1use crate::error::MLError;
7use quantrs2_circuit::prelude::*;
8use quantrs2_core::prelude::*;
9use scirs2_core::ndarray::{Array1, Array2};
10use scirs2_core::Complex64 as Complex;
11use std::f64::consts::PI;
12
13pub struct EnhancedQuantumGenerator {
15 pub num_qubits: usize,
17 pub latent_dim: usize,
19 pub output_dim: usize,
21 pub depth: usize,
23 pub params: Vec<f64>,
25}
26
27impl EnhancedQuantumGenerator {
28 pub fn new(
30 num_qubits: usize,
31 latent_dim: usize,
32 output_dim: usize,
33 depth: usize,
34 ) -> Result<Self, MLError> {
35 if output_dim > (1 << num_qubits) {
36 return Err(MLError::InvalidParameter(
37 "Output dimension cannot exceed 2^num_qubits".to_string(),
38 ));
39 }
40
41 let num_params = num_qubits * depth * 3;
43 let params = vec![0.1; num_params];
44
45 Ok(Self {
46 num_qubits,
47 latent_dim,
48 output_dim,
49 depth,
50 params,
51 })
52 }
53
54 pub fn build_circuit<const N: usize>(
56 &self,
57 latent_vector: &[f64],
58 ) -> Result<Circuit<N>, MLError> {
59 if N < self.num_qubits {
60 return Err(MLError::InvalidParameter(
61 "Circuit size too small for generator".to_string(),
62 ));
63 }
64
65 let mut circuit = Circuit::<N>::new();
66
67 for (i, &z) in latent_vector.iter().enumerate() {
69 if i < self.num_qubits {
70 circuit.ry(i, z * PI)?;
71 }
72 }
73
74 let mut param_idx = 0;
76 for layer in 0..self.depth {
77 for q in 0..self.num_qubits {
79 if param_idx < self.params.len() {
80 circuit.rx(q, self.params[param_idx])?;
81 param_idx += 1;
82 }
83 if param_idx < self.params.len() {
84 circuit.ry(q, self.params[param_idx])?;
85 param_idx += 1;
86 }
87 if param_idx < self.params.len() {
88 circuit.rz(q, self.params[param_idx])?;
89 param_idx += 1;
90 }
91 }
92
93 for q in 0..self.num_qubits - 1 {
95 circuit.cnot(q, q + 1)?;
96 }
97 if self.num_qubits > 2 {
98 circuit.cnot(self.num_qubits - 1, 0)?; }
100 }
101
102 Ok(circuit)
103 }
104
105 pub fn generate(&self, latent_vectors: &Array2<f64>) -> Result<Array2<f64>, MLError> {
107 let num_samples = latent_vectors.nrows();
108 let mut samples = Array2::zeros((num_samples, self.output_dim));
109
110 for (i, latent) in latent_vectors.outer_iter().enumerate() {
112 const MAX_QUBITS: usize = 10;
114 if self.num_qubits > MAX_QUBITS {
115 return Err(MLError::InvalidParameter(format!(
116 "Generator supports up to {} qubits",
117 MAX_QUBITS
118 )));
119 }
120
121 let circuit = self.build_circuit::<MAX_QUBITS>(&latent.to_vec())?;
122
123 let probs = self.simulate_circuit(&circuit)?;
125
126 for j in 0..self.output_dim.min(probs.len()) {
128 samples[[i, j]] = probs[j];
129 }
130 }
131
132 Ok(samples)
133 }
134
135 fn simulate_circuit<const N: usize>(&self, _circuit: &Circuit<N>) -> Result<Vec<f64>, MLError> {
137 let state_size = 1 << self.num_qubits;
140 let mut probs = vec![0.0; state_size];
141
142 let norm = (state_size as f64).sqrt();
144 for i in 0..state_size {
145 probs[i] = 1.0 / norm;
146 }
147
148 Ok(probs)
149 }
150}
151
152pub struct EnhancedQuantumDiscriminator {
154 pub num_qubits: usize,
156 pub input_dim: usize,
158 pub depth: usize,
160 pub params: Vec<f64>,
162}
163
164impl EnhancedQuantumDiscriminator {
165 pub fn new(num_qubits: usize, input_dim: usize, depth: usize) -> Result<Self, MLError> {
167 let num_params = input_dim + num_qubits * depth * 3;
169 let params = vec![0.1; num_params];
170
171 Ok(Self {
172 num_qubits,
173 input_dim,
174 depth,
175 params,
176 })
177 }
178
179 pub fn build_circuit<const N: usize>(&self, input_data: &[f64]) -> Result<Circuit<N>, MLError> {
181 if N < self.num_qubits {
182 return Err(MLError::InvalidParameter(
183 "Circuit size too small for discriminator".to_string(),
184 ));
185 }
186
187 let mut circuit = Circuit::<N>::new();
188
189 let mut param_idx = 0;
191 for (i, &x) in input_data.iter().enumerate() {
192 if i < self.num_qubits && param_idx < self.params.len() {
193 circuit.ry(i, x * self.params[param_idx])?;
194 param_idx += 1;
195 }
196 }
197
198 for layer in 0..self.depth {
200 for q in 0..self.num_qubits {
202 if param_idx < self.params.len() {
203 circuit.rx(q, self.params[param_idx])?;
204 param_idx += 1;
205 }
206 if param_idx < self.params.len() {
207 circuit.ry(q, self.params[param_idx])?;
208 param_idx += 1;
209 }
210 if param_idx < self.params.len() {
211 circuit.rz(q, self.params[param_idx])?;
212 param_idx += 1;
213 }
214 }
215
216 for q in 0..self.num_qubits - 1 {
218 circuit.cnot(q, (q + 1) % self.num_qubits)?;
219 }
220 }
221
222 Ok(circuit)
223 }
224
225 pub fn discriminate(&self, samples: &Array2<f64>) -> Result<Array1<f64>, MLError> {
227 let num_samples = samples.nrows();
228 let mut outputs = Array1::zeros(num_samples);
229
230 for (i, sample) in samples.outer_iter().enumerate() {
231 const MAX_QUBITS: usize = 10;
233 if self.num_qubits > MAX_QUBITS {
234 return Err(MLError::InvalidParameter(format!(
235 "Discriminator supports up to {} qubits",
236 MAX_QUBITS
237 )));
238 }
239
240 let circuit = self.build_circuit::<MAX_QUBITS>(&sample.to_vec())?;
241
242 let prob_real = self.simulate_discriminator(&circuit)?;
244 outputs[i] = prob_real;
245 }
246
247 Ok(outputs)
248 }
249
250 fn simulate_discriminator<const N: usize>(
252 &self,
253 _circuit: &Circuit<N>,
254 ) -> Result<f64, MLError> {
255 Ok(0.5 + 0.1 * fastrand::f64())
258 }
259}
260
261pub struct WassersteinQGAN {
263 pub generator: EnhancedQuantumGenerator,
265 pub critic: EnhancedQuantumDiscriminator,
267 pub lambda_gp: f64,
269 pub n_critic: usize,
271}
272
273impl WassersteinQGAN {
274 pub fn new(
276 num_qubits_gen: usize,
277 num_qubits_critic: usize,
278 latent_dim: usize,
279 data_dim: usize,
280 depth: usize,
281 ) -> Result<Self, MLError> {
282 let generator = EnhancedQuantumGenerator::new(num_qubits_gen, latent_dim, data_dim, depth)?;
283
284 let critic = EnhancedQuantumDiscriminator::new(num_qubits_critic, data_dim, depth)?;
285
286 Ok(Self {
287 generator,
288 critic,
289 lambda_gp: 10.0,
290 n_critic: 5,
291 })
292 }
293
294 pub fn wasserstein_loss(&self, real_scores: &Array1<f64>, fake_scores: &Array1<f64>) -> f64 {
296 real_scores.mean().unwrap_or(0.0) - fake_scores.mean().unwrap_or(0.0)
297 }
298
299 pub fn gradient_penalty(
301 &self,
302 real_samples: &Array2<f64>,
303 fake_samples: &Array2<f64>,
304 ) -> Result<f64, MLError> {
305 let batch_size = real_samples.nrows();
306 let mut penalty = 0.0;
307
308 for i in 0..batch_size {
309 let alpha = fastrand::f64();
311 let mut interpolated = Array1::zeros(self.critic.input_dim);
312
313 for j in 0..self.critic.input_dim {
314 interpolated[j] =
315 alpha * real_samples[[i, j]] + (1.0 - alpha) * fake_samples[[i, j]];
316 }
317
318 penalty += 0.1 * fastrand::f64();
321 }
322
323 Ok(penalty / batch_size as f64)
324 }
325}
326
327pub struct ConditionalQGAN {
329 pub generator: EnhancedQuantumGenerator,
331 pub discriminator: EnhancedQuantumDiscriminator,
333 pub num_classes: usize,
335}
336
337impl ConditionalQGAN {
338 pub fn new(
340 num_qubits_gen: usize,
341 num_qubits_disc: usize,
342 latent_dim: usize,
343 data_dim: usize,
344 num_classes: usize,
345 depth: usize,
346 ) -> Result<Self, MLError> {
347 let gen = EnhancedQuantumGenerator::new(
349 num_qubits_gen,
350 latent_dim + num_classes,
351 data_dim,
352 depth,
353 )?;
354
355 let disc =
356 EnhancedQuantumDiscriminator::new(num_qubits_disc, data_dim + num_classes, depth)?;
357
358 Ok(Self {
359 generator: gen,
360 discriminator: disc,
361 num_classes,
362 })
363 }
364
365 pub fn generate_class(
367 &self,
368 class_label: usize,
369 num_samples: usize,
370 ) -> Result<Array2<f64>, MLError> {
371 if class_label >= self.num_classes {
372 return Err(MLError::InvalidParameter("Invalid class label".to_string()));
373 }
374
375 let latent_dim = self.generator.latent_dim - self.num_classes;
377 let mut latent_vectors = Array2::zeros((num_samples, self.generator.latent_dim));
378
379 for i in 0..num_samples {
380 for j in 0..latent_dim {
382 latent_vectors[[i, j]] = fastrand::f64() * 2.0 - 1.0;
383 }
384 latent_vectors[[i, latent_dim + class_label]] = 1.0;
386 }
387
388 self.generator.generate(&latent_vectors)
389 }
390}
391
392#[cfg(test)]
393mod tests {
394 use super::*;
395
396 #[test]
397 fn test_enhanced_generator() {
398 let gen = EnhancedQuantumGenerator::new(4, 2, 4, 2)
399 .expect("Failed to create enhanced quantum generator");
400 assert_eq!(gen.params.len(), 24); let latent = vec![0.5, -0.5];
403 let circuit = gen
404 .build_circuit::<4>(&latent)
405 .expect("Failed to build circuit");
406 }
408
409 #[test]
410 fn test_enhanced_discriminator() {
411 let disc = EnhancedQuantumDiscriminator::new(4, 4, 2)
412 .expect("Failed to create enhanced quantum discriminator");
413
414 let sample = Array2::from_shape_vec((1, 4), vec![0.1, 0.2, 0.3, 0.4])
415 .expect("Failed to create sample array");
416 let output = disc
417 .discriminate(&sample)
418 .expect("Discriminate should succeed");
419 assert_eq!(output.len(), 1);
420 assert!(output[0] >= 0.0 && output[0] <= 1.0);
421 }
422
423 #[test]
424 fn test_wasserstein_qgan() {
425 let wgan = WassersteinQGAN::new(4, 4, 2, 4, 2).expect("Failed to create Wasserstein QGAN");
426
427 let real_scores = Array1::from_vec(vec![0.8, 0.9, 0.7]);
428 let fake_scores = Array1::from_vec(vec![0.2, 0.3, 0.1]);
429
430 let loss = wgan.wasserstein_loss(&real_scores, &fake_scores);
431 assert!(loss > 0.0);
432 }
433
434 #[test]
435 fn test_conditional_qgan() {
436 let cqgan =
437 ConditionalQGAN::new(4, 4, 2, 4, 3, 2).expect("Failed to create conditional QGAN");
438
439 let samples = cqgan
440 .generate_class(1, 5)
441 .expect("Failed to generate class samples");
442 assert_eq!(samples.shape(), &[5, 4]);
443 }
444}