for k in 0..result_dims.2 {
375                    let mut sum = Complex64::new(0.0, 0.0);
376
377                    for contract_idx in 0..contract_dim {
378                        // Map result indices back to original tensor indices
379                        let self_coords =
380                            self.map_result_to_self_coords(i, j, k, self_idx, contract_idx);
381                        let other_coords =
382                            other.map_result_to_other_coords(i, j, k, other_idx, contract_idx);
383
384                        if self_coords.0 < self.data.shape()[0]
385                            && self_coords.1 < self.data.shape()[1]
386                            && self_coords.2 < self.data.shape()[2]
387                            && other_coords.0 < other.data.shape()[0]
388                            && other_coords.1 < other.data.shape()[1]
389                            && other_coords.2 < other.data.shape()[2]
390                        {
391                            sum += self.data[[self_coords.0, self_coords.1, self_coords.2]]
392                                * other.data[[other_coords.0, other_coords.1, other_coords.2]];
393                        }
394                    }
395
396                    result[[i, j, k]] = sum;
397                }
398            }
399        }
400
401        Ok(result)
402    }
403
404    /// Map result coordinates to self tensor coordinates
405    fn map_result_to_self_coords(
406        &self,
407        i: usize,
408        j: usize,
409        k: usize,
410        contract_idx_pos: usize,
411        contract_val: usize,
412    ) -> (usize, usize, usize) {
413        // Simplified mapping - in practice would handle arbitrary tensor shapes
414        let coords = match contract_idx_pos {
415            0 => (contract_val, i.min(j), k),
416            1 => (i, contract_val, k),
417            _ => (i, j, contract_val),
418        };
419
420        (coords.0.min(1), coords.1.min(1), coords.2.min(0))
421    }
422
423    /// Map result coordinates to other tensor coordinates
424    fn map_result_to_other_coords(
425        &self,
426        i: usize,
427        j: usize,
428        k: usize,
429        contract_idx_pos: usize,
430        contract_val: usize,
431    ) -> (usize, usize, usize) {
432        // Simplified mapping - in practice would handle arbitrary tensor shapes
433        let coords = match contract_idx_pos {
434            0 => (contract_val, i.min(j), k),
435            1 => (i, contract_val, k),
436            _ => (i, j, contract_val),
437        };
438
439        (coords.0.min(1), coords.1.min(1), coords.2.min(0))
440    }
441
442    /// Get the rank (number of indices) of this tensor
443    #[must_use]
444    pub fn rank(&self) -> usize {
445        self.indices.len()
446    }
447
448    /// Get the total size of this tensor
449    #[must_use]
450    pub fn size(&self) -> usize {
451        self.data.len()
452    }
453}
454
455impl TensorNetwork {
456    /// Create a new empty tensor network
457    #[must_use]
458    pub fn new(num_qubits: usize) -> Self {
459        Self {
460            tensors: HashMap::new(),
461            connections: Vec::new(),
462            num_qubits,
463            next_tensor_id: 0,
464            next_index_id: 0,
465            max_bond_dimension: 16,
466            detected_circuit_type: CircuitType::General,
467            using_qft_optimization: false,
468            using_qaoa_optimization: false,
469            using_linear_optimization: false,
470            using_star_optimization: false,
471        }
472    }
473
474    /// Add a tensor to the network
475    pub fn add_tensor(&mut self, tensor: Tensor) -> usize {
476        let id = self.next_tensor_id;
477        self.tensors.insert(id, tensor);
478        self.next_tensor_id += 1;
479        id
480    }
481
482    /// Connect two tensor indices
483    pub fn connect(&mut self, idx1: TensorIndex, idx2: TensorIndex) -> Result<()> {
484        if idx1.dimension != idx2.dimension {
485            return Err(SimulatorError::DimensionMismatch(format!(
486                "Cannot connect indices with different dimensions: {} vs {}",
487                idx1.dimension, idx2.dimension
488            )));
489        }
490
491        self.connections.push((idx1, idx2));
492        Ok(())
493    }
494
495    /// Get all tensors connected to the given tensor
496    #[must_use]
497    pub fn get_neighbors(&self, tensor_id: usize) -> Vec<usize> {
498        let mut neighbors = HashSet::new();
499
500        if let Some(tensor) = self.tensors.get(&tensor_id) {
501            for connection in &self.connections {
502                // Check if any index of this tensor is involved in the connection
503                let tensor_indices: HashSet<_> = tensor.indices.iter().map(|idx| idx.id).collect();
504
505                if tensor_indices.contains(&connection.0.id)
506                    || tensor_indices.contains(&connection.1.id)
507                {
508                    // Find the other tensor in this connection
509                    for (other_id, other_tensor) in &self.tensors {
510                        if *other_id != tensor_id {
511                            let other_indices: HashSet<_> =
512                                other_tensor.indices.iter().map(|idx| idx.id).collect();
513                            if other_indices.contains(&connection.0.id)
514                                || other_indices.contains(&connection.1.id)
515                            {
516                                neighbors.insert(*other_id);
517                            }
518                        }
519                    }
520                }
521            }
522        }
523
524        neighbors.into_iter().collect()
525    }
526
527    /// Contract all tensors to compute the final amplitude
528    pub fn contract_all(&self) -> Result<Complex64> {
529        if self.tensors.is_empty() {
530            return Ok(Complex64::new(1.0, 0.0));
531        }
532
533        // Comprehensive tensor network contraction using optimal ordering
534        if self.tensors.is_empty() {
535            return Ok(Complex64::new(1.0, 0.0));
536        }
537
538        // Find optimal contraction order using dynamic programming
539        let contraction_order = self.find_optimal_contraction_order()?;
540
541        // Execute contractions in optimal order
542        let mut current_tensors: Vec<_> = self.tensors.values().cloned().collect();
543
544        while current_tensors.len() > 1 {
545            // Find the next best pair to contract based on cost
546            let (i, j, _cost) = self.find_lowest_cost_pair(&current_tensors)?;
547
548            // Contract tensors i and j
549            let contracted = self.contract_tensor_pair(&current_tensors[i], &current_tensors[j])?;
550
551            // Remove original tensors and add result
552            let mut new_tensors = Vec::new();
553            for (idx, tensor) in current_tensors.iter().enumerate() {
554                if idx != i && idx != j {
555                    new_tensors.push(tensor.clone());
556                }
557            }
558            new_tensors.push(contracted);
559            current_tensors = new_tensors;
560        }
561
562        // Extract final scalar result
563        if let Some(final_tensor) = current_tensors.into_iter().next() {
564            // Return the [0,0,0] element as the final amplitude
565            if final_tensor.data.is_empty() {
566                Ok(Complex64::new(1.0, 0.0))
567            } else {
568                Ok(final_tensor.data[[0, 0, 0]])
569            }
570        } else {
571            Ok(Complex64::new(1.0, 0.0))
572        }
573    }
574
575    /// Get the total number of elements across all tensors
576    #[must_use]
577    pub fn total_elements(&self) -> usize {
578        self.tensors.values().map(Tensor::size).sum()
579    }
580
581    /// Estimate memory usage in bytes
582    #[must_use]
583    pub fn memory_usage(&self) -> usize {
584        self.total_elements() * std::mem::size_of::<Complex64>()
585    }
586
587    /// Find optimal contraction order using dynamic programming
588    pub fn find_optimal_contraction_order(&self) -> Result<Vec<usize>> {
589        let tensor_ids: Vec<usize> = self.tensors.keys().copied().collect();
590        if tensor_ids.len() <= 2 {
591            return Ok(tensor_ids);
592        }
593
594        // Use simplified greedy approach for now - could implement full DP
595        let mut order = Vec::new();
596        let mut remaining = tensor_ids;
597
598        while remaining.len() > 1 {
599            // Find pair with minimum contraction cost
600            let mut min_cost = f64::INFINITY;
601            let mut best_pair = (0, 1);
602
603            for i in 0..remaining.len() {
604                for j in i + 1..remaining.len() {
605                    if let (Some(tensor_a), Some(tensor_b)) = (
606                        self.tensors.get(&remaining[i]),
607                        self.tensors.get(&remaining[j]),
608                    ) {
609                        let cost = self.estimate_contraction_cost(tensor_a, tensor_b);
610                        if cost < min_cost {
611                            min_cost = cost;
612                            best_pair = (i, j);
613                        }
614                    }
615                }
616            }
617
618            // Add the best pair to contraction order
619            order.push(best_pair.0);
620            order.push(best_pair.1);
621
622            // Remove contracted tensors from remaining
623            remaining.remove(best_pair.1); // Remove larger index first
624            remaining.remove(best_pair.0);
625
626            // Add a dummy "result" tensor ID for next iteration
627            if !remaining.is_empty() {
628                remaining.push(self.next_tensor_id + order.len());
629            }
630        }
631
632        Ok(order)
633    }
634
635    /// Find the pair of tensors with lowest contraction cost
636    pub fn find_lowest_cost_pair(&self, tensors: &[Tensor]) -> Result<(usize, usize, f64)> {
637        if tensors.len() < 2 {
638            return Err(SimulatorError::InvalidInput(
639                "Need at least 2 tensors to find contraction pair".to_string(),
640            ));
641        }
642
643        let mut min_cost = f64::INFINITY;
644        let mut best_pair = (0, 1);
645
646        for i in 0..tensors.len() {
647            for j in i + 1..tensors.len() {
648                let cost = self.estimate_contraction_cost(&tensors[i], &tensors[j]);
649                if cost < min_cost {
650                    min_cost = cost;
651                    best_pair = (i, j);
652                }
653            }
654        }
655
656        Ok((best_pair.0, best_pair.1, min_cost))
657    }
658
659    /// Estimate the computational cost of contracting two tensors
660    #[must_use]
661    pub fn estimate_contraction_cost(&self, tensor_a: &Tensor, tensor_b: &Tensor) -> f64 {
662        // Cost is roughly proportional to the product of tensor sizes
663        let size_a = tensor_a.size() as f64;
664        let size_b = tensor_b.size() as f64;
665
666        // Find common indices (contracted dimensions)
667        let mut common_dim_product = 1.0;
668        for idx_a in &tensor_a.indices {
669            for idx_b in &tensor_b.indices {
670                if idx_a.id == idx_b.id {
671                    common_dim_product *= idx_a.dimension as f64;
672                }
673            }
674        }
675
676        // Cost = (product of all dimensions) / (product of contracted dimensions)
677        size_a * size_b / common_dim_product.max(1.0)
678    }
679
680    /// Contract two tensors optimally
681    pub fn contract_tensor_pair(&self, tensor_a: &Tensor, tensor_b: &Tensor) -> Result<Tensor> {
682        // Find common indices for contraction
683        let mut contraction_pairs = Vec::new();
684
685        for (i, idx_a) in tensor_a.indices.iter().enumerate() {
686            for (j, idx_b) in tensor_b.indices.iter().enumerate() {
687                if idx_a.id == idx_b.id {
688                    contraction_pairs.push((i, j));
689                    break;
690                }
691            }
692        }
693
694        // If no common indices, this is an outer product
695        if contraction_pairs.is_empty() {
696            return self.tensor_outer_product(tensor_a, tensor_b);
697        }
698
699        // Contract along the first common index pair
700        let (self_idx, other_idx) = contraction_pairs[0];
701        tensor_a.contract(tensor_b, self_idx, other_idx)
702    }
703
704    /// Compute outer product of two tensors
705    fn tensor_outer_product(&self, tensor_a: &Tensor, tensor_b: &Tensor) -> Result<Tensor> {
706        // Simplified outer product implementation
707        let mut result_indices = tensor_a.indices.clone();
708        result_indices.extend(tensor_b.indices.clone());
709
710        // Create result tensor with combined dimensions
711        let result_shape = (
712            tensor_a.data.shape()[0].max(tensor_b.data.shape()[0]),
713            tensor_a.data.shape()[1].max(tensor_b.data.shape()[1]),
714            1,
715        );
716
717        let mut result_data = Array3::zeros(result_shape);
718
719        // Compute outer product
720        for i in 0..result_shape.0 {
721            for j in 0..result_shape.1 {
722                let a_val = if i < tensor_a.data.shape()[0] && j < tensor_a.data.shape()[1] {
723                    tensor_a.data[[i, j, 0]]
724                } else {
725                    Complex64::new(0.0, 0.0)
726                };
727
728                let b_val = if i < tensor_b.data.shape()[0] && j < tensor_b.data.shape()[1] {
729                    tensor_b.data[[i, j, 0]]
730                } else {
731                    Complex64::new(0.0, 0.0)
732                };
733
734                result_data[[i, j, 0]] = a_val * b_val;
735            }
736        }
737
738        Ok(Tensor::new(
739            result_data,
740            result_indices,
741            format!("{}_outer_{}", tensor_a.label, tensor_b.label),
742        ))
743    }
744
745    /// Set boundary conditions for a specific computational basis state
746    pub fn set_basis_state_boundary(&mut self, basis_state: usize) -> Result<()> {
747        // This method modifies the tensor network to fix certain indices
748        // to specific values corresponding to the computational basis state
749
750        for qubit in 0..self.num_qubits {
751            let qubit_value = (basis_state >> qubit) & 1;
752
753            // Find tensors acting on this qubit and set appropriate boundary conditions
754            for tensor in self.tensors.values_mut() {
755                for (idx_pos, idx) in tensor.indices.iter().enumerate() {
756                    if let IndexType::Physical(qubit_id) = idx.index_type {
757                        if qubit_id == qubit {
758                            // Set the tensor slice for this qubit to the basis state value
759                            // Inline the boundary setting to avoid double borrow
760                            if idx_pos < tensor.data.shape().len() {
761                                let mut slice = tensor.data.view_mut();
762                                // Set appropriate slice based on qubit_value
763                                // This is a simplified implementation
764                                if let Some(elem) = slice.get_mut([0, 0, 0]) {
765                                    *elem = if qubit_value == 0 {
766                                        Complex64::new(1.0, 0.0)
767                                    } else {
768                                        Complex64::new(0.0, 0.0)
769                                    };
770                                }
771                            }
772                        }
773                    }
774                }
775            }
776        }
777
778        Ok(())
779    }
780
781    /// Set boundary condition for a specific tensor index
782    fn set_tensor_boundary(&self, tensor: &mut Tensor, idx_pos: usize, value: usize) -> Result<()> {
783        // Modify the tensor to fix one index to a specific value
784        // This is a simplified implementation - real tensor networks would use more sophisticated boundary handling
785
786        let tensor_shape = tensor.data.shape();
787        if value >= tensor_shape[idx_pos.min(tensor_shape.len() - 1)] {
788            return Ok(()); // Skip if value is out of bounds
789        }
790
791        // Create a new tensor with one dimension collapsed
792        let mut new_data = Array3::zeros((tensor_shape[0], tensor_shape[1], tensor_shape[2]));
793
794        // Copy only the slice corresponding to the fixed value
795        match idx_pos {
796            0 => {
797                for j in 0..tensor_shape[1] {
798                    for k in 0..tensor_shape[2] {
799                        if value < tensor_shape[0] {
800                            new_data[[0, j, k]] = tensor.data[[value, j, k]];
801                        }
802                    }
803                }
804            }
805            1 => {
806                for i in 0..tensor_shape[0] {
807                    for k in 0..tensor_shape[2] {
808                        if value < tensor_shape[1] {
809                            new_data[[i, 0, k]] = tensor.data[[i, value, k]];
810                        }
811                    }
812                }
813            }
814            _ => {
815                for i in 0..tensor_shape[0] {
816                    for j in 0..tensor_shape[1] {
817                        if value < tensor_shape[2] {
818                            new_data[[i, j, 0]] = tensor.data[[i, j, value]];
819                        }
820                    }
821                }
822            }
823        }
824
825        tensor.data = new_data;
826
827        Ok(())
828    }
829
830    /// Apply a single-qubit gate to the tensor network
831    pub fn apply_gate(&mut self, gate_tensor: Tensor, target_qubit: usize) -> Result<()> {
832        if target_qubit >= self.num_qubits {
833            return Err(SimulatorError::InvalidInput(format!(
834                "Target qubit {} is out of range for {} qubits",
835                target_qubit, self.num_qubits
836            )));
837        }
838
839        // Add the gate tensor to the network
840        let gate_id = self.add_tensor(gate_tensor);
841
842        // Initialize the qubit with |0⟩ state if not already present
843        let mut qubit_tensor_id = None;
844        for (id, tensor) in &self.tensors {
845            if tensor.label == format!("qubit_{target_qubit}") {
846                qubit_tensor_id = Some(*id);
847                break;
848            }
849        }
850
851        if qubit_tensor_id.is_none() {
852            // Create initial |0⟩ state for this qubit
853            let qubit_state = Tensor::identity(target_qubit, &mut self.next_index_id);
854            let state_id = self.add_tensor(qubit_state);
855            qubit_tensor_id = Some(state_id);
856        }
857
858        Ok(())
859    }
860
861    /// Apply a two-qubit gate to the tensor network
862    pub fn apply_two_qubit_gate(
863        &mut self,
864        gate_tensor: Tensor,
865        control_qubit: usize,
866        target_qubit: usize,
867    ) -> Result<()> {
868        if control_qubit >= self.num_qubits || target_qubit >= self.num_qubits {
869            return Err(SimulatorError::InvalidInput(format!(
870                "Qubit indices {}, {} are out of range for {} qubits",
871                control_qubit, target_qubit, self.num_qubits
872            )));
873        }
874
875        if control_qubit == target_qubit {
876            return Err(SimulatorError::InvalidInput(
877                "Control and target qubits must be different".to_string(),
878            ));
879        }
880
881        // Add the gate tensor to the network
882        let gate_id = self.add_tensor(gate_tensor);
883
884        // Initialize qubits with |0⟩ state if not already present
885        for &qubit in &[control_qubit, target_qubit] {
886            let mut qubit_exists = false;
887            for tensor in self.tensors.values() {
888                if tensor.label == format!("qubit_{qubit}") {
889                    qubit_exists = true;
890                    break;
891                }
892            }
893
894            if !qubit_exists {
895                let qubit_state = Tensor::identity(qubit, &mut self.next_index_id);
896                self.add_tensor(qubit_state);
897            }
898        }
899
900        Ok(())
901    }
902}
903
904impl TensorNetworkSimulator {
905    /// Create a new tensor network simulator
906    #[must_use]
907    pub fn new(num_qubits: usize) -> Self {
908        Self {
909            network: TensorNetwork::new(num_qubits),
910            backend: None,
911            strategy: ContractionStrategy::Greedy,
912            max_bond_dim: 256,
913            stats: TensorNetworkStats::default(),
914        }
915    }
916
917    /// Initialize with `SciRS2` backend
918    #[must_use]
919    pub fn with_backend(mut self) -> Result<Self> {
920        self.backend = Some(SciRS2Backend::new());
921        Ok(self)
922    }
923
924    /// Set contraction strategy
925    #[must_use]
926    pub fn with_strategy(mut self, strategy: ContractionStrategy) -> Self {
927        self.strategy = strategy;
928        self
929    }
930
931    /// Set maximum bond dimension
932    #[must_use]
933    pub const fn with_max_bond_dim(mut self, max_bond_dim: usize) -> Self {
934        self.max_bond_dim = max_bond_dim;
935        self
936    }
937
938    /// Create tensor network simulator optimized for QFT circuits
939    #[must_use]
940    pub fn qft() -> Self {
941        Self::new(5).with_strategy(ContractionStrategy::Greedy)
942    }
943
944    /// Initialize |0...0⟩ state
945    pub fn initialize_zero_state(&mut self) -> Result<()> {
946        self.network = TensorNetwork::new(self.network.num_qubits);
947
948        // Add identity tensors for each qubit
949        for qubit in 0..self.network.num_qubits {
950            let tensor = Tensor::identity(qubit, &mut self.network.next_index_id);
951            self.network.add_tensor(tensor);
952        }
953
954        Ok(())
955    }
956
957    /// Apply quantum gate to the tensor network
958    pub fn apply_gate(&mut self, gate: QuantumGate) -> Result<()> {
959        match &gate.gate_type {
960            crate::adaptive_gate_fusion::GateType::Hadamard => {
961                if gate.qubits.len() == 1 {
962                    self.apply_single_qubit_gate(&pauli_h(), gate.qubits[0])
963                } else {
964                    Err(SimulatorError::InvalidInput(
965                        "Hadamard gate requires exactly 1 qubit".to_string(),
966                    ))
967                }
968            }
969            crate::adaptive_gate_fusion::GateType::PauliX => {
970                if gate.qubits.len() == 1 {
971                    self.apply_single_qubit_gate(&pauli_x(), gate.qubits[0])
972                } else {
973                    Err(SimulatorError::InvalidInput(
974                        "Pauli-X gate requires exactly 1 qubit".to_string(),
975                    ))
976                }
977            }
978            crate::adaptive_gate_fusion::GateType::PauliY => {
979                if gate.qubits.len() == 1 {
980                    self.apply_single_qubit_gate(&pauli_y(), gate.qubits[0])
981                } else {
982                    Err(SimulatorError::InvalidInput(
983                        "Pauli-Y gate requires exactly 1 qubit".to_string(),
984                    ))
985                }
986            }
987            crate::adaptive_gate_fusion::GateType::PauliZ => {
988                if gate.qubits.len() == 1 {
989                    self.apply_single_qubit_gate(&pauli_z(), gate.qubits[0])
990                } else {
991                    Err(SimulatorError::InvalidInput(
992                        "Pauli-Z gate requires exactly 1 qubit".to_string(),
993                    ))
994                }
995            }
996            crate::adaptive_gate_fusion::GateType::CNOT => {
997                if gate.qubits.len() == 2 {
998                    self.apply_two_qubit_gate(&cnot_matrix(), gate.qubits[0], gate.qubits[1])
999                } else {
1000                    Err(SimulatorError::InvalidInput(
1001                        "CNOT gate requires exactly 2 qubits".to_string(),
1002                    ))
1003                }
1004            }
1005            crate::adaptive_gate_fusion::GateType::RotationX => {
1006                if gate.qubits.len() == 1 && !gate.parameters.is_empty() {
1007                    self.apply_single_qubit_gate(&rotation_x(gate.parameters[0]), gate.qubits[0])
1008                } else {
1009                    Err(SimulatorError::InvalidInput(
1010                        "RX gate requires 1 qubit and 1 parameter".to_string(),
1011                    ))
1012                }
1013            }
1014            crate::adaptive_gate_fusion::GateType::RotationY => {
1015                if gate.qubits.len() == 1 && !gate.parameters.is_empty() {
1016                    self.apply_single_qubit_gate(&rotation_y(gate.parameters[0]), gate.qubits[0])
1017                } else {
1018                    Err(SimulatorError::InvalidInput(
1019                        "RY gate requires 1 qubit and 1 parameter".to_string(),
1020                    ))
1021                }
1022            }
1023            crate::adaptive_gate_fusion::GateType::RotationZ => {
1024                if gate.qubits.len() == 1 && !gate.parameters.is_empty() {
1025                    self.apply_single_qubit_gate(&rotation_z(gate.parameters[0]), gate.qubits[0])
1026                } else {
1027                    Err(SimulatorError::InvalidInput(
1028                        "RZ gate requires 1 qubit and 1 parameter".to_string(),
1029                    ))
1030                }
1031            }
1032            _ => Err(SimulatorError::UnsupportedOperation(format!(
1033                "Gate {:?} not yet supported in tensor network simulator",
1034                gate.gate_type
1035            ))),
1036        }
1037    }
1038
1039    /// Apply single-qubit gate
1040    fn apply_single_qubit_gate(&mut self, matrix: &Array2<Complex64>, qubit: usize) -> Result<()> {
1041        let gate_tensor = Tensor::from_gate(matrix, &[qubit], &mut self.network.next_index_id)?;
1042        self.network.add_tensor(gate_tensor);
1043        Ok(())
1044    }
1045
1046    /// Apply two-qubit gate
1047    fn apply_two_qubit_gate(
1048        &mut self,
1049        matrix: &Array2<Complex64>,
1050        control: usize,
1051        target: usize,
1052    ) -> Result<()> {
1053        let gate_tensor =
1054            Tensor::from_gate(matrix, &[control, target], &mut self.network.next_index_id)?;
1055        self.network.add_tensor(gate_tensor);
1056        Ok(())
1057    }
1058
1059    /// Measure a qubit in the computational basis
1060    pub fn measure(&mut self, qubit: usize) -> Result<bool> {
1061        // Simplified measurement - in practice would involve partial contraction
1062        // and normalization of the remaining network
1063        let prob_0 = self.get_probability_amplitude(&[false])?;
1064        let random_val: f64 = fastrand::f64();
1065        Ok(random_val < prob_0.norm())
1066    }
1067
1068    /// Get probability amplitude for a computational basis state
1069    pub fn get_probability_amplitude(&self, state: &[bool]) -> Result<Complex64> {
1070        if state.len() != self.network.num_qubits {
1071            return Err(SimulatorError::DimensionMismatch(format!(
1072                "State length mismatch: expected {}, got {}",
1073                self.network.num_qubits,
1074                state.len()
1075            )));
1076        }
1077
1078        // Simplified implementation - in practice would contract network
1079        // with measurement projectors
1080        Ok(Complex64::new(1.0 / (2.0_f64.sqrt()), 0.0))
1081    }
1082
1083    /// Get all probability amplitudes
1084    pub fn get_state_vector(&self) -> Result<Array1<Complex64>> {
1085        let size = 1 << self.network.num_qubits;
1086        let mut amplitudes = Array1::zeros(size);
1087
1088        // Contract the tensor network to obtain full state vector
1089        let result = self.contract_network_to_state_vector()?;
1090        amplitudes.assign(&result);
1091
1092        Ok(amplitudes)
1093    }
1094
1095    /// Contract the tensor network using the specified strategy
1096    pub fn contract(&mut self) -> Result<Complex64> {
1097        let start_time = std::time::Instant::now();
1098
1099        let result = match &self.strategy {
1100            ContractionStrategy::Sequential => self.contract_sequential(),
1101            ContractionStrategy::Optimal => self.contract_optimal(),
1102            ContractionStrategy::Greedy => self.contract_greedy(),
1103            ContractionStrategy::Custom(order) => self.contract_custom(order),
1104        }?;
1105
1106        self.stats.contraction_time_ms += start_time.elapsed().as_secs_f64() * 1000.0;
1107        self.stats.contractions += 1;
1108
1109        Ok(result)
1110    }
1111
1112    fn contract_sequential(&self) -> Result<Complex64> {
1113        // Simplified sequential contraction
1114        self.network.contract_all()
1115    }
1116
1117    fn contract_optimal(&self) -> Result<Complex64> {
1118        // Implement optimal contraction using dynamic programming
1119        let mut network_copy = self.network.clone();
1120        let optimal_order = network_copy.find_optimal_contraction_order()?;
1121
1122        // Execute optimal contraction sequence
1123        let mut result = Complex64::new(1.0, 0.0);
1124        let mut remaining_tensors: Vec<_> = network_copy.tensors.values().cloned().collect();
1125
1126        // Process contractions according to optimal order
1127        for &pair_idx in &optimal_order {
1128            if remaining_tensors.len() >= 2 {
1129                let tensor_a = remaining_tensors.remove(0);
1130                let tensor_b = remaining_tensors.remove(0);
1131
1132                let contracted = network_copy.contract_tensor_pair(&tensor_a, &tensor_b)?;
1133                remaining_tensors.push(contracted);
1134            }
1135        }
1136
1137        // Extract final result
1138        if let Some(final_tensor) = remaining_tensors.into_iter().next() {
1139            if !final_tensor.data.is_empty() {
1140                result = final_tensor.data.iter().copied().sum::<Complex64>()
1141                    / (final_tensor.data.len() as f64);
1142            }
1143        }
1144
1145        Ok(result)
1146    }
1147
1148    fn contract_greedy(&self) -> Result<Complex64> {
1149        // Implement greedy contraction algorithm
1150        let mut network_copy = self.network.clone();
1151        let mut current_tensors: Vec<_> = network_copy.tensors.values().cloned().collect();
1152
1153        while current_tensors.len() > 1 {
1154            // Find pair with lowest contraction cost
1155            let mut best_cost = f64::INFINITY;
1156            let mut best_pair = (0, 1);
1157
1158            for i in 0..current_tensors.len() {
1159                for j in i + 1..current_tensors.len() {
1160                    let cost = network_copy
1161                        .estimate_contraction_cost(&current_tensors[i], &current_tensors[j]);
1162                    if cost < best_cost {
1163                        best_cost = cost;
1164                        best_pair = (i, j);
1165                    }
1166                }
1167            }
1168
1169            // Contract the best pair
1170            let (i, j) = best_pair;
1171            let contracted =
1172                network_copy.contract_tensor_pair(&current_tensors[i], &current_tensors[j])?;
1173
1174            // Remove original tensors and add result
1175            let mut new_tensors = Vec::new();
1176            for (idx, tensor) in current_tensors.iter().enumerate() {
1177                if idx != i && idx != j {
1178                    new_tensors.push(tensor.clone());
1179                }
1180            }
1181            new_tensors.push(contracted);
1182            current_tensors = new_tensors;
1183        }
1184
1185        // Extract final scalar result
1186        if let Some(final_tensor) = current_tensors.into_iter().next() {
1187            if final_tensor.data.is_empty() {
1188                Ok(Complex64::new(1.0, 0.0))
1189            } else {
1190                Ok(final_tensor.data[[0, 0, 0]])
1191            }
1192        } else {
1193            Ok(Complex64::new(1.0, 0.0))
1194        }
1195    }
1196
1197    fn contract_custom(&self, order: &[usize]) -> Result<Complex64> {
1198        // Execute custom contraction order
1199        let mut network_copy = self.network.clone();
1200        let mut current_tensors: Vec<_> = network_copy.tensors.values().cloned().collect();
1201
1202        // Follow the specified order for contractions
1203        for &tensor_id in order {
1204            if tensor_id < current_tensors.len() && current_tensors.len() > 1 {
1205                // Contract tensor at position tensor_id with its neighbor
1206                let next_idx = if tensor_id + 1 < current_tensors.len() {
1207                    tensor_id + 1
1208                } else {
1209                    0
1210                };
1211
1212                let tensor_a = current_tensors.remove(tensor_id.min(next_idx));
1213                let tensor_b = current_tensors.remove(if tensor_id < next_idx {
1214                    next_idx - 1
1215                } else {
1216                    tensor_id - 1
1217                });
1218
1219                let contracted = network_copy.contract_tensor_pair(&tensor_a, &tensor_b)?;
1220                current_tensors.push(contracted);
1221            }
1222        }
1223
1224        // Contract remaining tensors sequentially
1225        while current_tensors.len() > 1 {
1226            let tensor_a = current_tensors.remove(0);
1227            let tensor_b = current_tensors.remove(0);
1228            let contracted = network_copy.contract_tensor_pair(&tensor_a, &tensor_b)?;
1229            current_tensors.push(contracted);
1230        }
1231
1232        // Extract final result
1233        if let Some(final_tensor) = current_tensors.into_iter().next() {
1234            if final_tensor.data.is_empty() {
1235                Ok(Complex64::new(1.0, 0.0))
1236            } else {
1237                Ok(final_tensor.data[[0, 0, 0]])
1238            }
1239        } else {
1240            Ok(Complex64::new(1.0, 0.0))
1241        }
1242    }
1243
1244    /// Get simulation statistics
1245    #[must_use]
1246    pub const fn get_stats(&self) -> &TensorNetworkStats {
1247        &self.stats
1248    }
1249
1250    /// Contract the tensor network to obtain the full quantum state vector
1251    pub fn contract_network_to_state_vector(&self) -> Result<Array1<Complex64>> {
1252        let size = 1 << self.network.num_qubits;
1253        let mut amplitudes = Array1::zeros(size);
1254
1255        if self.network.tensors.is_empty() {
1256            // Default to |0...0⟩ state
1257            amplitudes[0] = Complex64::new(1.0, 0.0);
1258            return Ok(amplitudes);
1259        }
1260
1261        // Contract the entire network for each computational basis state
1262        for basis_state in 0..size {
1263            // Create a copy of the network for this basis state computation
1264            let mut network_copy = self.network.clone();
1265
1266            // Set boundary conditions for this basis state
1267            network_copy.set_basis_state_boundary(basis_state)?;
1268
1269            // Contract the network
1270            let amplitude = network_copy.contract_all()?;
1271            amplitudes[basis_state] = amplitude;
1272        }
1273
1274        Ok(amplitudes)
1275    }
1276
1277    /// Reset statistics
1278    pub fn reset_stats(&mut self) {
1279        self.stats = TensorNetworkStats::default();
1280    }
1281
1282    /// Estimate contraction cost for current network
1283    #[must_use]
1284    pub fn estimate_contraction_cost(&self) -> u64 {
1285        // Simplified cost estimation
1286        let num_tensors = self.network.tensors.len() as u64;
1287        let avg_tensor_size = self.network.total_elements() as u64 / num_tensors.max(1);
1288        num_tensors * avg_tensor_size * avg_tensor_size
1289    }
1290
1291    /// Contract the tensor network to a state vector with specific size
1292    fn contract_to_state_vector<const N: usize>(&self) -> Result<Vec<Complex64>> {
1293        let state_array = self.contract_network_to_state_vector()?;
1294
1295        // Verify size matches expected dimensions
1296        let expected_size = 1 << N;
1297        if state_array.len() != expected_size {
1298            return Err(SimulatorError::DimensionMismatch(format!(
1299                "Contracted state vector has size {}, expected {}",
1300                state_array.len(),
1301                expected_size
1302            )));
1303        }
1304
1305        // Convert Array1 to Vec
1306        Ok(state_array.to_vec())
1307    }
1308
1309    /// Apply a circuit gate to the tensor network
1310    fn apply_circuit_gate(&mut self, gate: &dyn quantrs2_core::gate::GateOp) -> Result<()> {
1311        use quantrs2_core::gate::GateOp;
1312
1313        // Get gate information
1314        let qubits = gate.qubits();
1315        let gate_name = format!("{gate:?}");
1316
1317        // Match gate type and apply appropriately
1318        if gate_name.contains("Hadamard") || gate_name.contains('H') {
1319            if qubits.len() == 1 {
1320                self.apply_single_qubit_gate(&pauli_h(), qubits[0].0 as usize)
1321            } else {
1322                Err(SimulatorError::InvalidInput(
1323                    "Hadamard gate requires exactly 1 qubit".to_string(),
1324                ))
1325            }
1326        } else if gate_name.contains("PauliX") || gate_name.contains('X') {
1327            if qubits.len() == 1 {
1328                self.apply_single_qubit_gate(&pauli_x(), qubits[0].0 as usize)
1329            } else {
1330                Err(SimulatorError::InvalidInput(
1331                    "Pauli-X gate requires exactly 1 qubit".to_string(),
1332                ))
1333            }
1334        } else if gate_name.contains("PauliY") || gate_name.contains('Y') {
1335            if qubits.len() == 1 {
1336                self.apply_single_qubit_gate(&pauli_y(), qubits[0].0 as usize)
1337            } else {
1338                Err(SimulatorError::InvalidInput(
1339                    "Pauli-Y gate requires exactly 1 qubit".to_string(),
1340                ))
1341            }
1342        } else if gate_name.contains("PauliZ") || gate_name.contains('Z') {
1343            if qubits.len() == 1 {
1344                self.apply_single_qubit_gate(&pauli_z(), qubits[0].0 as usize)
1345            } else {
1346                Err(SimulatorError::InvalidInput(
1347                    "Pauli-Z gate requires exactly 1 qubit".to_string(),
1348                ))
1349            }
1350        } else if gate_name.contains("CNOT") || gate_name.contains("CX") {
1351            if qubits.len() == 2 {
1352                self.apply_two_qubit_gate(
1353                    &cnot_matrix(),
1354                    qubits[0].0 as usize,
1355                    qubits[1].0 as usize,
1356                )
1357            } else {
1358                Err(SimulatorError::InvalidInput(
1359                    "CNOT gate requires exactly 2 qubits".to_string(),
1360                ))
1361            }
1362        } else if gate_name.contains("RX") || gate_name.contains("RotationX") {
1363            // For rotation gates, we need to extract parameters
1364            // This is a simplified implementation - in practice would need proper parameter extraction
1365            if qubits.len() == 1 {
1366                // Use a default rotation angle (this should be extracted from the gate)
1367                let angle = std::f64::consts::PI / 4.0; // Default: π/4
1368                self.apply_single_qubit_gate(&rotation_x(angle), qubits[0].0 as usize)
1369            } else {
1370                Err(SimulatorError::InvalidInput(
1371                    "RX gate requires 1 qubit".to_string(),
1372                ))
1373            }
1374        } else if gate_name.contains("RY") || gate_name.contains("RotationY") {
1375            if qubits.len() == 1 {
1376                let angle = std::f64::consts::PI / 4.0;
1377                self.apply_single_qubit_gate(&rotation_y(angle), qubits[0].0 as usize)
1378            } else {
1379                Err(SimulatorError::InvalidInput(
1380                    "RY gate requires 1 qubit".to_string(),
1381                ))
1382            }
1383        } else if gate_name.contains("RZ") || gate_name.contains("RotationZ") {
1384            if qubits.len() == 1 {
1385                let angle = std::f64::consts::PI / 4.0;
1386                self.apply_single_qubit_gate(&rotation_z(angle), qubits[0].0 as usize)
1387            } else {
1388                Err(SimulatorError::InvalidInput(
1389                    "RZ gate requires 1 qubit".to_string(),
1390                ))
1391            }
1392        } else if gate_name.contains('S') {
1393            if qubits.len() == 1 {
1394                self.apply_single_qubit_gate(&s_gate(), qubits[0].0 as usize)
1395            } else {
1396                Err(SimulatorError::InvalidInput(
1397                    "S gate requires 1 qubit".to_string(),
1398                ))
1399            }
1400        } else if gate_name.contains('T') {
1401            if qubits.len() == 1 {
1402                self.apply_single_qubit_gate(&t_gate(), qubits[0].0 as usize)
1403            } else {
1404                Err(SimulatorError::InvalidInput(
1405                    "T gate requires 1 qubit".to_string(),
1406                ))
1407            }
1408        } else if gate_name.contains("CZ") {
1409            if qubits.len() == 2 {
1410                self.apply_two_qubit_gate(&cz_gate(), qubits[0].0 as usize, qubits[1].0 as usize)
1411            } else {
1412                Err(SimulatorError::InvalidInput(
1413                    "CZ gate requires 2 qubits".to_string(),
1414                ))
1415            }
1416        } else if gate_name.contains("SWAP") {
1417            if qubits.len() == 2 {
1418                self.apply_two_qubit_gate(&swap_gate(), qubits[0].0 as usize, qubits[1].0 as usize)
1419            } else {
1420                Err(SimulatorError::InvalidInput(
1421                    "SWAP gate requires 2 qubits".to_string(),
1422                ))
1423            }
1424        } else {
1425            // For unsupported gates, log a warning and skip
1426            eprintln!(
1427                "Warning: Gate '{gate_name}' not yet supported in tensor network simulator, skipping"
1428            );
1429            Ok(())
1430        }
1431    }
1432}
1433
1434impl crate::simulator::Simulator for TensorNetworkSimulator {
1435    fn run<const N: usize>(
1436        &mut self,
1437        circuit: &quantrs2_circuit::prelude::Circuit<N>,
1438    ) -> crate::error::Result<crate::simulator::SimulatorResult<N>> {
1439        // Initialize zero state
1440        self.initialize_zero_state().map_err(|e| {
1441            crate::error::SimulatorError::ComputationError(format!(
1442                "Failed to initialize state: {e}"
1443            ))
1444        })?;
1445
1446        // Execute circuit gates using tensor network
1447        let gates = circuit.gates();
1448
1449        for gate in gates {
1450            // Apply gate to tensor network
1451            self.apply_circuit_gate(gate.as_ref()).map_err(|e| {
1452                crate::error::SimulatorError::ComputationError(format!("Failed to apply gate: {e}"))
1453            })?;
1454        }
1455
1456        // Contract the tensor network to get final state vector
1457        let final_state = self.contract_to_state_vector::<N>().map_err(|e| {
1458            crate::error::SimulatorError::ComputationError(format!(
1459                "Failed to contract tensor network: {e}"
1460            ))
1461        })?;
1462
1463        Ok(crate::simulator::SimulatorResult::new(final_state))
1464    }
1465}
1466
1467impl Default for TensorNetworkSimulator {
1468    fn default() -> Self {
1469        Self::new(1)
1470    }
1471}
1472
1473impl fmt::Display for TensorNetwork {
1474    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1475        writeln!(f, "TensorNetwork with {} qubits:", self.num_qubits)?;
1476        writeln!(f, "  Tensors: {}", self.tensors.len())?;
1477        writeln!(f, "  Connections: {}", self.connections.len())?;
1478        writeln!(f, "  Memory usage: {} bytes", self.memory_usage())?;
1479        Ok(())
1480    }
1481}
1482
1483// Helper functions for common gate matrices
1484fn pauli_x() -> Array2<Complex64> {
1485    Array2::from_shape_vec(
1486        (2, 2),
1487        vec![
1488            Complex64::new(0.0, 0.0),
1489            Complex64::new(1.0, 0.0),
1490            Complex64::new(1.0, 0.0),
1491            Complex64::new(0.0, 0.0),
1492        ],
1493    )
1494    .expect("Pauli-X matrix has valid 2x2 shape")
1495}
1496
1497fn pauli_y() -> Array2<Complex64> {
1498    Array2::from_shape_vec(
1499        (2, 2),
1500        vec![
1501            Complex64::new(0.0, 0.0),
1502            Complex64::new(0.0, -1.0),
1503            Complex64::new(0.0, 1.0),
1504            Complex64::new(0.0, 0.0),
1505        ],
1506    )
1507    .expect("Pauli-Y matrix has valid 2x2 shape")
1508}
1509
1510fn pauli_z() -> Array2<Complex64> {
1511    Array2::from_shape_vec(
1512        (2, 2),
1513        vec![
1514            Complex64::new(1.0, 0.0),
1515            Complex64::new(0.0, 0.0),
1516            Complex64::new(0.0, 0.0),
1517            Complex64::new(-1.0, 0.0),
1518        ],
1519    )
1520    .expect("Pauli-Z matrix has valid 2x2 shape")
1521}
1522
1523fn pauli_h() -> Array2<Complex64> {
1524    let inv_sqrt2 = 1.0 / 2.0_f64.sqrt();
1525    Array2::from_shape_vec(
1526        (2, 2),
1527        vec![
1528            Complex64::new(inv_sqrt2, 0.0),
1529            Complex64::new(inv_sqrt2, 0.0),
1530            Complex64::new(inv_sqrt2, 0.0),
1531            Complex64::new(-inv_sqrt2, 0.0),
1532        ],
1533    )
1534    .expect("Hadamard matrix has valid 2x2 shape")
1535}
1536
1537fn cnot_matrix() -> Array2<Complex64> {
1538    Array2::from_shape_vec(
1539        (4, 4),
1540        vec![
1541            Complex64::new(1.0, 0.0),
1542            Complex64::new(0.0, 0.0),
1543            Complex64::new(0.0, 0.0),
1544            Complex64::new(0.0, 0.0),
1545            Complex64::new(0.0, 0.0),
1546            Complex64::new(1.0, 0.0),
1547            Complex64::new(0.0, 0.0),
1548            Complex64::new(0.0, 0.0),
1549            Complex64::new(0.0, 0.0),
1550            Complex64::new(0.0, 0.0),
1551            Complex64::new(0.0, 0.0),
1552            Complex64::new(1.0, 0.0),
1553            Complex64::new(0.0, 0.0),
1554            Complex64::new(0.0, 0.0),
1555            Complex64::new(1.0, 0.0),
1556            Complex64::new(0.0, 0.0),
1557        ],
1558    )
1559    .expect("CNOT matrix has valid 4x4 shape")
1560}
1561
1562fn rotation_x(theta: f64) -> Array2<Complex64> {
1563    let cos_half = (theta / 2.0).cos();
1564    let sin_half = (theta / 2.0).sin();
1565    Array2::from_shape_vec(
1566        (2, 2),
1567        vec![
1568            Complex64::new(cos_half, 0.0),
1569            Complex64::new(0.0, -sin_half),
1570            Complex64::new(0.0, -sin_half),
1571            Complex64::new(cos_half, 0.0),
1572        ],
1573    )
1574    .expect("Rotation-X matrix has valid 2x2 shape")
1575}
1576
1577fn rotation_y(theta: f64) -> Array2<Complex64> {
1578    let cos_half = (theta / 2.0).cos();
1579    let sin_half = (theta / 2.0).sin();
1580    Array2::from_shape_vec(
1581        (2, 2),
1582        vec![
1583            Complex64::new(cos_half, 0.0),
1584            Complex64::new(-sin_half, 0.0),
1585            Complex64::new(sin_half, 0.0),
1586            Complex64::new(cos_half, 0.0),
1587        ],
1588    )
1589    .expect("Rotation-Y matrix has valid 2x2 shape")
1590}
1591
1592fn rotation_z(theta: f64) -> Array2<Complex64> {
1593    let exp_neg = Complex64::from_polar(1.0, -theta / 2.0);
1594    let exp_pos = Complex64::from_polar(1.0, theta / 2.0);
1595    Array2::from_shape_vec(
1596        (2, 2),
1597        vec![
1598            exp_neg,
1599            Complex64::new(0.0, 0.0),
1600            Complex64::new(0.0, 0.0),
1601            exp_pos,
1602        ],
1603    )
1604    .expect("Rotation-Z matrix has valid 2x2 shape")
1605}
1606
1607/// S gate (phase gate)
1608fn s_gate() -> Array2<Complex64> {
1609    Array2::from_shape_vec(
1610        (2, 2),
1611        vec![
1612            Complex64::new(1.0, 0.0),
1613            Complex64::new(0.0, 0.0),
1614            Complex64::new(0.0, 0.0),
1615            Complex64::new(0.0, 1.0), // i
1616        ],
1617    )
1618    .expect("S gate matrix has valid 2x2 shape")
1619}
1620
1621/// T gate (π/8 gate)
1622fn t_gate() -> Array2<Complex64> {
1623    let phase = Complex64::from_polar(1.0, std::f64::consts::PI / 4.0);
1624    Array2::from_shape_vec(
1625        (2, 2),
1626        vec![
1627            Complex64::new(1.0, 0.0),
1628            Complex64::new(0.0, 0.0),
1629            Complex64::new(0.0, 0.0),
1630            phase,
1631        ],
1632    )
1633    .expect("T gate matrix has valid 2x2 shape")
1634}
1635
1636/// CZ gate (controlled-Z)
1637fn cz_gate() -> Array2<Complex64> {
1638    Array2::from_shape_vec(
1639        (4, 4),
1640        vec![
1641            Complex64::new(1.0, 0.0),
1642            Complex64::new(0.0, 0.0),
1643            Complex64::new(0.0, 0.0),
1644            Complex64::new(0.0, 0.0),
1645            Complex64::new(0.0, 0.0),
1646            Complex64::new(1.0, 0.0),
1647            Complex64::new(0.0, 0.0),
1648            Complex64::new(0.0, 0.0),
1649            Complex64::new(0.0, 0.0),
1650            Complex64::new(0.0, 0.0),
1651            Complex64::new(1.0, 0.0),
1652            Complex64::new(0.0, 0.0),
1653            Complex64::new(0.0, 0.0),
1654            Complex64::new(0.0, 0.0),
1655            Complex64::new(0.0, 0.0),
1656            Complex64::new(-1.0, 0.0), // -1 on |11⟩
1657        ],
1658    )
1659    .expect("CZ gate matrix has valid 4x4 shape")
1660}
1661
1662/// SWAP gate
1663fn swap_gate() -> Array2<Complex64> {
1664    Array2::from_shape_vec(
1665        (4, 4),
1666        vec![
1667            Complex64::new(1.0, 0.0),
1668            Complex64::new(0.0, 0.0),
1669            Complex64::new(0.0, 0.0),
1670            Complex64::new(0.0, 0.0),
1671            Complex64::new(0.0, 0.0),
1672            Complex64::new(0.0, 0.0),
1673            Complex64::new(1.0, 0.0),
1674            Complex64::new(0.0, 0.0),
1675            Complex64::new(0.0, 0.0),
1676            Complex64::new(1.0, 0.0),
1677            Complex64::new(0.0, 0.0),
1678            Complex64::new(0.0, 0.0),
1679            Complex64::new(0.0, 0.0),
1680            Complex64::new(0.0, 0.0),
1681            Complex64::new(0.0, 0.0),
1682            Complex64::new(1.0, 0.0),
1683        ],
1684    )
1685    .expect("SWAP gate matrix has valid 4x4 shape")
1686}
1687
1688/// Advanced tensor contraction algorithms
1689pub struct AdvancedContractionAlgorithms;
1690
1691impl AdvancedContractionAlgorithms {
1692    /// Implement the HOTQR (Higher Order Tensor QR) decomposition
1693    pub fn hotqr_decomposition(tensor: &Tensor) -> Result<(Tensor, Tensor)> {
1694        // Simplified HOTQR - in practice would use specialized tensor libraries
1695        let mut id_gen = 1000; // Use high IDs to avoid conflicts
1696
1697        // Create Q and R tensors with appropriate dimensions
1698        let q_data = Array3::from_shape_fn((2, 2, 1), |(i, j, _)| {
1699            if i == j {
1700                Complex64::new(1.0, 0.0)
1701            } else {
1702                Complex64::new(0.0, 0.0)
1703            }
1704        }); // Simplified Q matrix
1705        let r_data = Array3::from_shape_fn((2, 2, 1), |(i, j, _)| {
1706            if i == j {
1707                Complex64::new(1.0, 0.0)
1708            } else {
1709                Complex64::new(0.0, 0.0)
1710            }
1711        }); // Simplified R matrix
1712
1713        let q_indices = vec![
1714            TensorIndex {
1715                id: id_gen,
1716                dimension: 2,
1717                index_type: IndexType::Virtual,
1718            },
1719            TensorIndex {
1720                id: id_gen + 1,
1721                dimension: 2,
1722                index_type: IndexType::Virtual,
1723            },
1724        ];
1725        id_gen += 2;
1726
1727        let r_indices = vec![
1728            TensorIndex {
1729                id: id_gen,
1730                dimension: 2,
1731                index_type: IndexType::Virtual,
1732            },
1733            TensorIndex {
1734                id: id_gen + 1,
1735                dimension: 2,
1736                index_type: IndexType::Virtual,
1737            },
1738        ];
1739
1740        let q_tensor = Tensor::new(q_data, q_indices, "Q".to_string());
1741        let r_tensor = Tensor::new(r_data, r_indices, "R".to_string());
1742
1743        Ok((q_tensor, r_tensor))
1744    }
1745
1746    /// Implement Tree Tensor Network contraction
1747    pub fn tree_contraction(tensors: &[Tensor]) -> Result<Complex64> {
1748        if tensors.is_empty() {
1749            return Ok(Complex64::new(1.0, 0.0));
1750        }
1751
1752        if tensors.len() == 1 {
1753            return Ok(tensors[0].data[[0, 0, 0]]);
1754        }
1755
1756        // Build binary tree for contraction
1757        let mut current_level = tensors.to_vec();
1758
1759        while current_level.len() > 1 {
1760            let mut next_level = Vec::new();
1761
1762            // Pair up tensors and contract them
1763            for chunk in current_level.chunks(2) {
1764                if chunk.len() == 2 {
1765                    // Contract the pair
1766                    let contracted = chunk[0].contract(&chunk[1], 0, 0)?;
1767                    next_level.push(contracted);
1768                } else {
1769                    // Odd tensor out, pass it to next level
1770                    next_level.push(chunk[0].clone());
1771                }
1772            }
1773
1774            current_level = next_level;
1775        }
1776
1777        Ok(current_level[0].data[[0, 0, 0]])
1778    }
1779
1780    /// Implement Matrix Product State (MPS) decomposition
1781    pub fn mps_decomposition(tensor: &Tensor, max_bond_dim: usize) -> Result<Vec<Tensor>> {
1782        // Simplified MPS decomposition
1783        let mut mps_tensors = Vec::new();
1784        let mut id_gen = 2000;
1785
1786        // For demonstration, create a simple MPS chain
1787        for i in 0..tensor.indices.len().min(4) {
1788            let bond_dim = max_bond_dim.min(4);
1789
1790            let data = Array3::zeros((2, bond_dim, 1));
1791            // Set some non-zero elements
1792            let mut mps_data = data;
1793            mps_data[[0, 0, 0]] = Complex64::new(1.0, 0.0);
1794            if bond_dim > 1 {
1795                mps_data[[1, 1, 0]] = Complex64::new(1.0, 0.0);
1796            }
1797
1798            let indices = vec![
1799                TensorIndex {
1800                    id: id_gen,
1801                    dimension: 2,
1802                    index_type: IndexType::Physical(i),
1803                },
1804                TensorIndex {
1805                    id: id_gen + 1,
1806                    dimension: bond_dim,
1807                    index_type: IndexType::Virtual,
1808                },
1809            ];
1810            id_gen += 2;
1811
1812            let mps_tensor = Tensor::new(mps_data, indices, format!("MPS_{i}"));
1813            mps_tensors.push(mps_tensor);
1814        }
1815
1816        Ok(mps_tensors)
1817    }
1818}
1819
1820#[cfg(test)]
1821mod tests {
1822    use super::*;
1823    use approx::assert_abs_diff_eq;
1824
1825    #[test]
1826    fn test_tensor_creation() {
1827        let data = Array3::zeros((2, 2, 1));
1828        let indices = vec![
1829            TensorIndex {
1830                id: 0,
1831                dimension: 2,
1832                index_type: IndexType::Physical(0),
1833            },
1834            TensorIndex {
1835                id: 1,
1836                dimension: 2,
1837                index_type: IndexType::Physical(0),
1838            },
1839        ];
1840        let tensor = Tensor::new(data, indices, "test".to_string());
1841
1842        assert_eq!(tensor.rank(), 2);
1843        assert_eq!(tensor.label, "test");
1844    }
1845
1846    #[test]
1847    fn test_tensor_network_creation() {
1848        let network = TensorNetwork::new(3);
1849        assert_eq!(network.num_qubits, 3);
1850        assert_eq!(network.tensors.len(), 0);
1851    }
1852
1853    #[test]
1854    fn test_simulator_initialization() {
1855        let mut sim = TensorNetworkSimulator::new(2);
1856        sim.initialize_zero_state()
1857            .expect("Failed to initialize zero state");
1858
1859        assert_eq!(sim.network.tensors.len(), 2);
1860    }
1861
1862    #[test]
1863    fn test_single_qubit_gate() {
1864        let mut sim = TensorNetworkSimulator::new(1);
1865        sim.initialize_zero_state()
1866            .expect("Failed to initialize zero state");
1867
1868        let initial_tensors = sim.network.tensors.len();
1869        let h_gate = QuantumGate::new(
1870            crate::adaptive_gate_fusion::GateType::Hadamard,
1871            vec![0],
1872            vec![],
1873        );
1874        sim.apply_gate(h_gate)
1875            .expect("Failed to apply Hadamard gate");
1876
1877        // Should add one more tensor for the gate
1878        assert_eq!(sim.network.tensors.len(), initial_tensors + 1);
1879    }
1880
1881    #[test]
1882    fn test_measurement() {
1883        let mut sim = TensorNetworkSimulator::new(1);
1884        sim.initialize_zero_state()
1885            .expect("Failed to initialize zero state");
1886
1887        let result = sim.measure(0).expect("Failed to measure qubit");
1888        assert!(result || !result); // Just check it returns a bool
1889    }
1890
1891    #[test]
1892    fn test_contraction_strategies() {
1893        let _sim = TensorNetworkSimulator::new(2);
1894
1895        // Test different strategies don't crash
1896        let strat1 = ContractionStrategy::Sequential;
1897        let strat2 = ContractionStrategy::Greedy;
1898        let strat3 = ContractionStrategy::Custom(vec![0, 1]);
1899
1900        assert_ne!(strat1, strat2);
1901        assert_ne!(strat2, strat3);
1902    }
1903
1904    #[test]
1905    fn test_gate_matrices() {
1906        let h = pauli_h();
1907        assert_abs_diff_eq!(h[[0, 0]].re, 1.0 / 2.0_f64.sqrt(), epsilon = 1e-10);
1908
1909        let x = pauli_x();
1910        assert_abs_diff_eq!(x[[0, 1]].re, 1.0, epsilon = 1e-10);
1911        assert_abs_diff_eq!(x[[1, 0]].re, 1.0, epsilon = 1e-10);
1912    }
1913
1914    #[test]
1915    fn test_enhanced_tensor_contraction() {
1916        let mut id_gen = 0;
1917
1918        // Create two simple tensors for contraction
1919        let tensor_a = Tensor::identity(0, &mut id_gen);
1920        let tensor_b = Tensor::identity(0, &mut id_gen);
1921
1922        // Contract them
1923        let result = tensor_a.contract(&tensor_b, 1, 0);
1924        assert!(result.is_ok());
1925
1926        let contracted = result.expect("Failed to contract tensors");
1927        assert!(!contracted.data.is_empty());
1928    }
1929
1930    #[test]
1931    fn test_contraction_cost_estimation() {
1932        let network = TensorNetwork::new(2);
1933        let mut id_gen = 0;
1934
1935        let tensor_a = Tensor::identity(0, &mut id_gen);
1936        let tensor_b = Tensor::identity(1, &mut id_gen);
1937
1938        let cost = network.estimate_contraction_cost(&tensor_a, &tensor_b);
1939        assert!(cost > 0.0);
1940        assert!(cost.is_finite());
1941    }
1942
1943    #[test]
1944    fn test_optimal_contraction_order() {
1945        let mut network = TensorNetwork::new(3);
1946        let mut id_gen = 0;
1947
1948        // Add some tensors
1949        for i in 0..3 {
1950            let tensor = Tensor::identity(i, &mut id_gen);
1951            network.add_tensor(tensor);
1952        }
1953
1954        let order = network.find_optimal_contraction_order();
1955        assert!(order.is_ok());
1956
1957        let order_vec = order.expect("Failed to find optimal contraction order");
1958        assert!(!order_vec.is_empty());
1959    }
1960
1961    #[test]
1962    fn test_greedy_contraction_strategy() {
1963        let mut simulator =
1964            TensorNetworkSimulator::new(2).with_strategy(ContractionStrategy::Greedy);
1965
1966        // Add some tensors to the network
1967        let mut id_gen = 0;
1968        for i in 0..2 {
1969            let tensor = Tensor::identity(i, &mut id_gen);
1970            simulator.network.add_tensor(tensor);
1971        }
1972
1973        let result = simulator.contract_greedy();
1974        assert!(result.is_ok());
1975
1976        let amplitude = result.expect("Failed to contract network");
1977        assert!(amplitude.norm() >= 0.0);
1978    }
1979
1980    #[test]
1981    fn test_basis_state_boundary_conditions() {
1982        let mut network = TensorNetwork::new(2);
1983
1984        // Add identity tensors
1985        let mut id_gen = 0;
1986        for i in 0..2 {
1987            let tensor = Tensor::identity(i, &mut id_gen);
1988            network.add_tensor(tensor);
1989        }
1990
1991        // Set boundary conditions for |01⟩ state
1992        let result = network.set_basis_state_boundary(1); // |01⟩ = binary 01
1993        assert!(result.is_ok());
1994    }
1995
1996    #[test]
1997    fn test_full_state_vector_contraction() {
1998        let simulator = TensorNetworkSimulator::new(2);
1999
2000        let result = simulator.contract_network_to_state_vector();
2001        assert!(result.is_ok());
2002
2003        let state_vector = result.expect("Failed to contract network to state vector");
2004        assert_eq!(state_vector.len(), 4); // 2^2 = 4 for 2 qubits
2005
2006        // Should default to |00⟩ state
2007        assert!((state_vector[0].norm() - 1.0).abs() < 1e-10);
2008    }
2009
2010    #[test]
2011    fn test_advanced_contraction_algorithms() {
2012        let mut id_gen = 0;
2013        let tensor = Tensor::identity(0, &mut id_gen);
2014
2015        // Test HOTQR decomposition
2016        let qr_result = AdvancedContractionAlgorithms::hotqr_decomposition(&tensor);
2017        assert!(qr_result.is_ok());
2018
2019        let (q, r) = qr_result.expect("Failed to perform HOTQR decomposition");
2020        assert_eq!(q.label, "Q");
2021        assert_eq!(r.label, "R");
2022    }
2023
2024    #[test]
2025    fn test_tree_contraction() {
2026        let mut id_gen = 0;
2027        let tensors = vec![
2028            Tensor::identity(0, &mut id_gen),
2029            Tensor::identity(1, &mut id_gen),
2030        ];
2031
2032        let result = AdvancedContractionAlgorithms::tree_contraction(&tensors);
2033        assert!(result.is_ok());
2034
2035        let amplitude = result.expect("Failed to perform tree contraction");
2036        assert!(amplitude.norm() >= 0.0);
2037    }
2038}