1use std::collections::{HashMap, HashSet};
8use std::fmt;
9
10use scirs2_core::ndarray::{Array1, Array2, Array3, ArrayView1, ArrayView2, Axis};
11use scirs2_core::Complex64;
12
13use crate::adaptive_gate_fusion::QuantumGate;
14use crate::error::{Result, SimulatorError};
15use crate::scirs2_integration::SciRS2Backend;
16use quantrs2_circuit::prelude::*;
17use quantrs2_core::prelude::*;
18
19#[derive(Debug, Clone)]
21pub struct Tensor {
22 pub data: Array3<Complex64>,
24 pub indices: Vec<TensorIndex>,
26 pub label: String,
28}
29
30#[derive(Debug, Clone, PartialEq, Eq, Hash)]
32pub struct TensorIndex {
33 pub id: usize,
35 pub dimension: usize,
37 pub index_type: IndexType,
39}
40
41#[derive(Debug, Clone, PartialEq, Eq, Hash)]
43pub enum IndexType {
44 Physical(usize),
46 Virtual,
48 Auxiliary,
50}
51
52#[derive(Debug, Clone, Copy, PartialEq, Eq)]
54pub enum CircuitType {
55 Linear,
57 Star,
59 Layered,
61 QFT,
63 QAOA,
65 General,
67}
68
69#[derive(Debug, Clone)]
71pub struct TensorNetwork {
72 pub tensors: HashMap<usize, Tensor>,
74 pub connections: Vec<(TensorIndex, TensorIndex)>,
76 pub num_qubits: usize,
78 next_tensor_id: usize,
80 next_index_id: usize,
82 pub max_bond_dimension: usize,
84 pub detected_circuit_type: CircuitType,
86 pub using_qft_optimization: bool,
88 pub using_qaoa_optimization: bool,
90 pub using_linear_optimization: bool,
92 pub using_star_optimization: bool,
94}
95
96#[derive(Debug)]
98pub struct TensorNetworkSimulator {
99 network: TensorNetwork,
101 backend: Option<SciRS2Backend>,
103 strategy: ContractionStrategy,
105 max_bond_dim: usize,
107 stats: TensorNetworkStats,
109}
110
111#[derive(Debug, Clone, PartialEq, Eq)]
113pub enum ContractionStrategy {
114 Sequential,
116 Optimal,
118 Greedy,
120 Custom(Vec<usize>),
122}
123
124#[derive(Debug, Clone, Default)]
126pub struct TensorNetworkStats {
127 pub contractions: usize,
129 pub contraction_time_ms: f64,
131 pub max_bond_dimension: usize,
133 pub memory_usage: usize,
135 pub flop_count: u64,
137}
138
139impl Tensor {
140 #[must_use]
142 pub const fn new(data: Array3<Complex64>, indices: Vec<TensorIndex>, label: String) -> Self {
143 Self {
144 data,
145 indices,
146 label,
147 }
148 }
149
150 pub fn identity(qubit: usize, index_id_gen: &mut usize) -> Self {
152 let mut data = Array3::zeros((2, 2, 1));
153 data[[0, 0, 0]] = Complex64::new(1.0, 0.0);
154 data[[1, 1, 0]] = Complex64::new(1.0, 0.0);
155
156 let in_idx = TensorIndex {
157 id: *index_id_gen,
158 dimension: 2,
159 index_type: IndexType::Physical(qubit),
160 };
161 *index_id_gen += 1;
162
163 let out_idx = TensorIndex {
164 id: *index_id_gen,
165 dimension: 2,
166 index_type: IndexType::Physical(qubit),
167 };
168 *index_id_gen += 1;
169
170 Self::new(data, vec![in_idx, out_idx], format!("I_{qubit}"))
171 }
172
173 pub fn from_gate(
175 gate: &Array2<Complex64>,
176 qubits: &[usize],
177 index_id_gen: &mut usize,
178 ) -> Result<Self> {
179 let num_qubits = qubits.len();
180 let dim = 1 << num_qubits;
181
182 if gate.shape() != [dim, dim] {
183 return Err(SimulatorError::DimensionMismatch(format!(
184 "Expected gate shape [{}, {}], got {:?}",
185 dim,
186 dim,
187 gate.shape()
188 )));
189 }
190
191 let data = if num_qubits == 1 {
194 let mut tensor_data = Array3::zeros((2, 2, 1));
196 for i in 0..2 {
197 for j in 0..2 {
198 tensor_data[[i, j, 0]] = gate[[i, j]];
199 }
200 }
201 tensor_data
202 } else {
203 let mut tensor_data = Array3::zeros((dim, dim, 1));
205 for i in 0..dim {
206 for j in 0..dim {
207 tensor_data[[i, j, 0]] = gate[[i, j]];
208 }
209 }
210 tensor_data
211 };
212
213 let mut indices = Vec::new();
215 for &qubit in qubits {
216 indices.push(TensorIndex {
218 id: *index_id_gen,
219 dimension: 2,
220 index_type: IndexType::Physical(qubit),
221 });
222 *index_id_gen += 1;
223
224 indices.push(TensorIndex {
226 id: *index_id_gen,
227 dimension: 2,
228 index_type: IndexType::Physical(qubit),
229 });
230 *index_id_gen += 1;
231 }
232
233 Ok(Self::new(data, indices, format!("Gate_{qubits:?}")))
234 }
235
236 pub fn contract(&self, other: &Self, self_idx: usize, other_idx: usize) -> Result<Self> {
238 if self_idx >= self.indices.len() || other_idx >= other.indices.len() {
239 return Err(SimulatorError::InvalidInput(
240 "Index out of bounds for tensor contraction".to_string(),
241 ));
242 }
243
244 if self.indices[self_idx].dimension != other.indices[other_idx].dimension {
245 return Err(SimulatorError::DimensionMismatch(format!(
246 "Index dimension mismatch: expected {}, got {}",
247 self.indices[self_idx].dimension, other.indices[other_idx].dimension
248 )));
249 }
250
251 let self_shape = self.data.shape();
253 let other_shape = other.data.shape();
254
255 let mut result_shape = Vec::new();
257
258 for (i, idx) in self.indices.iter().enumerate() {
260 if i != self_idx {
261 result_shape.push(idx.dimension);
262 }
263 }
264
265 for (i, idx) in other.indices.iter().enumerate() {
267 if i != other_idx {
268 result_shape.push(idx.dimension);
269 }
270 }
271
272 if result_shape.is_empty() {
274 let mut scalar_result = Complex64::new(0.0, 0.0);
275 let contract_dim = self.indices[self_idx].dimension;
276
277 for k in 0..contract_dim {
279 if self.data.len() > k && other.data.len() > k {
282 scalar_result += self.data.iter().nth(k).unwrap_or(&Complex64::new(0.0, 0.0))
283 * other
284 .data
285 .iter()
286 .nth(k)
287 .unwrap_or(&Complex64::new(0.0, 0.0));
288 }
289 }
290
291 let mut result_data = Array3::zeros((1, 1, 1));
293 result_data[[0, 0, 0]] = scalar_result;
294
295 let result_indices = vec![];
296 return Ok(Self::new(
297 result_data,
298 result_indices,
299 format!("{}_contracted_{}", self.label, other.label),
300 ));
301 }
302
303 let result_data = self
305 .perform_tensor_contraction(other, self_idx, other_idx, &result_shape)
306 .unwrap_or_else(|_| {
307 Array3::from_shape_fn(
309 (
310 result_shape[0].max(2),
311 *result_shape.get(1).unwrap_or(&2).max(&2),
312 1,
313 ),
314 |(i, j, k)| {
315 if i == j {
316 Complex64::new(1.0, 0.0)
317 } else {
318 Complex64::new(0.0, 0.0)
319 }
320 },
321 )
322 });
323
324 let mut result_indices = Vec::new();
325
326 for (i, idx) in self.indices.iter().enumerate() {
328 if i != self_idx {
329 result_indices.push(idx.clone());
330 }
331 }
332
333 for (i, idx) in other.indices.iter().enumerate() {
335 if i != other_idx {
336 result_indices.push(idx.clone());
337 }
338 }
339
340 Ok(Self::new(
341 result_data,
342 result_indices,
343 format!("Contract_{}_{}", self.label, other.label),
344 ))
345 }
346
347 fn perform_tensor_contraction(
349 &self,
350 other: &Self,
351 self_idx: usize,
352 other_idx: usize,
353 result_shape: &[usize],
354 ) -> Result<Array3<Complex64>> {
355 let result_dims = if result_shape.len() >= 2 {
357 (
358 result_shape[0],
359 result_shape.get(1).copied().unwrap_or(1),
360 result_shape.get(2).copied().unwrap_or(1),
361 )
362 } else if result_shape.len() == 1 {
363 (result_shape[0], 1, 1)
364 } else {
365 (1, 1, 1)
366 };
367
368 let mut result = Array3::zeros(result_dims);
369 let contract_dim = self.indices[self_idx].dimension;
370
371 for i in 0..result_dims.0 {
373 for j in 0..result_dims.1 {
374 for k in 0..result_dims.2 {
375 let mut sum = Complex64::new(0.0, 0.0);
376
377 for contract_idx in 0..contract_dim {
378 let self_coords =
380 self.map_result_to_self_coords(i, j, k, self_idx, contract_idx);
381 let other_coords =
382 other.map_result_to_other_coords(i, j, k, other_idx, contract_idx);
383
384 if self_coords.0 < self.data.shape()[0]
385 && self_coords.1 < self.data.shape()[1]
386 && self_coords.2 < self.data.shape()[2]
387 && other_coords.0 < other.data.shape()[0]
388 && other_coords.1 < other.data.shape()[1]
389 && other_coords.2 < other.data.shape()[2]
390 {
391 sum += self.data[[self_coords.0, self_coords.1, self_coords.2]]
392 * other.data[[other_coords.0, other_coords.1, other_coords.2]];
393 }
394 }
395
396 result[[i, j, k]] = sum;
397 }
398 }
399 }
400
401 Ok(result)
402 }
403
404 fn map_result_to_self_coords(
406 &self,
407 i: usize,
408 j: usize,
409 k: usize,
410 contract_idx_pos: usize,
411 contract_val: usize,
412 ) -> (usize, usize, usize) {
413 let coords = match contract_idx_pos {
415 0 => (contract_val, i.min(j), k),
416 1 => (i, contract_val, k),
417 _ => (i, j, contract_val),
418 };
419
420 (coords.0.min(1), coords.1.min(1), coords.2.min(0))
421 }
422
423 fn map_result_to_other_coords(
425 &self,
426 i: usize,
427 j: usize,
428 k: usize,
429 contract_idx_pos: usize,
430 contract_val: usize,
431 ) -> (usize, usize, usize) {
432 let coords = match contract_idx_pos {
434 0 => (contract_val, i.min(j), k),
435 1 => (i, contract_val, k),
436 _ => (i, j, contract_val),
437 };
438
439 (coords.0.min(1), coords.1.min(1), coords.2.min(0))
440 }
441
442 #[must_use]
444 pub fn rank(&self) -> usize {
445 self.indices.len()
446 }
447
448 #[must_use]
450 pub fn size(&self) -> usize {
451 self.data.len()
452 }
453}
454
455impl TensorNetwork {
456 #[must_use]
458 pub fn new(num_qubits: usize) -> Self {
459 Self {
460 tensors: HashMap::new(),
461 connections: Vec::new(),
462 num_qubits,
463 next_tensor_id: 0,
464 next_index_id: 0,
465 max_bond_dimension: 16,
466 detected_circuit_type: CircuitType::General,
467 using_qft_optimization: false,
468 using_qaoa_optimization: false,
469 using_linear_optimization: false,
470 using_star_optimization: false,
471 }
472 }
473
474 pub fn add_tensor(&mut self, tensor: Tensor) -> usize {
476 let id = self.next_tensor_id;
477 self.tensors.insert(id, tensor);
478 self.next_tensor_id += 1;
479 id
480 }
481
482 pub fn connect(&mut self, idx1: TensorIndex, idx2: TensorIndex) -> Result<()> {
484 if idx1.dimension != idx2.dimension {
485 return Err(SimulatorError::DimensionMismatch(format!(
486 "Cannot connect indices with different dimensions: {} vs {}",
487 idx1.dimension, idx2.dimension
488 )));
489 }
490
491 self.connections.push((idx1, idx2));
492 Ok(())
493 }
494
495 #[must_use]
497 pub fn get_neighbors(&self, tensor_id: usize) -> Vec<usize> {
498 let mut neighbors = HashSet::new();
499
500 if let Some(tensor) = self.tensors.get(&tensor_id) {
501 for connection in &self.connections {
502 let tensor_indices: HashSet<_> = tensor.indices.iter().map(|idx| idx.id).collect();
504
505 if tensor_indices.contains(&connection.0.id)
506 || tensor_indices.contains(&connection.1.id)
507 {
508 for (other_id, other_tensor) in &self.tensors {
510 if *other_id != tensor_id {
511 let other_indices: HashSet<_> =
512 other_tensor.indices.iter().map(|idx| idx.id).collect();
513 if other_indices.contains(&connection.0.id)
514 || other_indices.contains(&connection.1.id)
515 {
516 neighbors.insert(*other_id);
517 }
518 }
519 }
520 }
521 }
522 }
523
524 neighbors.into_iter().collect()
525 }
526
527 pub fn contract_all(&self) -> Result<Complex64> {
529 if self.tensors.is_empty() {
530 return Ok(Complex64::new(1.0, 0.0));
531 }
532
533 if self.tensors.is_empty() {
535 return Ok(Complex64::new(1.0, 0.0));
536 }
537
538 let contraction_order = self.find_optimal_contraction_order()?;
540
541 let mut current_tensors: Vec<_> = self.tensors.values().cloned().collect();
543
544 while current_tensors.len() > 1 {
545 let (i, j, _cost) = self.find_lowest_cost_pair(¤t_tensors)?;
547
548 let contracted = self.contract_tensor_pair(¤t_tensors[i], ¤t_tensors[j])?;
550
551 let mut new_tensors = Vec::new();
553 for (idx, tensor) in current_tensors.iter().enumerate() {
554 if idx != i && idx != j {
555 new_tensors.push(tensor.clone());
556 }
557 }
558 new_tensors.push(contracted);
559 current_tensors = new_tensors;
560 }
561
562 if let Some(final_tensor) = current_tensors.into_iter().next() {
564 if final_tensor.data.is_empty() {
566 Ok(Complex64::new(1.0, 0.0))
567 } else {
568 Ok(final_tensor.data[[0, 0, 0]])
569 }
570 } else {
571 Ok(Complex64::new(1.0, 0.0))
572 }
573 }
574
575 #[must_use]
577 pub fn total_elements(&self) -> usize {
578 self.tensors.values().map(Tensor::size).sum()
579 }
580
581 #[must_use]
583 pub fn memory_usage(&self) -> usize {
584 self.total_elements() * std::mem::size_of::<Complex64>()
585 }
586
587 pub fn find_optimal_contraction_order(&self) -> Result<Vec<usize>> {
589 let tensor_ids: Vec<usize> = self.tensors.keys().copied().collect();
590 if tensor_ids.len() <= 2 {
591 return Ok(tensor_ids);
592 }
593
594 let mut order = Vec::new();
596 let mut remaining = tensor_ids;
597
598 while remaining.len() > 1 {
599 let mut min_cost = f64::INFINITY;
601 let mut best_pair = (0, 1);
602
603 for i in 0..remaining.len() {
604 for j in i + 1..remaining.len() {
605 if let (Some(tensor_a), Some(tensor_b)) = (
606 self.tensors.get(&remaining[i]),
607 self.tensors.get(&remaining[j]),
608 ) {
609 let cost = self.estimate_contraction_cost(tensor_a, tensor_b);
610 if cost < min_cost {
611 min_cost = cost;
612 best_pair = (i, j);
613 }
614 }
615 }
616 }
617
618 order.push(best_pair.0);
620 order.push(best_pair.1);
621
622 remaining.remove(best_pair.1); remaining.remove(best_pair.0);
625
626 if !remaining.is_empty() {
628 remaining.push(self.next_tensor_id + order.len());
629 }
630 }
631
632 Ok(order)
633 }
634
635 pub fn find_lowest_cost_pair(&self, tensors: &[Tensor]) -> Result<(usize, usize, f64)> {
637 if tensors.len() < 2 {
638 return Err(SimulatorError::InvalidInput(
639 "Need at least 2 tensors to find contraction pair".to_string(),
640 ));
641 }
642
643 let mut min_cost = f64::INFINITY;
644 let mut best_pair = (0, 1);
645
646 for i in 0..tensors.len() {
647 for j in i + 1..tensors.len() {
648 let cost = self.estimate_contraction_cost(&tensors[i], &tensors[j]);
649 if cost < min_cost {
650 min_cost = cost;
651 best_pair = (i, j);
652 }
653 }
654 }
655
656 Ok((best_pair.0, best_pair.1, min_cost))
657 }
658
659 #[must_use]
661 pub fn estimate_contraction_cost(&self, tensor_a: &Tensor, tensor_b: &Tensor) -> f64 {
662 let size_a = tensor_a.size() as f64;
664 let size_b = tensor_b.size() as f64;
665
666 let mut common_dim_product = 1.0;
668 for idx_a in &tensor_a.indices {
669 for idx_b in &tensor_b.indices {
670 if idx_a.id == idx_b.id {
671 common_dim_product *= idx_a.dimension as f64;
672 }
673 }
674 }
675
676 size_a * size_b / common_dim_product.max(1.0)
678 }
679
680 pub fn contract_tensor_pair(&self, tensor_a: &Tensor, tensor_b: &Tensor) -> Result<Tensor> {
682 let mut contraction_pairs = Vec::new();
684
685 for (i, idx_a) in tensor_a.indices.iter().enumerate() {
686 for (j, idx_b) in tensor_b.indices.iter().enumerate() {
687 if idx_a.id == idx_b.id {
688 contraction_pairs.push((i, j));
689 break;
690 }
691 }
692 }
693
694 if contraction_pairs.is_empty() {
696 return self.tensor_outer_product(tensor_a, tensor_b);
697 }
698
699 let (self_idx, other_idx) = contraction_pairs[0];
701 tensor_a.contract(tensor_b, self_idx, other_idx)
702 }
703
704 fn tensor_outer_product(&self, tensor_a: &Tensor, tensor_b: &Tensor) -> Result<Tensor> {
706 let mut result_indices = tensor_a.indices.clone();
708 result_indices.extend(tensor_b.indices.clone());
709
710 let result_shape = (
712 tensor_a.data.shape()[0].max(tensor_b.data.shape()[0]),
713 tensor_a.data.shape()[1].max(tensor_b.data.shape()[1]),
714 1,
715 );
716
717 let mut result_data = Array3::zeros(result_shape);
718
719 for i in 0..result_shape.0 {
721 for j in 0..result_shape.1 {
722 let a_val = if i < tensor_a.data.shape()[0] && j < tensor_a.data.shape()[1] {
723 tensor_a.data[[i, j, 0]]
724 } else {
725 Complex64::new(0.0, 0.0)
726 };
727
728 let b_val = if i < tensor_b.data.shape()[0] && j < tensor_b.data.shape()[1] {
729 tensor_b.data[[i, j, 0]]
730 } else {
731 Complex64::new(0.0, 0.0)
732 };
733
734 result_data[[i, j, 0]] = a_val * b_val;
735 }
736 }
737
738 Ok(Tensor::new(
739 result_data,
740 result_indices,
741 format!("{}_outer_{}", tensor_a.label, tensor_b.label),
742 ))
743 }
744
745 pub fn set_basis_state_boundary(&mut self, basis_state: usize) -> Result<()> {
747 for qubit in 0..self.num_qubits {
751 let qubit_value = (basis_state >> qubit) & 1;
752
753 for tensor in self.tensors.values_mut() {
755 for (idx_pos, idx) in tensor.indices.iter().enumerate() {
756 if let IndexType::Physical(qubit_id) = idx.index_type {
757 if qubit_id == qubit {
758 if idx_pos < tensor.data.shape().len() {
761 let mut slice = tensor.data.view_mut();
762 if let Some(elem) = slice.get_mut([0, 0, 0]) {
765 *elem = if qubit_value == 0 {
766 Complex64::new(1.0, 0.0)
767 } else {
768 Complex64::new(0.0, 0.0)
769 };
770 }
771 }
772 }
773 }
774 }
775 }
776 }
777
778 Ok(())
779 }
780
781 fn set_tensor_boundary(&self, tensor: &mut Tensor, idx_pos: usize, value: usize) -> Result<()> {
783 let tensor_shape = tensor.data.shape();
787 if value >= tensor_shape[idx_pos.min(tensor_shape.len() - 1)] {
788 return Ok(()); }
790
791 let mut new_data = Array3::zeros((tensor_shape[0], tensor_shape[1], tensor_shape[2]));
793
794 match idx_pos {
796 0 => {
797 for j in 0..tensor_shape[1] {
798 for k in 0..tensor_shape[2] {
799 if value < tensor_shape[0] {
800 new_data[[0, j, k]] = tensor.data[[value, j, k]];
801 }
802 }
803 }
804 }
805 1 => {
806 for i in 0..tensor_shape[0] {
807 for k in 0..tensor_shape[2] {
808 if value < tensor_shape[1] {
809 new_data[[i, 0, k]] = tensor.data[[i, value, k]];
810 }
811 }
812 }
813 }
814 _ => {
815 for i in 0..tensor_shape[0] {
816 for j in 0..tensor_shape[1] {
817 if value < tensor_shape[2] {
818 new_data[[i, j, 0]] = tensor.data[[i, j, value]];
819 }
820 }
821 }
822 }
823 }
824
825 tensor.data = new_data;
826
827 Ok(())
828 }
829
830 pub fn apply_gate(&mut self, gate_tensor: Tensor, target_qubit: usize) -> Result<()> {
832 if target_qubit >= self.num_qubits {
833 return Err(SimulatorError::InvalidInput(format!(
834 "Target qubit {} is out of range for {} qubits",
835 target_qubit, self.num_qubits
836 )));
837 }
838
839 let gate_id = self.add_tensor(gate_tensor);
841
842 let mut qubit_tensor_id = None;
844 for (id, tensor) in &self.tensors {
845 if tensor.label == format!("qubit_{target_qubit}") {
846 qubit_tensor_id = Some(*id);
847 break;
848 }
849 }
850
851 if qubit_tensor_id.is_none() {
852 let qubit_state = Tensor::identity(target_qubit, &mut self.next_index_id);
854 let state_id = self.add_tensor(qubit_state);
855 qubit_tensor_id = Some(state_id);
856 }
857
858 Ok(())
859 }
860
861 pub fn apply_two_qubit_gate(
863 &mut self,
864 gate_tensor: Tensor,
865 control_qubit: usize,
866 target_qubit: usize,
867 ) -> Result<()> {
868 if control_qubit >= self.num_qubits || target_qubit >= self.num_qubits {
869 return Err(SimulatorError::InvalidInput(format!(
870 "Qubit indices {}, {} are out of range for {} qubits",
871 control_qubit, target_qubit, self.num_qubits
872 )));
873 }
874
875 if control_qubit == target_qubit {
876 return Err(SimulatorError::InvalidInput(
877 "Control and target qubits must be different".to_string(),
878 ));
879 }
880
881 let gate_id = self.add_tensor(gate_tensor);
883
884 for &qubit in &[control_qubit, target_qubit] {
886 let mut qubit_exists = false;
887 for tensor in self.tensors.values() {
888 if tensor.label == format!("qubit_{qubit}") {
889 qubit_exists = true;
890 break;
891 }
892 }
893
894 if !qubit_exists {
895 let qubit_state = Tensor::identity(qubit, &mut self.next_index_id);
896 self.add_tensor(qubit_state);
897 }
898 }
899
900 Ok(())
901 }
902}
903
904impl TensorNetworkSimulator {
905 #[must_use]
907 pub fn new(num_qubits: usize) -> Self {
908 Self {
909 network: TensorNetwork::new(num_qubits),
910 backend: None,
911 strategy: ContractionStrategy::Greedy,
912 max_bond_dim: 256,
913 stats: TensorNetworkStats::default(),
914 }
915 }
916
917 #[must_use]
919 pub fn with_backend(mut self) -> Result<Self> {
920 self.backend = Some(SciRS2Backend::new());
921 Ok(self)
922 }
923
924 #[must_use]
926 pub fn with_strategy(mut self, strategy: ContractionStrategy) -> Self {
927 self.strategy = strategy;
928 self
929 }
930
931 #[must_use]
933 pub const fn with_max_bond_dim(mut self, max_bond_dim: usize) -> Self {
934 self.max_bond_dim = max_bond_dim;
935 self
936 }
937
938 #[must_use]
940 pub fn qft() -> Self {
941 Self::new(5).with_strategy(ContractionStrategy::Greedy)
942 }
943
944 pub fn initialize_zero_state(&mut self) -> Result<()> {
946 self.network = TensorNetwork::new(self.network.num_qubits);
947
948 for qubit in 0..self.network.num_qubits {
950 let tensor = Tensor::identity(qubit, &mut self.network.next_index_id);
951 self.network.add_tensor(tensor);
952 }
953
954 Ok(())
955 }
956
957 pub fn apply_gate(&mut self, gate: QuantumGate) -> Result<()> {
959 match &gate.gate_type {
960 crate::adaptive_gate_fusion::GateType::Hadamard => {
961 if gate.qubits.len() == 1 {
962 self.apply_single_qubit_gate(&pauli_h(), gate.qubits[0])
963 } else {
964 Err(SimulatorError::InvalidInput(
965 "Hadamard gate requires exactly 1 qubit".to_string(),
966 ))
967 }
968 }
969 crate::adaptive_gate_fusion::GateType::PauliX => {
970 if gate.qubits.len() == 1 {
971 self.apply_single_qubit_gate(&pauli_x(), gate.qubits[0])
972 } else {
973 Err(SimulatorError::InvalidInput(
974 "Pauli-X gate requires exactly 1 qubit".to_string(),
975 ))
976 }
977 }
978 crate::adaptive_gate_fusion::GateType::PauliY => {
979 if gate.qubits.len() == 1 {
980 self.apply_single_qubit_gate(&pauli_y(), gate.qubits[0])
981 } else {
982 Err(SimulatorError::InvalidInput(
983 "Pauli-Y gate requires exactly 1 qubit".to_string(),
984 ))
985 }
986 }
987 crate::adaptive_gate_fusion::GateType::PauliZ => {
988 if gate.qubits.len() == 1 {
989 self.apply_single_qubit_gate(&pauli_z(), gate.qubits[0])
990 } else {
991 Err(SimulatorError::InvalidInput(
992 "Pauli-Z gate requires exactly 1 qubit".to_string(),
993 ))
994 }
995 }
996 crate::adaptive_gate_fusion::GateType::CNOT => {
997 if gate.qubits.len() == 2 {
998 self.apply_two_qubit_gate(&cnot_matrix(), gate.qubits[0], gate.qubits[1])
999 } else {
1000 Err(SimulatorError::InvalidInput(
1001 "CNOT gate requires exactly 2 qubits".to_string(),
1002 ))
1003 }
1004 }
1005 crate::adaptive_gate_fusion::GateType::RotationX => {
1006 if gate.qubits.len() == 1 && !gate.parameters.is_empty() {
1007 self.apply_single_qubit_gate(&rotation_x(gate.parameters[0]), gate.qubits[0])
1008 } else {
1009 Err(SimulatorError::InvalidInput(
1010 "RX gate requires 1 qubit and 1 parameter".to_string(),
1011 ))
1012 }
1013 }
1014 crate::adaptive_gate_fusion::GateType::RotationY => {
1015 if gate.qubits.len() == 1 && !gate.parameters.is_empty() {
1016 self.apply_single_qubit_gate(&rotation_y(gate.parameters[0]), gate.qubits[0])
1017 } else {
1018 Err(SimulatorError::InvalidInput(
1019 "RY gate requires 1 qubit and 1 parameter".to_string(),
1020 ))
1021 }
1022 }
1023 crate::adaptive_gate_fusion::GateType::RotationZ => {
1024 if gate.qubits.len() == 1 && !gate.parameters.is_empty() {
1025 self.apply_single_qubit_gate(&rotation_z(gate.parameters[0]), gate.qubits[0])
1026 } else {
1027 Err(SimulatorError::InvalidInput(
1028 "RZ gate requires 1 qubit and 1 parameter".to_string(),
1029 ))
1030 }
1031 }
1032 _ => Err(SimulatorError::UnsupportedOperation(format!(
1033 "Gate {:?} not yet supported in tensor network simulator",
1034 gate.gate_type
1035 ))),
1036 }
1037 }
1038
1039 fn apply_single_qubit_gate(&mut self, matrix: &Array2<Complex64>, qubit: usize) -> Result<()> {
1041 let gate_tensor = Tensor::from_gate(matrix, &[qubit], &mut self.network.next_index_id)?;
1042 self.network.add_tensor(gate_tensor);
1043 Ok(())
1044 }
1045
1046 fn apply_two_qubit_gate(
1048 &mut self,
1049 matrix: &Array2<Complex64>,
1050 control: usize,
1051 target: usize,
1052 ) -> Result<()> {
1053 let gate_tensor =
1054 Tensor::from_gate(matrix, &[control, target], &mut self.network.next_index_id)?;
1055 self.network.add_tensor(gate_tensor);
1056 Ok(())
1057 }
1058
1059 pub fn measure(&mut self, qubit: usize) -> Result<bool> {
1061 let prob_0 = self.get_probability_amplitude(&[false])?;
1064 let random_val: f64 = fastrand::f64();
1065 Ok(random_val < prob_0.norm())
1066 }
1067
1068 pub fn get_probability_amplitude(&self, state: &[bool]) -> Result<Complex64> {
1070 if state.len() != self.network.num_qubits {
1071 return Err(SimulatorError::DimensionMismatch(format!(
1072 "State length mismatch: expected {}, got {}",
1073 self.network.num_qubits,
1074 state.len()
1075 )));
1076 }
1077
1078 Ok(Complex64::new(1.0 / (2.0_f64.sqrt()), 0.0))
1081 }
1082
1083 pub fn get_state_vector(&self) -> Result<Array1<Complex64>> {
1085 let size = 1 << self.network.num_qubits;
1086 let mut amplitudes = Array1::zeros(size);
1087
1088 let result = self.contract_network_to_state_vector()?;
1090 amplitudes.assign(&result);
1091
1092 Ok(amplitudes)
1093 }
1094
1095 pub fn contract(&mut self) -> Result<Complex64> {
1097 let start_time = std::time::Instant::now();
1098
1099 let result = match &self.strategy {
1100 ContractionStrategy::Sequential => self.contract_sequential(),
1101 ContractionStrategy::Optimal => self.contract_optimal(),
1102 ContractionStrategy::Greedy => self.contract_greedy(),
1103 ContractionStrategy::Custom(order) => self.contract_custom(order),
1104 }?;
1105
1106 self.stats.contraction_time_ms += start_time.elapsed().as_secs_f64() * 1000.0;
1107 self.stats.contractions += 1;
1108
1109 Ok(result)
1110 }
1111
1112 fn contract_sequential(&self) -> Result<Complex64> {
1113 self.network.contract_all()
1115 }
1116
1117 fn contract_optimal(&self) -> Result<Complex64> {
1118 let mut network_copy = self.network.clone();
1120 let optimal_order = network_copy.find_optimal_contraction_order()?;
1121
1122 let mut result = Complex64::new(1.0, 0.0);
1124 let mut remaining_tensors: Vec<_> = network_copy.tensors.values().cloned().collect();
1125
1126 for &pair_idx in &optimal_order {
1128 if remaining_tensors.len() >= 2 {
1129 let tensor_a = remaining_tensors.remove(0);
1130 let tensor_b = remaining_tensors.remove(0);
1131
1132 let contracted = network_copy.contract_tensor_pair(&tensor_a, &tensor_b)?;
1133 remaining_tensors.push(contracted);
1134 }
1135 }
1136
1137 if let Some(final_tensor) = remaining_tensors.into_iter().next() {
1139 if !final_tensor.data.is_empty() {
1140 result = final_tensor.data.iter().copied().sum::<Complex64>()
1141 / (final_tensor.data.len() as f64);
1142 }
1143 }
1144
1145 Ok(result)
1146 }
1147
1148 fn contract_greedy(&self) -> Result<Complex64> {
1149 let mut network_copy = self.network.clone();
1151 let mut current_tensors: Vec<_> = network_copy.tensors.values().cloned().collect();
1152
1153 while current_tensors.len() > 1 {
1154 let mut best_cost = f64::INFINITY;
1156 let mut best_pair = (0, 1);
1157
1158 for i in 0..current_tensors.len() {
1159 for j in i + 1..current_tensors.len() {
1160 let cost = network_copy
1161 .estimate_contraction_cost(¤t_tensors[i], ¤t_tensors[j]);
1162 if cost < best_cost {
1163 best_cost = cost;
1164 best_pair = (i, j);
1165 }
1166 }
1167 }
1168
1169 let (i, j) = best_pair;
1171 let contracted =
1172 network_copy.contract_tensor_pair(¤t_tensors[i], ¤t_tensors[j])?;
1173
1174 let mut new_tensors = Vec::new();
1176 for (idx, tensor) in current_tensors.iter().enumerate() {
1177 if idx != i && idx != j {
1178 new_tensors.push(tensor.clone());
1179 }
1180 }
1181 new_tensors.push(contracted);
1182 current_tensors = new_tensors;
1183 }
1184
1185 if let Some(final_tensor) = current_tensors.into_iter().next() {
1187 if final_tensor.data.is_empty() {
1188 Ok(Complex64::new(1.0, 0.0))
1189 } else {
1190 Ok(final_tensor.data[[0, 0, 0]])
1191 }
1192 } else {
1193 Ok(Complex64::new(1.0, 0.0))
1194 }
1195 }
1196
1197 fn contract_custom(&self, order: &[usize]) -> Result<Complex64> {
1198 let mut network_copy = self.network.clone();
1200 let mut current_tensors: Vec<_> = network_copy.tensors.values().cloned().collect();
1201
1202 for &tensor_id in order {
1204 if tensor_id < current_tensors.len() && current_tensors.len() > 1 {
1205 let next_idx = if tensor_id + 1 < current_tensors.len() {
1207 tensor_id + 1
1208 } else {
1209 0
1210 };
1211
1212 let tensor_a = current_tensors.remove(tensor_id.min(next_idx));
1213 let tensor_b = current_tensors.remove(if tensor_id < next_idx {
1214 next_idx - 1
1215 } else {
1216 tensor_id - 1
1217 });
1218
1219 let contracted = network_copy.contract_tensor_pair(&tensor_a, &tensor_b)?;
1220 current_tensors.push(contracted);
1221 }
1222 }
1223
1224 while current_tensors.len() > 1 {
1226 let tensor_a = current_tensors.remove(0);
1227 let tensor_b = current_tensors.remove(0);
1228 let contracted = network_copy.contract_tensor_pair(&tensor_a, &tensor_b)?;
1229 current_tensors.push(contracted);
1230 }
1231
1232 if let Some(final_tensor) = current_tensors.into_iter().next() {
1234 if final_tensor.data.is_empty() {
1235 Ok(Complex64::new(1.0, 0.0))
1236 } else {
1237 Ok(final_tensor.data[[0, 0, 0]])
1238 }
1239 } else {
1240 Ok(Complex64::new(1.0, 0.0))
1241 }
1242 }
1243
1244 #[must_use]
1246 pub const fn get_stats(&self) -> &TensorNetworkStats {
1247 &self.stats
1248 }
1249
1250 pub fn contract_network_to_state_vector(&self) -> Result<Array1<Complex64>> {
1252 let size = 1 << self.network.num_qubits;
1253 let mut amplitudes = Array1::zeros(size);
1254
1255 if self.network.tensors.is_empty() {
1256 amplitudes[0] = Complex64::new(1.0, 0.0);
1258 return Ok(amplitudes);
1259 }
1260
1261 for basis_state in 0..size {
1263 let mut network_copy = self.network.clone();
1265
1266 network_copy.set_basis_state_boundary(basis_state)?;
1268
1269 let amplitude = network_copy.contract_all()?;
1271 amplitudes[basis_state] = amplitude;
1272 }
1273
1274 Ok(amplitudes)
1275 }
1276
1277 pub fn reset_stats(&mut self) {
1279 self.stats = TensorNetworkStats::default();
1280 }
1281
1282 #[must_use]
1284 pub fn estimate_contraction_cost(&self) -> u64 {
1285 let num_tensors = self.network.tensors.len() as u64;
1287 let avg_tensor_size = self.network.total_elements() as u64 / num_tensors.max(1);
1288 num_tensors * avg_tensor_size * avg_tensor_size
1289 }
1290
1291 fn contract_to_state_vector<const N: usize>(&self) -> Result<Vec<Complex64>> {
1293 let state_array = self.contract_network_to_state_vector()?;
1294
1295 let expected_size = 1 << N;
1297 if state_array.len() != expected_size {
1298 return Err(SimulatorError::DimensionMismatch(format!(
1299 "Contracted state vector has size {}, expected {}",
1300 state_array.len(),
1301 expected_size
1302 )));
1303 }
1304
1305 Ok(state_array.to_vec())
1307 }
1308
1309 fn apply_circuit_gate(&mut self, gate: &dyn quantrs2_core::gate::GateOp) -> Result<()> {
1311 use quantrs2_core::gate::GateOp;
1312
1313 let qubits = gate.qubits();
1315 let gate_name = format!("{gate:?}");
1316
1317 if gate_name.contains("Hadamard") || gate_name.contains('H') {
1319 if qubits.len() == 1 {
1320 self.apply_single_qubit_gate(&pauli_h(), qubits[0].0 as usize)
1321 } else {
1322 Err(SimulatorError::InvalidInput(
1323 "Hadamard gate requires exactly 1 qubit".to_string(),
1324 ))
1325 }
1326 } else if gate_name.contains("PauliX") || gate_name.contains('X') {
1327 if qubits.len() == 1 {
1328 self.apply_single_qubit_gate(&pauli_x(), qubits[0].0 as usize)
1329 } else {
1330 Err(SimulatorError::InvalidInput(
1331 "Pauli-X gate requires exactly 1 qubit".to_string(),
1332 ))
1333 }
1334 } else if gate_name.contains("PauliY") || gate_name.contains('Y') {
1335 if qubits.len() == 1 {
1336 self.apply_single_qubit_gate(&pauli_y(), qubits[0].0 as usize)
1337 } else {
1338 Err(SimulatorError::InvalidInput(
1339 "Pauli-Y gate requires exactly 1 qubit".to_string(),
1340 ))
1341 }
1342 } else if gate_name.contains("PauliZ") || gate_name.contains('Z') {
1343 if qubits.len() == 1 {
1344 self.apply_single_qubit_gate(&pauli_z(), qubits[0].0 as usize)
1345 } else {
1346 Err(SimulatorError::InvalidInput(
1347 "Pauli-Z gate requires exactly 1 qubit".to_string(),
1348 ))
1349 }
1350 } else if gate_name.contains("CNOT") || gate_name.contains("CX") {
1351 if qubits.len() == 2 {
1352 self.apply_two_qubit_gate(
1353 &cnot_matrix(),
1354 qubits[0].0 as usize,
1355 qubits[1].0 as usize,
1356 )
1357 } else {
1358 Err(SimulatorError::InvalidInput(
1359 "CNOT gate requires exactly 2 qubits".to_string(),
1360 ))
1361 }
1362 } else if gate_name.contains("RX") || gate_name.contains("RotationX") {
1363 if qubits.len() == 1 {
1366 let angle = std::f64::consts::PI / 4.0; self.apply_single_qubit_gate(&rotation_x(angle), qubits[0].0 as usize)
1369 } else {
1370 Err(SimulatorError::InvalidInput(
1371 "RX gate requires 1 qubit".to_string(),
1372 ))
1373 }
1374 } else if gate_name.contains("RY") || gate_name.contains("RotationY") {
1375 if qubits.len() == 1 {
1376 let angle = std::f64::consts::PI / 4.0;
1377 self.apply_single_qubit_gate(&rotation_y(angle), qubits[0].0 as usize)
1378 } else {
1379 Err(SimulatorError::InvalidInput(
1380 "RY gate requires 1 qubit".to_string(),
1381 ))
1382 }
1383 } else if gate_name.contains("RZ") || gate_name.contains("RotationZ") {
1384 if qubits.len() == 1 {
1385 let angle = std::f64::consts::PI / 4.0;
1386 self.apply_single_qubit_gate(&rotation_z(angle), qubits[0].0 as usize)
1387 } else {
1388 Err(SimulatorError::InvalidInput(
1389 "RZ gate requires 1 qubit".to_string(),
1390 ))
1391 }
1392 } else if gate_name.contains('S') {
1393 if qubits.len() == 1 {
1394 self.apply_single_qubit_gate(&s_gate(), qubits[0].0 as usize)
1395 } else {
1396 Err(SimulatorError::InvalidInput(
1397 "S gate requires 1 qubit".to_string(),
1398 ))
1399 }
1400 } else if gate_name.contains('T') {
1401 if qubits.len() == 1 {
1402 self.apply_single_qubit_gate(&t_gate(), qubits[0].0 as usize)
1403 } else {
1404 Err(SimulatorError::InvalidInput(
1405 "T gate requires 1 qubit".to_string(),
1406 ))
1407 }
1408 } else if gate_name.contains("CZ") {
1409 if qubits.len() == 2 {
1410 self.apply_two_qubit_gate(&cz_gate(), qubits[0].0 as usize, qubits[1].0 as usize)
1411 } else {
1412 Err(SimulatorError::InvalidInput(
1413 "CZ gate requires 2 qubits".to_string(),
1414 ))
1415 }
1416 } else if gate_name.contains("SWAP") {
1417 if qubits.len() == 2 {
1418 self.apply_two_qubit_gate(&swap_gate(), qubits[0].0 as usize, qubits[1].0 as usize)
1419 } else {
1420 Err(SimulatorError::InvalidInput(
1421 "SWAP gate requires 2 qubits".to_string(),
1422 ))
1423 }
1424 } else {
1425 eprintln!(
1427 "Warning: Gate '{gate_name}' not yet supported in tensor network simulator, skipping"
1428 );
1429 Ok(())
1430 }
1431 }
1432}
1433
1434impl crate::simulator::Simulator for TensorNetworkSimulator {
1435 fn run<const N: usize>(
1436 &mut self,
1437 circuit: &quantrs2_circuit::prelude::Circuit<N>,
1438 ) -> crate::error::Result<crate::simulator::SimulatorResult<N>> {
1439 self.initialize_zero_state().map_err(|e| {
1441 crate::error::SimulatorError::ComputationError(format!(
1442 "Failed to initialize state: {e}"
1443 ))
1444 })?;
1445
1446 let gates = circuit.gates();
1448
1449 for gate in gates {
1450 self.apply_circuit_gate(gate.as_ref()).map_err(|e| {
1452 crate::error::SimulatorError::ComputationError(format!("Failed to apply gate: {e}"))
1453 })?;
1454 }
1455
1456 let final_state = self.contract_to_state_vector::<N>().map_err(|e| {
1458 crate::error::SimulatorError::ComputationError(format!(
1459 "Failed to contract tensor network: {e}"
1460 ))
1461 })?;
1462
1463 Ok(crate::simulator::SimulatorResult::new(final_state))
1464 }
1465}
1466
1467impl Default for TensorNetworkSimulator {
1468 fn default() -> Self {
1469 Self::new(1)
1470 }
1471}
1472
1473impl fmt::Display for TensorNetwork {
1474 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1475 writeln!(f, "TensorNetwork with {} qubits:", self.num_qubits)?;
1476 writeln!(f, " Tensors: {}", self.tensors.len())?;
1477 writeln!(f, " Connections: {}", self.connections.len())?;
1478 writeln!(f, " Memory usage: {} bytes", self.memory_usage())?;
1479 Ok(())
1480 }
1481}
1482
1483fn pauli_x() -> Array2<Complex64> {
1485 Array2::from_shape_vec(
1486 (2, 2),
1487 vec![
1488 Complex64::new(0.0, 0.0),
1489 Complex64::new(1.0, 0.0),
1490 Complex64::new(1.0, 0.0),
1491 Complex64::new(0.0, 0.0),
1492 ],
1493 )
1494 .expect("Pauli-X matrix has valid 2x2 shape")
1495}
1496
1497fn pauli_y() -> Array2<Complex64> {
1498 Array2::from_shape_vec(
1499 (2, 2),
1500 vec![
1501 Complex64::new(0.0, 0.0),
1502 Complex64::new(0.0, -1.0),
1503 Complex64::new(0.0, 1.0),
1504 Complex64::new(0.0, 0.0),
1505 ],
1506 )
1507 .expect("Pauli-Y matrix has valid 2x2 shape")
1508}
1509
1510fn pauli_z() -> Array2<Complex64> {
1511 Array2::from_shape_vec(
1512 (2, 2),
1513 vec![
1514 Complex64::new(1.0, 0.0),
1515 Complex64::new(0.0, 0.0),
1516 Complex64::new(0.0, 0.0),
1517 Complex64::new(-1.0, 0.0),
1518 ],
1519 )
1520 .expect("Pauli-Z matrix has valid 2x2 shape")
1521}
1522
1523fn pauli_h() -> Array2<Complex64> {
1524 let inv_sqrt2 = 1.0 / 2.0_f64.sqrt();
1525 Array2::from_shape_vec(
1526 (2, 2),
1527 vec![
1528 Complex64::new(inv_sqrt2, 0.0),
1529 Complex64::new(inv_sqrt2, 0.0),
1530 Complex64::new(inv_sqrt2, 0.0),
1531 Complex64::new(-inv_sqrt2, 0.0),
1532 ],
1533 )
1534 .expect("Hadamard matrix has valid 2x2 shape")
1535}
1536
1537fn cnot_matrix() -> Array2<Complex64> {
1538 Array2::from_shape_vec(
1539 (4, 4),
1540 vec![
1541 Complex64::new(1.0, 0.0),
1542 Complex64::new(0.0, 0.0),
1543 Complex64::new(0.0, 0.0),
1544 Complex64::new(0.0, 0.0),
1545 Complex64::new(0.0, 0.0),
1546 Complex64::new(1.0, 0.0),
1547 Complex64::new(0.0, 0.0),
1548 Complex64::new(0.0, 0.0),
1549 Complex64::new(0.0, 0.0),
1550 Complex64::new(0.0, 0.0),
1551 Complex64::new(0.0, 0.0),
1552 Complex64::new(1.0, 0.0),
1553 Complex64::new(0.0, 0.0),
1554 Complex64::new(0.0, 0.0),
1555 Complex64::new(1.0, 0.0),
1556 Complex64::new(0.0, 0.0),
1557 ],
1558 )
1559 .expect("CNOT matrix has valid 4x4 shape")
1560}
1561
1562fn rotation_x(theta: f64) -> Array2<Complex64> {
1563 let cos_half = (theta / 2.0).cos();
1564 let sin_half = (theta / 2.0).sin();
1565 Array2::from_shape_vec(
1566 (2, 2),
1567 vec![
1568 Complex64::new(cos_half, 0.0),
1569 Complex64::new(0.0, -sin_half),
1570 Complex64::new(0.0, -sin_half),
1571 Complex64::new(cos_half, 0.0),
1572 ],
1573 )
1574 .expect("Rotation-X matrix has valid 2x2 shape")
1575}
1576
1577fn rotation_y(theta: f64) -> Array2<Complex64> {
1578 let cos_half = (theta / 2.0).cos();
1579 let sin_half = (theta / 2.0).sin();
1580 Array2::from_shape_vec(
1581 (2, 2),
1582 vec![
1583 Complex64::new(cos_half, 0.0),
1584 Complex64::new(-sin_half, 0.0),
1585 Complex64::new(sin_half, 0.0),
1586 Complex64::new(cos_half, 0.0),
1587 ],
1588 )
1589 .expect("Rotation-Y matrix has valid 2x2 shape")
1590}
1591
1592fn rotation_z(theta: f64) -> Array2<Complex64> {
1593 let exp_neg = Complex64::from_polar(1.0, -theta / 2.0);
1594 let exp_pos = Complex64::from_polar(1.0, theta / 2.0);
1595 Array2::from_shape_vec(
1596 (2, 2),
1597 vec![
1598 exp_neg,
1599 Complex64::new(0.0, 0.0),
1600 Complex64::new(0.0, 0.0),
1601 exp_pos,
1602 ],
1603 )
1604 .expect("Rotation-Z matrix has valid 2x2 shape")
1605}
1606
1607fn s_gate() -> Array2<Complex64> {
1609 Array2::from_shape_vec(
1610 (2, 2),
1611 vec![
1612 Complex64::new(1.0, 0.0),
1613 Complex64::new(0.0, 0.0),
1614 Complex64::new(0.0, 0.0),
1615 Complex64::new(0.0, 1.0), ],
1617 )
1618 .expect("S gate matrix has valid 2x2 shape")
1619}
1620
1621fn t_gate() -> Array2<Complex64> {
1623 let phase = Complex64::from_polar(1.0, std::f64::consts::PI / 4.0);
1624 Array2::from_shape_vec(
1625 (2, 2),
1626 vec![
1627 Complex64::new(1.0, 0.0),
1628 Complex64::new(0.0, 0.0),
1629 Complex64::new(0.0, 0.0),
1630 phase,
1631 ],
1632 )
1633 .expect("T gate matrix has valid 2x2 shape")
1634}
1635
1636fn cz_gate() -> Array2<Complex64> {
1638 Array2::from_shape_vec(
1639 (4, 4),
1640 vec![
1641 Complex64::new(1.0, 0.0),
1642 Complex64::new(0.0, 0.0),
1643 Complex64::new(0.0, 0.0),
1644 Complex64::new(0.0, 0.0),
1645 Complex64::new(0.0, 0.0),
1646 Complex64::new(1.0, 0.0),
1647 Complex64::new(0.0, 0.0),
1648 Complex64::new(0.0, 0.0),
1649 Complex64::new(0.0, 0.0),
1650 Complex64::new(0.0, 0.0),
1651 Complex64::new(1.0, 0.0),
1652 Complex64::new(0.0, 0.0),
1653 Complex64::new(0.0, 0.0),
1654 Complex64::new(0.0, 0.0),
1655 Complex64::new(0.0, 0.0),
1656 Complex64::new(-1.0, 0.0), ],
1658 )
1659 .expect("CZ gate matrix has valid 4x4 shape")
1660}
1661
1662fn swap_gate() -> Array2<Complex64> {
1664 Array2::from_shape_vec(
1665 (4, 4),
1666 vec![
1667 Complex64::new(1.0, 0.0),
1668 Complex64::new(0.0, 0.0),
1669 Complex64::new(0.0, 0.0),
1670 Complex64::new(0.0, 0.0),
1671 Complex64::new(0.0, 0.0),
1672 Complex64::new(0.0, 0.0),
1673 Complex64::new(1.0, 0.0),
1674 Complex64::new(0.0, 0.0),
1675 Complex64::new(0.0, 0.0),
1676 Complex64::new(1.0, 0.0),
1677 Complex64::new(0.0, 0.0),
1678 Complex64::new(0.0, 0.0),
1679 Complex64::new(0.0, 0.0),
1680 Complex64::new(0.0, 0.0),
1681 Complex64::new(0.0, 0.0),
1682 Complex64::new(1.0, 0.0),
1683 ],
1684 )
1685 .expect("SWAP gate matrix has valid 4x4 shape")
1686}
1687
1688pub struct AdvancedContractionAlgorithms;
1690
1691impl AdvancedContractionAlgorithms {
1692 pub fn hotqr_decomposition(tensor: &Tensor) -> Result<(Tensor, Tensor)> {
1694 let mut id_gen = 1000; let q_data = Array3::from_shape_fn((2, 2, 1), |(i, j, _)| {
1699 if i == j {
1700 Complex64::new(1.0, 0.0)
1701 } else {
1702 Complex64::new(0.0, 0.0)
1703 }
1704 }); let r_data = Array3::from_shape_fn((2, 2, 1), |(i, j, _)| {
1706 if i == j {
1707 Complex64::new(1.0, 0.0)
1708 } else {
1709 Complex64::new(0.0, 0.0)
1710 }
1711 }); let q_indices = vec![
1714 TensorIndex {
1715 id: id_gen,
1716 dimension: 2,
1717 index_type: IndexType::Virtual,
1718 },
1719 TensorIndex {
1720 id: id_gen + 1,
1721 dimension: 2,
1722 index_type: IndexType::Virtual,
1723 },
1724 ];
1725 id_gen += 2;
1726
1727 let r_indices = vec![
1728 TensorIndex {
1729 id: id_gen,
1730 dimension: 2,
1731 index_type: IndexType::Virtual,
1732 },
1733 TensorIndex {
1734 id: id_gen + 1,
1735 dimension: 2,
1736 index_type: IndexType::Virtual,
1737 },
1738 ];
1739
1740 let q_tensor = Tensor::new(q_data, q_indices, "Q".to_string());
1741 let r_tensor = Tensor::new(r_data, r_indices, "R".to_string());
1742
1743 Ok((q_tensor, r_tensor))
1744 }
1745
1746 pub fn tree_contraction(tensors: &[Tensor]) -> Result<Complex64> {
1748 if tensors.is_empty() {
1749 return Ok(Complex64::new(1.0, 0.0));
1750 }
1751
1752 if tensors.len() == 1 {
1753 return Ok(tensors[0].data[[0, 0, 0]]);
1754 }
1755
1756 let mut current_level = tensors.to_vec();
1758
1759 while current_level.len() > 1 {
1760 let mut next_level = Vec::new();
1761
1762 for chunk in current_level.chunks(2) {
1764 if chunk.len() == 2 {
1765 let contracted = chunk[0].contract(&chunk[1], 0, 0)?;
1767 next_level.push(contracted);
1768 } else {
1769 next_level.push(chunk[0].clone());
1771 }
1772 }
1773
1774 current_level = next_level;
1775 }
1776
1777 Ok(current_level[0].data[[0, 0, 0]])
1778 }
1779
1780 pub fn mps_decomposition(tensor: &Tensor, max_bond_dim: usize) -> Result<Vec<Tensor>> {
1782 let mut mps_tensors = Vec::new();
1784 let mut id_gen = 2000;
1785
1786 for i in 0..tensor.indices.len().min(4) {
1788 let bond_dim = max_bond_dim.min(4);
1789
1790 let data = Array3::zeros((2, bond_dim, 1));
1791 let mut mps_data = data;
1793 mps_data[[0, 0, 0]] = Complex64::new(1.0, 0.0);
1794 if bond_dim > 1 {
1795 mps_data[[1, 1, 0]] = Complex64::new(1.0, 0.0);
1796 }
1797
1798 let indices = vec![
1799 TensorIndex {
1800 id: id_gen,
1801 dimension: 2,
1802 index_type: IndexType::Physical(i),
1803 },
1804 TensorIndex {
1805 id: id_gen + 1,
1806 dimension: bond_dim,
1807 index_type: IndexType::Virtual,
1808 },
1809 ];
1810 id_gen += 2;
1811
1812 let mps_tensor = Tensor::new(mps_data, indices, format!("MPS_{i}"));
1813 mps_tensors.push(mps_tensor);
1814 }
1815
1816 Ok(mps_tensors)
1817 }
1818}
1819
1820#[cfg(test)]
1821mod tests {
1822 use super::*;
1823 use approx::assert_abs_diff_eq;
1824
1825 #[test]
1826 fn test_tensor_creation() {
1827 let data = Array3::zeros((2, 2, 1));
1828 let indices = vec![
1829 TensorIndex {
1830 id: 0,
1831 dimension: 2,
1832 index_type: IndexType::Physical(0),
1833 },
1834 TensorIndex {
1835 id: 1,
1836 dimension: 2,
1837 index_type: IndexType::Physical(0),
1838 },
1839 ];
1840 let tensor = Tensor::new(data, indices, "test".to_string());
1841
1842 assert_eq!(tensor.rank(), 2);
1843 assert_eq!(tensor.label, "test");
1844 }
1845
1846 #[test]
1847 fn test_tensor_network_creation() {
1848 let network = TensorNetwork::new(3);
1849 assert_eq!(network.num_qubits, 3);
1850 assert_eq!(network.tensors.len(), 0);
1851 }
1852
1853 #[test]
1854 fn test_simulator_initialization() {
1855 let mut sim = TensorNetworkSimulator::new(2);
1856 sim.initialize_zero_state()
1857 .expect("Failed to initialize zero state");
1858
1859 assert_eq!(sim.network.tensors.len(), 2);
1860 }
1861
1862 #[test]
1863 fn test_single_qubit_gate() {
1864 let mut sim = TensorNetworkSimulator::new(1);
1865 sim.initialize_zero_state()
1866 .expect("Failed to initialize zero state");
1867
1868 let initial_tensors = sim.network.tensors.len();
1869 let h_gate = QuantumGate::new(
1870 crate::adaptive_gate_fusion::GateType::Hadamard,
1871 vec![0],
1872 vec![],
1873 );
1874 sim.apply_gate(h_gate)
1875 .expect("Failed to apply Hadamard gate");
1876
1877 assert_eq!(sim.network.tensors.len(), initial_tensors + 1);
1879 }
1880
1881 #[test]
1882 fn test_measurement() {
1883 let mut sim = TensorNetworkSimulator::new(1);
1884 sim.initialize_zero_state()
1885 .expect("Failed to initialize zero state");
1886
1887 let result = sim.measure(0).expect("Failed to measure qubit");
1888 assert!(result || !result); }
1890
1891 #[test]
1892 fn test_contraction_strategies() {
1893 let _sim = TensorNetworkSimulator::new(2);
1894
1895 let strat1 = ContractionStrategy::Sequential;
1897 let strat2 = ContractionStrategy::Greedy;
1898 let strat3 = ContractionStrategy::Custom(vec![0, 1]);
1899
1900 assert_ne!(strat1, strat2);
1901 assert_ne!(strat2, strat3);
1902 }
1903
1904 #[test]
1905 fn test_gate_matrices() {
1906 let h = pauli_h();
1907 assert_abs_diff_eq!(h[[0, 0]].re, 1.0 / 2.0_f64.sqrt(), epsilon = 1e-10);
1908
1909 let x = pauli_x();
1910 assert_abs_diff_eq!(x[[0, 1]].re, 1.0, epsilon = 1e-10);
1911 assert_abs_diff_eq!(x[[1, 0]].re, 1.0, epsilon = 1e-10);
1912 }
1913
1914 #[test]
1915 fn test_enhanced_tensor_contraction() {
1916 let mut id_gen = 0;
1917
1918 let tensor_a = Tensor::identity(0, &mut id_gen);
1920 let tensor_b = Tensor::identity(0, &mut id_gen);
1921
1922 let result = tensor_a.contract(&tensor_b, 1, 0);
1924 assert!(result.is_ok());
1925
1926 let contracted = result.expect("Failed to contract tensors");
1927 assert!(!contracted.data.is_empty());
1928 }
1929
1930 #[test]
1931 fn test_contraction_cost_estimation() {
1932 let network = TensorNetwork::new(2);
1933 let mut id_gen = 0;
1934
1935 let tensor_a = Tensor::identity(0, &mut id_gen);
1936 let tensor_b = Tensor::identity(1, &mut id_gen);
1937
1938 let cost = network.estimate_contraction_cost(&tensor_a, &tensor_b);
1939 assert!(cost > 0.0);
1940 assert!(cost.is_finite());
1941 }
1942
1943 #[test]
1944 fn test_optimal_contraction_order() {
1945 let mut network = TensorNetwork::new(3);
1946 let mut id_gen = 0;
1947
1948 for i in 0..3 {
1950 let tensor = Tensor::identity(i, &mut id_gen);
1951 network.add_tensor(tensor);
1952 }
1953
1954 let order = network.find_optimal_contraction_order();
1955 assert!(order.is_ok());
1956
1957 let order_vec = order.expect("Failed to find optimal contraction order");
1958 assert!(!order_vec.is_empty());
1959 }
1960
1961 #[test]
1962 fn test_greedy_contraction_strategy() {
1963 let mut simulator =
1964 TensorNetworkSimulator::new(2).with_strategy(ContractionStrategy::Greedy);
1965
1966 let mut id_gen = 0;
1968 for i in 0..2 {
1969 let tensor = Tensor::identity(i, &mut id_gen);
1970 simulator.network.add_tensor(tensor);
1971 }
1972
1973 let result = simulator.contract_greedy();
1974 assert!(result.is_ok());
1975
1976 let amplitude = result.expect("Failed to contract network");
1977 assert!(amplitude.norm() >= 0.0);
1978 }
1979
1980 #[test]
1981 fn test_basis_state_boundary_conditions() {
1982 let mut network = TensorNetwork::new(2);
1983
1984 let mut id_gen = 0;
1986 for i in 0..2 {
1987 let tensor = Tensor::identity(i, &mut id_gen);
1988 network.add_tensor(tensor);
1989 }
1990
1991 let result = network.set_basis_state_boundary(1); assert!(result.is_ok());
1994 }
1995
1996 #[test]
1997 fn test_full_state_vector_contraction() {
1998 let simulator = TensorNetworkSimulator::new(2);
1999
2000 let result = simulator.contract_network_to_state_vector();
2001 assert!(result.is_ok());
2002
2003 let state_vector = result.expect("Failed to contract network to state vector");
2004 assert_eq!(state_vector.len(), 4); assert!((state_vector[0].norm() - 1.0).abs() < 1e-10);
2008 }
2009
2010 #[test]
2011 fn test_advanced_contraction_algorithms() {
2012 let mut id_gen = 0;
2013 let tensor = Tensor::identity(0, &mut id_gen);
2014
2015 let qr_result = AdvancedContractionAlgorithms::hotqr_decomposition(&tensor);
2017 assert!(qr_result.is_ok());
2018
2019 let (q, r) = qr_result.expect("Failed to perform HOTQR decomposition");
2020 assert_eq!(q.label, "Q");
2021 assert_eq!(r.label, "R");
2022 }
2023
2024 #[test]
2025 fn test_tree_contraction() {
2026 let mut id_gen = 0;
2027 let tensors = vec![
2028 Tensor::identity(0, &mut id_gen),
2029 Tensor::identity(1, &mut id_gen),
2030 ];
2031
2032 let result = AdvancedContractionAlgorithms::tree_contraction(&tensors);
2033 assert!(result.is_ok());
2034
2035 let amplitude = result.expect("Failed to perform tree contraction");
2036 assert!(amplitude.norm() >= 0.0);
2037 }
2038}