quantrs2_sim/
qml_integration.rs

1//! Quantum Machine Learning (QML) integration for seamless ML workflows.
2//!
3//! This module provides comprehensive integration between quantum simulation
4//! backends and machine learning frameworks, enabling hybrid classical-quantum
5//! algorithms, variational quantum eigensolvers (VQE), quantum neural networks
6//! (QNN), and other QML applications with automatic differentiation and
7//! hardware-aware optimization.
8
9use crate::prelude::{InterfaceGate, InterfaceGateType, SimulatorError};
10use scirs2_core::ndarray::Array1;
11use scirs2_core::parallel_ops::*;
12use scirs2_core::Complex64;
13use serde::{Deserialize, Serialize};
14use std::collections::HashMap;
15use std::sync::{Arc, Mutex};
16
17use crate::autodiff_vqe::AutoDiffContext;
18use crate::circuit_interfaces::{CircuitInterface, InterfaceCircuit};
19use crate::error::Result;
20use crate::scirs2_integration::SciRS2Backend;
21
22/// QML framework types
23#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, Serialize, Deserialize)]
24pub enum QMLFramework {
25    /// PyTorch integration
26    PyTorch,
27    /// TensorFlow/Keras integration
28    TensorFlow,
29    /// JAX integration
30    JAX,
31    /// SciRS2 native ML
32    SciRS2,
33    /// Custom framework
34    Custom,
35}
36
37/// QML integration configuration
38#[derive(Debug, Clone)]
39pub struct QMLIntegrationConfig {
40    /// Target ML framework
41    pub framework: QMLFramework,
42    /// Enable automatic differentiation
43    pub enable_autodiff: bool,
44    /// Enable gradient optimization
45    pub enable_gradient_optimization: bool,
46    /// Batch size for circuit evaluation
47    pub batch_size: usize,
48    /// Enable parameter sharing across circuits
49    pub enable_parameter_sharing: bool,
50    /// Enable hardware-aware optimization
51    pub hardware_aware_optimization: bool,
52    /// Memory limit for gradient computation
53    pub gradient_memory_limit: usize,
54    /// Enable distributed training
55    pub enable_distributed_training: bool,
56    /// Enable mixed precision training
57    pub enable_mixed_precision: bool,
58}
59
60impl Default for QMLIntegrationConfig {
61    fn default() -> Self {
62        Self {
63            framework: QMLFramework::SciRS2,
64            enable_autodiff: true,
65            enable_gradient_optimization: true,
66            batch_size: 32,
67            enable_parameter_sharing: true,
68            hardware_aware_optimization: true,
69            gradient_memory_limit: 8_000_000_000, // 8GB
70            enable_distributed_training: false,
71            enable_mixed_precision: false,
72        }
73    }
74}
75
76/// Quantum machine learning layer types
77#[derive(Debug, Clone, PartialEq, Eq, Hash)]
78pub enum QMLLayerType {
79    /// Variational quantum circuit layer
80    VariationalCircuit,
81    /// Quantum convolutional layer
82    QuantumConvolutional,
83    /// Quantum recurrent layer
84    QuantumRecurrent,
85    /// Quantum attention layer
86    QuantumAttention,
87    /// Data encoding layer
88    DataEncoding,
89    /// Measurement layer
90    Measurement,
91    /// Classical processing layer
92    Classical,
93}
94
95/// Quantum ML layer definition
96#[derive(Debug, Clone)]
97pub struct QMLLayer {
98    /// Layer type
99    pub layer_type: QMLLayerType,
100    /// Layer name
101    pub name: String,
102    /// Number of qubits
103    pub num_qubits: usize,
104    /// Trainable parameters
105    pub parameters: Vec<f64>,
106    /// Parameter names for tracking
107    pub parameter_names: Vec<String>,
108    /// Circuit template
109    pub circuit_template: Option<InterfaceCircuit>,
110    /// Classical processing function
111    pub classical_function: Option<String>,
112    /// Layer configuration
113    pub config: LayerConfig,
114}
115
116/// Layer configuration
117#[derive(Debug, Clone, Default)]
118pub struct LayerConfig {
119    /// Number of repetitions (for ansatz layers)
120    pub repetitions: usize,
121    /// Entangling pattern
122    pub entangling_pattern: Vec<(usize, usize)>,
123    /// Activation function
124    pub activation: Option<String>,
125    /// Regularization parameters
126    pub regularization: Option<RegularizationConfig>,
127    /// Hardware mapping
128    pub hardware_mapping: Option<Vec<usize>>,
129}
130
131/// Regularization configuration
132#[derive(Debug, Clone)]
133pub struct RegularizationConfig {
134    /// L1 regularization strength
135    pub l1_strength: f64,
136    /// L2 regularization strength
137    pub l2_strength: f64,
138    /// Dropout probability
139    pub dropout_prob: f64,
140}
141
142/// Quantum neural network model
143#[derive(Debug, Clone)]
144pub struct QuantumNeuralNetwork {
145    /// Network layers
146    pub layers: Vec<QMLLayer>,
147    /// Global parameters
148    pub global_parameters: HashMap<String, f64>,
149    /// Network metadata
150    pub metadata: QNNMetadata,
151    /// Training configuration
152    pub training_config: TrainingConfig,
153}
154
155/// QNN metadata
156#[derive(Debug, Clone, Default)]
157pub struct QNNMetadata {
158    /// Model name
159    pub name: Option<String>,
160    /// Model description
161    pub description: Option<String>,
162    /// Creation timestamp
163    pub created_at: Option<std::time::SystemTime>,
164    /// Total number of parameters
165    pub total_parameters: usize,
166    /// Number of trainable parameters
167    pub trainable_parameters: usize,
168    /// Model complexity score
169    pub complexity_score: f64,
170}
171
172/// Training configuration
173#[derive(Debug, Clone)]
174pub struct TrainingConfig {
175    /// Learning rate
176    pub learning_rate: f64,
177    /// Optimizer type
178    pub optimizer: OptimizerType,
179    /// Loss function
180    pub loss_function: LossFunction,
181    /// Number of epochs
182    pub epochs: usize,
183    /// Batch size
184    pub batch_size: usize,
185    /// Validation split
186    pub validation_split: f64,
187    /// Early stopping patience
188    pub early_stopping_patience: Option<usize>,
189    /// Learning rate scheduler
190    pub lr_scheduler: Option<LRScheduler>,
191}
192
193impl Default for TrainingConfig {
194    fn default() -> Self {
195        Self {
196            learning_rate: 0.01,
197            optimizer: OptimizerType::Adam,
198            loss_function: LossFunction::MeanSquaredError,
199            epochs: 100,
200            batch_size: 32,
201            validation_split: 0.2,
202            early_stopping_patience: Some(10),
203            lr_scheduler: None,
204        }
205    }
206}
207
208/// Optimizer types
209#[derive(Debug, Clone, Copy, PartialEq, Eq)]
210pub enum OptimizerType {
211    SGD,
212    Adam,
213    AdamW,
214    RMSprop,
215    LBFGS,
216    NaturalGradient,
217    QuantumNaturalGradient,
218}
219
220/// Loss functions
221#[derive(Debug, Clone, Copy, PartialEq, Eq)]
222pub enum LossFunction {
223    MeanSquaredError,
224    MeanAbsoluteError,
225    CrossEntropy,
226    BinaryCrossEntropy,
227    Hinge,
228    CustomQuantum,
229}
230
231/// Learning rate schedulers
232#[derive(Debug, Clone)]
233pub enum LRScheduler {
234    StepLR { step_size: usize, gamma: f64 },
235    ExponentialLR { gamma: f64 },
236    CosineAnnealingLR { t_max: usize },
237    ReduceLROnPlateau { patience: usize, factor: f64 },
238}
239
240/// QML integration engine
241pub struct QMLIntegration {
242    /// Configuration
243    config: QMLIntegrationConfig,
244    /// Circuit interface
245    circuit_interface: CircuitInterface,
246    /// SciRS2 backend
247    backend: Option<SciRS2Backend>,
248    /// Autodiff context
249    autodiff_context: Option<AutoDiffContext>,
250    /// Parameter cache
251    parameter_cache: Arc<Mutex<HashMap<String, Vec<f64>>>>,
252    /// Gradient cache
253    gradient_cache: Arc<Mutex<HashMap<String, Vec<f64>>>>,
254    /// Training statistics
255    stats: QMLTrainingStats,
256}
257
258/// QML training statistics
259#[derive(Debug, Clone, Default, Serialize, Deserialize)]
260pub struct QMLTrainingStats {
261    /// Total training time
262    pub total_training_time_ms: f64,
263    /// Number of parameter updates
264    pub parameter_updates: usize,
265    /// Number of gradient computations
266    pub gradient_computations: usize,
267    /// Average gradient computation time
268    pub avg_gradient_time_ms: f64,
269    /// Number of circuit evaluations
270    pub circuit_evaluations: usize,
271    /// Average circuit evaluation time
272    pub avg_circuit_time_ms: f64,
273    /// Training loss history
274    pub loss_history: Vec<f64>,
275    /// Validation loss history
276    pub validation_loss_history: Vec<f64>,
277    /// Parameter norm history
278    pub parameter_norm_history: Vec<f64>,
279    /// Gradient norm history
280    pub gradient_norm_history: Vec<f64>,
281}
282
283impl QMLIntegration {
284    /// Create new QML integration
285    pub fn new(config: QMLIntegrationConfig) -> Result<Self> {
286        let circuit_interface = CircuitInterface::new(Default::default())?;
287
288        Ok(Self {
289            config,
290            circuit_interface,
291            backend: None,
292            autodiff_context: None,
293            parameter_cache: Arc::new(Mutex::new(HashMap::new())),
294            gradient_cache: Arc::new(Mutex::new(HashMap::new())),
295            stats: QMLTrainingStats::default(),
296        })
297    }
298
299    /// Initialize with SciRS2 backend
300    pub fn with_backend(mut self) -> Result<Self> {
301        self.backend = Some(SciRS2Backend::new());
302        self.circuit_interface = self.circuit_interface.with_backend()?;
303
304        if self.config.enable_autodiff {
305            self.autodiff_context = Some(AutoDiffContext::new(
306                Vec::new(),
307                crate::autodiff_vqe::GradientMethod::ParameterShift,
308            ));
309        }
310
311        Ok(self)
312    }
313
314    /// Train quantum neural network
315    pub fn train_qnn(
316        &mut self,
317        mut qnn: QuantumNeuralNetwork,
318        training_data: &[TrainingExample],
319        validation_data: Option<&[TrainingExample]>,
320    ) -> Result<TrainingResult> {
321        let start_time = std::time::Instant::now();
322
323        // Initialize optimizer
324        let mut optimizer = self.create_optimizer(&qnn.training_config)?;
325
326        // Initialize learning rate scheduler
327        let mut lr_scheduler = qnn.training_config.lr_scheduler.clone();
328
329        let mut best_loss = f64::INFINITY;
330        let mut patience_counter = 0;
331
332        for epoch in 0..qnn.training_config.epochs {
333            let epoch_start = std::time::Instant::now();
334
335            // Training phase
336            let train_loss = self.train_epoch(&mut qnn, training_data, &mut optimizer)?;
337            self.stats.loss_history.push(train_loss);
338
339            // Validation phase
340            let val_loss = if let Some(val_data) = validation_data {
341                self.validate_epoch(&qnn, val_data)?
342            } else {
343                train_loss
344            };
345            self.stats.validation_loss_history.push(val_loss);
346
347            // Update learning rate scheduler
348            if let Some(ref mut scheduler) = lr_scheduler {
349                self.update_lr_scheduler(scheduler, val_loss, &mut optimizer)?;
350            }
351
352            // Early stopping check
353            if let Some(patience) = qnn.training_config.early_stopping_patience {
354                if val_loss < best_loss {
355                    best_loss = val_loss;
356                    patience_counter = 0;
357                } else {
358                    patience_counter += 1;
359                    if patience_counter >= patience {
360                        println!("Early stopping at epoch {epoch} due to no improvement");
361                        break;
362                    }
363                }
364            }
365
366            // Compute parameter and gradient norms
367            let param_norm = self.compute_parameter_norm(&qnn)?;
368            let grad_norm = self.compute_last_gradient_norm()?;
369            self.stats.parameter_norm_history.push(param_norm);
370            self.stats.gradient_norm_history.push(grad_norm);
371
372            println!(
373                "Epoch {}: train_loss={:.6}, val_loss={:.6}, time={:.2}ms",
374                epoch,
375                train_loss,
376                val_loss,
377                epoch_start.elapsed().as_secs_f64() * 1000.0
378            );
379        }
380
381        let total_time = start_time.elapsed().as_secs_f64() * 1000.0;
382        self.stats.total_training_time_ms += total_time;
383
384        Ok(TrainingResult {
385            trained_qnn: qnn.clone(),
386            final_loss: *self.stats.loss_history.last().unwrap_or(&0.0),
387            final_validation_loss: *self.stats.validation_loss_history.last().unwrap_or(&0.0),
388            epochs_completed: self.stats.loss_history.len(),
389            total_time_ms: total_time,
390            converged: patience_counter
391                < qnn
392                    .training_config
393                    .early_stopping_patience
394                    .unwrap_or(usize::MAX),
395        })
396    }
397
398    /// Train single epoch
399    fn train_epoch(
400        &mut self,
401        qnn: &mut QuantumNeuralNetwork,
402        training_data: &[TrainingExample],
403        optimizer: &mut Box<dyn QMLOptimizer>,
404    ) -> Result<f64> {
405        let mut total_loss = 0.0;
406        let batch_size = qnn.training_config.batch_size;
407        let num_batches = training_data.len().div_ceil(batch_size);
408
409        for batch_idx in 0..num_batches {
410            let start_idx = batch_idx * batch_size;
411            let end_idx = (start_idx + batch_size).min(training_data.len());
412            let batch = &training_data[start_idx..end_idx];
413
414            // Forward pass
415            let (predictions, loss) = self.forward_pass(qnn, batch)?;
416            total_loss += loss;
417
418            // Backward pass (compute gradients)
419            let gradients = self.backward_pass(qnn, batch, &predictions)?;
420
421            // Update parameters
422            optimizer.update_parameters(qnn, &gradients)?;
423
424            self.stats.parameter_updates += 1;
425        }
426
427        Ok(total_loss / num_batches as f64)
428    }
429
430    /// Validate single epoch
431    fn validate_epoch(
432        &mut self,
433        qnn: &QuantumNeuralNetwork,
434        validation_data: &[TrainingExample],
435    ) -> Result<f64> {
436        let mut total_loss = 0.0;
437        let batch_size = qnn.training_config.batch_size;
438        let num_batches = validation_data.len().div_ceil(batch_size);
439
440        for batch_idx in 0..num_batches {
441            let start_idx = batch_idx * batch_size;
442            let end_idx = (start_idx + batch_size).min(validation_data.len());
443            let batch = &validation_data[start_idx..end_idx];
444
445            let (_, loss) = self.forward_pass(qnn, batch)?;
446            total_loss += loss;
447        }
448
449        Ok(total_loss / num_batches as f64)
450    }
451
452    /// Forward pass through the quantum neural network
453    fn forward_pass(
454        &mut self,
455        qnn: &QuantumNeuralNetwork,
456        batch: &[TrainingExample],
457    ) -> Result<(Vec<Array1<f64>>, f64)> {
458        let start_time = std::time::Instant::now();
459
460        let mut predictions = Vec::new();
461        let mut total_loss = 0.0;
462
463        for example in batch {
464            // Evaluate quantum circuit with current parameters
465            let prediction = self.evaluate_qnn(qnn, &example.input)?;
466
467            // Compute loss
468            let loss = self.compute_loss(
469                &prediction,
470                &example.target,
471                &qnn.training_config.loss_function,
472            )?;
473
474            predictions.push(prediction);
475            total_loss += loss;
476        }
477
478        let eval_time = start_time.elapsed().as_secs_f64() * 1000.0;
479        self.stats.avg_circuit_time_ms = self
480            .stats
481            .avg_circuit_time_ms
482            .mul_add(self.stats.circuit_evaluations as f64, eval_time)
483            / (self.stats.circuit_evaluations + batch.len()) as f64;
484        self.stats.circuit_evaluations += batch.len();
485
486        Ok((predictions, total_loss / batch.len() as f64))
487    }
488
489    /// Backward pass to compute gradients
490    fn backward_pass(
491        &mut self,
492        qnn: &QuantumNeuralNetwork,
493        batch: &[TrainingExample],
494        predictions: &[Array1<f64>],
495    ) -> Result<HashMap<String, Vec<f64>>> {
496        let start_time = std::time::Instant::now();
497
498        let mut gradients = HashMap::new();
499
500        if self.config.enable_autodiff {
501            // Use automatic differentiation
502            gradients = self.compute_gradients_autodiff(qnn, batch, predictions)?;
503        } else {
504            // Use parameter shift rule or finite differences
505            gradients = self.compute_gradients_parameter_shift(qnn, batch)?;
506        }
507
508        let grad_time = start_time.elapsed().as_secs_f64() * 1000.0;
509        self.stats.avg_gradient_time_ms = self
510            .stats
511            .avg_gradient_time_ms
512            .mul_add(self.stats.gradient_computations as f64, grad_time)
513            / (self.stats.gradient_computations + 1) as f64;
514        self.stats.gradient_computations += 1;
515
516        // Cache gradients
517        {
518            let mut cache = self.gradient_cache.lock().unwrap();
519            for (param_name, grad) in &gradients {
520                cache.insert(param_name.clone(), grad.clone());
521            }
522        }
523
524        Ok(gradients)
525    }
526
527    /// Evaluate quantum neural network
528    fn evaluate_qnn(
529        &mut self,
530        qnn: &QuantumNeuralNetwork,
531        input: &Array1<f64>,
532    ) -> Result<Array1<f64>> {
533        // Start with initial state
534        let total_qubits = qnn.layers.iter().map(|l| l.num_qubits).max().unwrap_or(1);
535        let mut state = Array1::zeros(1 << total_qubits);
536        state[0] = Complex64::new(1.0, 0.0); // |0...0⟩
537
538        let mut current_output = input.clone();
539
540        // Process each layer
541        for layer in &qnn.layers {
542            current_output = self.evaluate_layer(layer, &current_output, &mut state)?;
543        }
544
545        Ok(current_output)
546    }
547
548    /// Evaluate single layer
549    fn evaluate_layer(
550        &mut self,
551        layer: &QMLLayer,
552        input: &Array1<f64>,
553        state: &mut Array1<Complex64>,
554    ) -> Result<Array1<f64>> {
555        match layer.layer_type {
556            QMLLayerType::DataEncoding => {
557                self.apply_data_encoding(layer, input, state)?;
558                Ok(input.clone()) // Pass through for now
559            }
560            QMLLayerType::VariationalCircuit => {
561                self.apply_variational_circuit(layer, state)?;
562                self.measure_qubits(layer, state)
563            }
564            QMLLayerType::Measurement => self.measure_qubits(layer, state),
565            QMLLayerType::Classical => self.apply_classical_processing(layer, input),
566            _ => {
567                // Placeholder for other layer types
568                Ok(input.clone())
569            }
570        }
571    }
572
573    /// Apply data encoding layer
574    fn apply_data_encoding(
575        &mut self,
576        layer: &QMLLayer,
577        input: &Array1<f64>,
578        state: &mut Array1<Complex64>,
579    ) -> Result<()> {
580        // Amplitude encoding: encode classical data into quantum amplitudes
581        for (i, &value) in input.iter().enumerate() {
582            if i < layer.num_qubits {
583                // Apply rotation proportional to input value
584                let angle = value * std::f64::consts::PI;
585                self.apply_ry_rotation(i, angle, state)?;
586            }
587        }
588        Ok(())
589    }
590
591    /// Apply variational circuit layer
592    fn apply_variational_circuit(
593        &mut self,
594        layer: &QMLLayer,
595        state: &mut Array1<Complex64>,
596    ) -> Result<()> {
597        if let Some(circuit_template) = &layer.circuit_template {
598            // Create parameterized circuit
599            let mut circuit = circuit_template.clone();
600            self.parameterize_circuit(&mut circuit, &layer.parameters)?;
601
602            // Compile and execute circuit
603            let compiled = self.circuit_interface.compile_circuit(
604                &circuit,
605                crate::circuit_interfaces::SimulationBackend::StateVector,
606            )?;
607            let result = self
608                .circuit_interface
609                .execute_circuit(&compiled, Some(state.clone()))?;
610
611            if let Some(final_state) = result.final_state {
612                *state = final_state;
613            }
614        }
615        Ok(())
616    }
617
618    /// Measure qubits
619    fn measure_qubits(&self, layer: &QMLLayer, state: &Array1<Complex64>) -> Result<Array1<f64>> {
620        let mut measurements = Array1::zeros(layer.num_qubits);
621
622        for qubit in 0..layer.num_qubits {
623            let prob = self.compute_measurement_probability(qubit, state)?;
624            measurements[qubit] = prob;
625        }
626
627        Ok(measurements)
628    }
629
630    /// Apply classical processing
631    fn apply_classical_processing(
632        &self,
633        layer: &QMLLayer,
634        input: &Array1<f64>,
635    ) -> Result<Array1<f64>> {
636        // Simple linear transformation for now
637        Ok(input.clone())
638    }
639
640    /// Apply RY rotation gate
641    fn apply_ry_rotation(
642        &self,
643        qubit: usize,
644        angle: f64,
645        state: &mut Array1<Complex64>,
646    ) -> Result<()> {
647        let qubit_mask = 1 << qubit;
648        let cos_half = (angle / 2.0).cos();
649        let sin_half = (angle / 2.0).sin();
650
651        for i in 0..state.len() {
652            if i & qubit_mask == 0 {
653                let j = i | qubit_mask;
654                if j < state.len() {
655                    let amp_0 = state[i];
656                    let amp_1 = state[j];
657
658                    state[i] = cos_half * amp_0 - sin_half * amp_1;
659                    state[j] = sin_half * amp_0 + cos_half * amp_1;
660                }
661            }
662        }
663
664        Ok(())
665    }
666
667    /// Parameterize circuit with current parameter values
668    fn parameterize_circuit(
669        &self,
670        circuit: &mut InterfaceCircuit,
671        parameters: &[f64],
672    ) -> Result<()> {
673        let mut param_idx = 0;
674
675        for gate in &mut circuit.gates {
676            match &mut gate.gate_type {
677                InterfaceGateType::RX(ref mut angle)
678                | InterfaceGateType::RY(ref mut angle)
679                | InterfaceGateType::RZ(ref mut angle) => {
680                    if param_idx < parameters.len() {
681                        *angle = parameters[param_idx];
682                        param_idx += 1;
683                    }
684                }
685                InterfaceGateType::Phase(ref mut angle) => {
686                    if param_idx < parameters.len() {
687                        *angle = parameters[param_idx];
688                        param_idx += 1;
689                    }
690                }
691                _ => {}
692            }
693        }
694
695        Ok(())
696    }
697
698    /// Compute measurement probability for a qubit
699    fn compute_measurement_probability(
700        &self,
701        qubit: usize,
702        state: &Array1<Complex64>,
703    ) -> Result<f64> {
704        let qubit_mask = 1 << qubit;
705        let mut prob_one = 0.0;
706
707        for (i, &amplitude) in state.iter().enumerate() {
708            if i & qubit_mask != 0 {
709                prob_one += amplitude.norm_sqr();
710            }
711        }
712
713        Ok(prob_one)
714    }
715
716    /// Compute loss
717    fn compute_loss(
718        &self,
719        prediction: &Array1<f64>,
720        target: &Array1<f64>,
721        loss_fn: &LossFunction,
722    ) -> Result<f64> {
723        match loss_fn {
724            LossFunction::MeanSquaredError => {
725                let diff = prediction - target;
726                Ok(diff.mapv(|x| x * x).mean().unwrap_or(0.0))
727            }
728            LossFunction::MeanAbsoluteError => {
729                let diff = prediction - target;
730                Ok(diff.mapv(|x| x.abs()).mean().unwrap_or(0.0))
731            }
732            LossFunction::CrossEntropy => {
733                // Simplified cross-entropy
734                let mut loss = 0.0;
735                for (i, (&pred, &targ)) in prediction.iter().zip(target.iter()).enumerate() {
736                    if targ > 0.0 {
737                        loss -= targ * pred.ln();
738                    }
739                }
740                Ok(loss)
741            }
742            _ => Ok(0.0), // Placeholder for other loss functions
743        }
744    }
745
746    /// Compute gradients using automatic differentiation
747    fn compute_gradients_autodiff(
748        &mut self,
749        qnn: &QuantumNeuralNetwork,
750        batch: &[TrainingExample],
751        predictions: &[Array1<f64>],
752    ) -> Result<HashMap<String, Vec<f64>>> {
753        // Placeholder for autodiff implementation
754        self.compute_gradients_parameter_shift(qnn, batch)
755    }
756
757    /// Compute gradients using parameter shift rule
758    fn compute_gradients_parameter_shift(
759        &mut self,
760        qnn: &QuantumNeuralNetwork,
761        batch: &[TrainingExample],
762    ) -> Result<HashMap<String, Vec<f64>>> {
763        let mut gradients = HashMap::new();
764        let shift = std::f64::consts::PI / 2.0;
765
766        // Collect all parameters
767        let mut all_params = Vec::new();
768        let mut param_names = Vec::new();
769
770        for layer in &qnn.layers {
771            for (i, &param) in layer.parameters.iter().enumerate() {
772                all_params.push(param);
773                param_names.push(format!("{}_{}", layer.name, i));
774            }
775        }
776
777        for (param_idx, param_name) in param_names.iter().enumerate() {
778            let mut param_grad = 0.0;
779
780            for example in batch {
781                // Evaluate with positive shift
782                let mut qnn_plus = qnn.clone();
783                self.shift_parameter(&mut qnn_plus, param_idx, shift)?;
784                let pred_plus = self.evaluate_qnn(&qnn_plus, &example.input)?;
785                let loss_plus = self.compute_loss(
786                    &pred_plus,
787                    &example.target,
788                    &qnn.training_config.loss_function,
789                )?;
790
791                // Evaluate with negative shift
792                let mut qnn_minus = qnn.clone();
793                self.shift_parameter(&mut qnn_minus, param_idx, -shift)?;
794                let pred_minus = self.evaluate_qnn(&qnn_minus, &example.input)?;
795                let loss_minus = self.compute_loss(
796                    &pred_minus,
797                    &example.target,
798                    &qnn.training_config.loss_function,
799                )?;
800
801                // Compute gradient using parameter shift rule
802                param_grad += (loss_plus - loss_minus) / 2.0;
803            }
804
805            param_grad /= batch.len() as f64;
806            gradients.insert(param_name.clone(), vec![param_grad]);
807        }
808
809        Ok(gradients)
810    }
811
812    /// Shift a parameter in the QNN
813    fn shift_parameter(
814        &self,
815        qnn: &mut QuantumNeuralNetwork,
816        param_idx: usize,
817        shift: f64,
818    ) -> Result<()> {
819        let mut current_idx = 0;
820
821        for layer in &mut qnn.layers {
822            if current_idx + layer.parameters.len() > param_idx {
823                let local_idx = param_idx - current_idx;
824                layer.parameters[local_idx] += shift;
825                return Ok(());
826            }
827            current_idx += layer.parameters.len();
828        }
829
830        Err(SimulatorError::InvalidInput(format!(
831            "Parameter index {param_idx} out of bounds"
832        )))
833    }
834
835    /// Create optimizer
836    fn create_optimizer(&self, config: &TrainingConfig) -> Result<Box<dyn QMLOptimizer>> {
837        match config.optimizer {
838            OptimizerType::Adam => Ok(Box::new(AdamOptimizer::new(config.learning_rate))),
839            OptimizerType::SGD => Ok(Box::new(SGDOptimizer::new(config.learning_rate))),
840            _ => Ok(Box::new(AdamOptimizer::new(config.learning_rate))), // Default to Adam
841        }
842    }
843
844    /// Update learning rate scheduler
845    fn update_lr_scheduler(
846        &self,
847        scheduler: &mut LRScheduler,
848        current_loss: f64,
849        optimizer: &mut Box<dyn QMLOptimizer>,
850    ) -> Result<()> {
851        match scheduler {
852            LRScheduler::StepLR {
853                step_size: _,
854                gamma,
855            } => {
856                optimizer.update_learning_rate(*gamma);
857            }
858            LRScheduler::ExponentialLR { gamma } => {
859                optimizer.update_learning_rate(*gamma);
860            }
861            LRScheduler::ReduceLROnPlateau {
862                patience: _,
863                factor,
864            } => {
865                // Simple implementation - reduce LR if loss plateaus
866                optimizer.update_learning_rate(*factor);
867            }
868            _ => {}
869        }
870        Ok(())
871    }
872
873    /// Compute parameter norm
874    fn compute_parameter_norm(&self, qnn: &QuantumNeuralNetwork) -> Result<f64> {
875        let mut norm_squared = 0.0;
876
877        for layer in &qnn.layers {
878            for &param in &layer.parameters {
879                norm_squared += param * param;
880            }
881        }
882
883        Ok(norm_squared.sqrt())
884    }
885
886    /// Compute last gradient norm
887    fn compute_last_gradient_norm(&self) -> Result<f64> {
888        let cache = self.gradient_cache.lock().unwrap();
889        let mut norm_squared = 0.0;
890
891        for (_, grads) in cache.iter() {
892            for &grad in grads {
893                norm_squared += grad * grad;
894            }
895        }
896
897        Ok(norm_squared.sqrt())
898    }
899
900    /// Get training statistics
901    pub const fn get_stats(&self) -> &QMLTrainingStats {
902        &self.stats
903    }
904
905    /// Reset training statistics
906    pub fn reset_stats(&mut self) {
907        self.stats = QMLTrainingStats::default();
908    }
909}
910
911/// Training example
912#[derive(Debug, Clone)]
913pub struct TrainingExample {
914    /// Input data
915    pub input: Array1<f64>,
916    /// Target output
917    pub target: Array1<f64>,
918}
919
920/// Training result
921#[derive(Debug, Clone)]
922pub struct TrainingResult {
923    /// Trained QNN
924    pub trained_qnn: QuantumNeuralNetwork,
925    /// Final training loss
926    pub final_loss: f64,
927    /// Final validation loss
928    pub final_validation_loss: f64,
929    /// Number of epochs completed
930    pub epochs_completed: usize,
931    /// Total training time
932    pub total_time_ms: f64,
933    /// Whether training converged
934    pub converged: bool,
935}
936
937/// QML optimizer trait
938pub trait QMLOptimizer {
939    /// Update parameters using computed gradients
940    fn update_parameters(
941        &mut self,
942        qnn: &mut QuantumNeuralNetwork,
943        gradients: &HashMap<String, Vec<f64>>,
944    ) -> Result<()>;
945
946    /// Update learning rate
947    fn update_learning_rate(&mut self, factor: f64);
948
949    /// Get current learning rate
950    fn get_learning_rate(&self) -> f64;
951}
952
953/// Adam optimizer implementation
954pub struct AdamOptimizer {
955    learning_rate: f64,
956    beta1: f64,
957    beta2: f64,
958    epsilon: f64,
959    step: usize,
960    m: HashMap<String, Vec<f64>>, // First moment estimates
961    v: HashMap<String, Vec<f64>>, // Second moment estimates
962}
963
964impl AdamOptimizer {
965    pub fn new(learning_rate: f64) -> Self {
966        Self {
967            learning_rate,
968            beta1: 0.9,
969            beta2: 0.999,
970            epsilon: 1e-8,
971            step: 0,
972            m: HashMap::new(),
973            v: HashMap::new(),
974        }
975    }
976}
977
978impl QMLOptimizer for AdamOptimizer {
979    fn update_parameters(
980        &mut self,
981        qnn: &mut QuantumNeuralNetwork,
982        gradients: &HashMap<String, Vec<f64>>,
983    ) -> Result<()> {
984        self.step += 1;
985
986        for (param_name, grads) in gradients {
987            // Initialize moments if needed
988            if !self.m.contains_key(param_name) {
989                self.m.insert(param_name.clone(), vec![0.0; grads.len()]);
990                self.v.insert(param_name.clone(), vec![0.0; grads.len()]);
991            }
992
993            let mut updates = Vec::new();
994
995            {
996                let m = self.m.get_mut(param_name).unwrap();
997                let v = self.v.get_mut(param_name).unwrap();
998
999                for (i, &grad) in grads.iter().enumerate() {
1000                    // Update biased first moment estimate
1001                    m[i] = self.beta1.mul_add(m[i], (1.0 - self.beta1) * grad);
1002
1003                    // Update biased second moment estimate
1004                    v[i] = self.beta2.mul_add(v[i], (1.0 - self.beta2) * grad * grad);
1005
1006                    // Compute bias-corrected first moment estimate
1007                    let m_hat = m[i] / (1.0 - self.beta1.powi(self.step as i32));
1008
1009                    // Compute bias-corrected second moment estimate
1010                    let v_hat = v[i] / (1.0 - self.beta2.powi(self.step as i32));
1011
1012                    // Update parameter
1013                    let update = self.learning_rate * m_hat / (v_hat.sqrt() + self.epsilon);
1014                    updates.push((i, -update));
1015                }
1016            }
1017
1018            // Apply updates
1019            for (i, update) in updates {
1020                self.update_qnn_parameter(qnn, param_name, i, update)?;
1021            }
1022        }
1023
1024        Ok(())
1025    }
1026
1027    fn update_learning_rate(&mut self, factor: f64) {
1028        self.learning_rate *= factor;
1029    }
1030
1031    fn get_learning_rate(&self) -> f64 {
1032        self.learning_rate
1033    }
1034}
1035
1036impl AdamOptimizer {
1037    fn update_qnn_parameter(
1038        &self,
1039        qnn: &mut QuantumNeuralNetwork,
1040        param_name: &str,
1041        param_idx: usize,
1042        update: f64,
1043    ) -> Result<()> {
1044        // Parse parameter name to find the layer and parameter index
1045        let parts: Vec<&str> = param_name.split('_').collect();
1046        if parts.len() >= 2 {
1047            let layer_name = parts[0];
1048
1049            for layer in &mut qnn.layers {
1050                if layer.name == layer_name && param_idx < layer.parameters.len() {
1051                    layer.parameters[param_idx] += update;
1052                    return Ok(());
1053                }
1054            }
1055        }
1056
1057        Err(SimulatorError::InvalidInput(format!(
1058            "Parameter {param_name} not found"
1059        )))
1060    }
1061}
1062
1063/// SGD optimizer implementation
1064pub struct SGDOptimizer {
1065    learning_rate: f64,
1066    momentum: f64,
1067    velocity: HashMap<String, Vec<f64>>,
1068}
1069
1070impl SGDOptimizer {
1071    pub fn new(learning_rate: f64) -> Self {
1072        Self {
1073            learning_rate,
1074            momentum: 0.9,
1075            velocity: HashMap::new(),
1076        }
1077    }
1078}
1079
1080impl QMLOptimizer for SGDOptimizer {
1081    fn update_parameters(
1082        &mut self,
1083        qnn: &mut QuantumNeuralNetwork,
1084        gradients: &HashMap<String, Vec<f64>>,
1085    ) -> Result<()> {
1086        for (param_name, grads) in gradients {
1087            // Initialize velocity if needed
1088            if !self.velocity.contains_key(param_name) {
1089                self.velocity
1090                    .insert(param_name.clone(), vec![0.0; grads.len()]);
1091            }
1092
1093            let mut updates = Vec::new();
1094
1095            {
1096                let velocity = self.velocity.get_mut(param_name).unwrap();
1097
1098                for (i, &grad) in grads.iter().enumerate() {
1099                    // Update velocity with momentum
1100                    velocity[i] = self
1101                        .momentum
1102                        .mul_add(velocity[i], -(self.learning_rate * grad));
1103                    updates.push((i, velocity[i]));
1104                }
1105            }
1106
1107            // Apply updates
1108            for (i, update) in updates {
1109                self.update_qnn_parameter(qnn, param_name, i, update)?;
1110            }
1111        }
1112
1113        Ok(())
1114    }
1115
1116    fn update_learning_rate(&mut self, factor: f64) {
1117        self.learning_rate *= factor;
1118    }
1119
1120    fn get_learning_rate(&self) -> f64 {
1121        self.learning_rate
1122    }
1123}
1124
1125impl SGDOptimizer {
1126    fn update_qnn_parameter(
1127        &self,
1128        qnn: &mut QuantumNeuralNetwork,
1129        param_name: &str,
1130        param_idx: usize,
1131        update: f64,
1132    ) -> Result<()> {
1133        // Parse parameter name to find the layer and parameter index
1134        let parts: Vec<&str> = param_name.split('_').collect();
1135        if parts.len() >= 2 {
1136            let layer_name = parts[0];
1137
1138            for layer in &mut qnn.layers {
1139                if layer.name == layer_name && param_idx < layer.parameters.len() {
1140                    layer.parameters[param_idx] += update;
1141                    return Ok(());
1142                }
1143            }
1144        }
1145
1146        Err(SimulatorError::InvalidInput(format!(
1147            "Parameter {param_name} not found"
1148        )))
1149    }
1150}
1151
1152/// QML utilities
1153pub struct QMLUtils;
1154
1155impl QMLUtils {
1156    /// Create a simple variational quantum classifier
1157    pub fn create_vqc(num_qubits: usize, num_layers: usize) -> QuantumNeuralNetwork {
1158        let mut layers = Vec::new();
1159
1160        // Data encoding layer
1161        layers.push(QMLLayer {
1162            layer_type: QMLLayerType::DataEncoding,
1163            name: "encoding".to_string(),
1164            num_qubits,
1165            parameters: Vec::new(),
1166            parameter_names: Vec::new(),
1167            circuit_template: None,
1168            classical_function: None,
1169            config: LayerConfig::default(),
1170        });
1171
1172        // Variational layers
1173        for layer_idx in 0..num_layers {
1174            let num_params = num_qubits * 3; // 3 parameters per qubit (RX, RY, RZ)
1175            let parameters = (0..num_params)
1176                .map(|_| fastrand::f64() * 2.0 * std::f64::consts::PI)
1177                .collect();
1178            let parameter_names = (0..num_params).map(|i| format!("param_{i}")).collect();
1179
1180            layers.push(QMLLayer {
1181                layer_type: QMLLayerType::VariationalCircuit,
1182                name: format!("var_layer_{layer_idx}"),
1183                num_qubits,
1184                parameters,
1185                parameter_names,
1186                circuit_template: Some(Self::create_variational_circuit_template(num_qubits)),
1187                classical_function: None,
1188                config: LayerConfig {
1189                    repetitions: 1,
1190                    entangling_pattern: (0..num_qubits - 1).map(|i| (i, i + 1)).collect(),
1191                    ..Default::default()
1192                },
1193            });
1194        }
1195
1196        // Measurement layer
1197        layers.push(QMLLayer {
1198            layer_type: QMLLayerType::Measurement,
1199            name: "measurement".to_string(),
1200            num_qubits,
1201            parameters: Vec::new(),
1202            parameter_names: Vec::new(),
1203            circuit_template: None,
1204            classical_function: None,
1205            config: LayerConfig::default(),
1206        });
1207
1208        QuantumNeuralNetwork {
1209            layers,
1210            global_parameters: HashMap::new(),
1211            metadata: QNNMetadata {
1212                name: Some("VQC".to_string()),
1213                total_parameters: num_layers * num_qubits * 3,
1214                trainable_parameters: num_layers * num_qubits * 3,
1215                ..Default::default()
1216            },
1217            training_config: TrainingConfig::default(),
1218        }
1219    }
1220
1221    /// Create variational circuit template
1222    fn create_variational_circuit_template(num_qubits: usize) -> InterfaceCircuit {
1223        let mut circuit = InterfaceCircuit::new(num_qubits, 0);
1224
1225        // Add parameterized rotation gates
1226        for qubit in 0..num_qubits {
1227            circuit.add_gate(InterfaceGate::new(InterfaceGateType::RX(0.0), vec![qubit]));
1228            circuit.add_gate(InterfaceGate::new(InterfaceGateType::RY(0.0), vec![qubit]));
1229            circuit.add_gate(InterfaceGate::new(InterfaceGateType::RZ(0.0), vec![qubit]));
1230        }
1231
1232        // Add entangling gates
1233        for qubit in 0..num_qubits - 1 {
1234            circuit.add_gate(InterfaceGate::new(
1235                InterfaceGateType::CNOT,
1236                vec![qubit, qubit + 1],
1237            ));
1238        }
1239
1240        circuit
1241    }
1242
1243    /// Create training data for XOR problem
1244    pub fn create_xor_training_data() -> Vec<TrainingExample> {
1245        vec![
1246            TrainingExample {
1247                input: Array1::from(vec![0.0, 0.0]),
1248                target: Array1::from(vec![0.0]),
1249            },
1250            TrainingExample {
1251                input: Array1::from(vec![0.0, 1.0]),
1252                target: Array1::from(vec![1.0]),
1253            },
1254            TrainingExample {
1255                input: Array1::from(vec![1.0, 0.0]),
1256                target: Array1::from(vec![1.0]),
1257            },
1258            TrainingExample {
1259                input: Array1::from(vec![1.0, 1.0]),
1260                target: Array1::from(vec![0.0]),
1261            },
1262        ]
1263    }
1264
1265    /// Benchmark QML integration
1266    pub fn benchmark_qml_integration() -> Result<QMLBenchmarkResults> {
1267        let mut results = QMLBenchmarkResults::default();
1268
1269        let configs = vec![
1270            QMLIntegrationConfig {
1271                framework: QMLFramework::SciRS2,
1272                enable_autodiff: false,
1273                batch_size: 4,
1274                ..Default::default()
1275            },
1276            QMLIntegrationConfig {
1277                framework: QMLFramework::SciRS2,
1278                enable_autodiff: true,
1279                batch_size: 4,
1280                ..Default::default()
1281            },
1282        ];
1283
1284        for (i, config) in configs.into_iter().enumerate() {
1285            let mut integration = QMLIntegration::new(config)?;
1286            let mut qnn = Self::create_vqc(2, 2);
1287            qnn.training_config.epochs = 10;
1288
1289            let training_data = Self::create_xor_training_data();
1290
1291            let start = std::time::Instant::now();
1292            let _result = integration.train_qnn(qnn, &training_data, None)?;
1293            let time = start.elapsed().as_secs_f64() * 1000.0;
1294
1295            results.training_times.push((format!("config_{i}"), time));
1296        }
1297
1298        Ok(results)
1299    }
1300}
1301
1302/// QML benchmark results
1303#[derive(Debug, Clone, Default)]
1304pub struct QMLBenchmarkResults {
1305    /// Training times by configuration
1306    pub training_times: Vec<(String, f64)>,
1307}
1308
1309#[cfg(test)]
1310mod tests {
1311    use super::*;
1312    use approx::assert_abs_diff_eq;
1313
1314    #[test]
1315    fn test_qml_integration_creation() {
1316        let config = QMLIntegrationConfig::default();
1317        let integration = QMLIntegration::new(config);
1318        assert!(integration.is_ok());
1319    }
1320
1321    #[test]
1322    fn test_quantum_neural_network_creation() {
1323        let qnn = QMLUtils::create_vqc(2, 2);
1324        assert_eq!(qnn.layers.len(), 4); // encoding + 2 variational + measurement
1325        assert_eq!(qnn.metadata.total_parameters, 12); // 2 layers * 2 qubits * 3 params
1326    }
1327
1328    #[test]
1329    fn test_training_data_creation() {
1330        let data = QMLUtils::create_xor_training_data();
1331        assert_eq!(data.len(), 4);
1332        assert_eq!(data[0].input, Array1::from(vec![0.0, 0.0]));
1333        assert_eq!(data[0].target, Array1::from(vec![0.0]));
1334    }
1335
1336    #[test]
1337    fn test_adam_optimizer() {
1338        let mut optimizer = AdamOptimizer::new(0.01);
1339        assert_eq!(optimizer.get_learning_rate(), 0.01);
1340
1341        optimizer.update_learning_rate(0.5);
1342        assert_abs_diff_eq!(optimizer.get_learning_rate(), 0.005, epsilon = 1e-10);
1343    }
1344
1345    #[test]
1346    fn test_sgd_optimizer() {
1347        let mut optimizer = SGDOptimizer::new(0.1);
1348        assert_eq!(optimizer.get_learning_rate(), 0.1);
1349
1350        optimizer.update_learning_rate(0.9);
1351        assert_abs_diff_eq!(optimizer.get_learning_rate(), 0.09, epsilon = 1e-10);
1352    }
1353
1354    #[test]
1355    fn test_qml_layer_types() {
1356        let layer_types = [
1357            QMLLayerType::VariationalCircuit,
1358            QMLLayerType::DataEncoding,
1359            QMLLayerType::Measurement,
1360            QMLLayerType::Classical,
1361        ];
1362        assert_eq!(layer_types.len(), 4);
1363    }
1364
1365    #[test]
1366    fn test_training_config_default() {
1367        let config = TrainingConfig::default();
1368        assert_eq!(config.learning_rate, 0.01);
1369        assert_eq!(config.optimizer, OptimizerType::Adam);
1370        assert_eq!(config.loss_function, LossFunction::MeanSquaredError);
1371    }
1372
1373    #[test]
1374    fn test_measurement_probability_computation() {
1375        let config = QMLIntegrationConfig::default();
1376        let integration = QMLIntegration::new(config).unwrap();
1377
1378        // Create a simple state |01⟩
1379        let mut state = Array1::zeros(4);
1380        state[1] = Complex64::new(1.0, 0.0); // |01⟩
1381
1382        let prob0 = integration
1383            .compute_measurement_probability(0, &state)
1384            .unwrap();
1385        let prob1 = integration
1386            .compute_measurement_probability(1, &state)
1387            .unwrap();
1388
1389        assert_abs_diff_eq!(prob0, 1.0, epsilon = 1e-10); // Qubit 0 is in |1⟩
1390        assert_abs_diff_eq!(prob1, 0.0, epsilon = 1e-10); // Qubit 1 is in |0⟩
1391    }
1392
1393    #[test]
1394    fn test_loss_computation() {
1395        let config = QMLIntegrationConfig::default();
1396        let integration = QMLIntegration::new(config).unwrap();
1397
1398        let prediction = Array1::from(vec![0.8, 0.2]);
1399        let target = Array1::from(vec![1.0, 0.0]);
1400
1401        let mse = integration
1402            .compute_loss(&prediction, &target, &LossFunction::MeanSquaredError)
1403            .unwrap();
1404        let mae = integration
1405            .compute_loss(&prediction, &target, &LossFunction::MeanAbsoluteError)
1406            .unwrap();
1407
1408        assert_abs_diff_eq!(mse, 0.04, epsilon = 1e-10); // ((0.8-1.0)^2 + (0.2-0.0)^2) / 2 = (0.04 + 0.04) / 2
1409        assert_abs_diff_eq!(mae, 0.2, epsilon = 1e-10); // (0.2 + 0.2) / 2
1410    }
1411
1412    #[test]
1413    fn test_circuit_template_creation() {
1414        let circuit = QMLUtils::create_variational_circuit_template(3);
1415        assert_eq!(circuit.num_qubits, 3);
1416        assert_eq!(circuit.gates.len(), 11); // 3*3 rotation gates + 2 CNOT gates
1417    }
1418}