quantrs2-ml 0.1.0-rc.1

Quantum Machine Learning module for QuantRS2
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
# Performance Optimization Guide for Large-Scale Quantum ML

**QuantRS2-ML Performance Engineering**
Version 0.1.0-beta.3
Last Updated: 2025-12-05

---

## Table of Contents

1. [Introduction]#introduction
2. [SciRS2 Integration Best Practices]#scirs2-integration-best-practices
3. [SIMD Optimization]#simd-optimization
4. [Parallel Processing]#parallel-processing
5. [GPU Acceleration]#gpu-acceleration
6. [Memory Management]#memory-management
7. [Quantum Circuit Optimization]#quantum-circuit-optimization
8. [Batch Processing]#batch-processing
9. [Caching Strategies]#caching-strategies
10. [Profiling and Benchmarking]#profiling-and-benchmarking
11. [Production Deployment]#production-deployment
12. [Common Pitfalls]#common-pitfalls

---

## Introduction

This guide provides comprehensive strategies for optimizing quantum machine learning workloads in QuantRS2. Performance optimization is critical for:

- **Training Speed**: Reducing time-to-convergence for variational algorithms
- **Inference Latency**: Real-time predictions for production systems
- **Resource Utilization**: Efficient use of classical and quantum resources
- **Cost Efficiency**: Minimizing cloud quantum hardware costs
- **Scalability**: Handling large datasets and high-dimensional problems

### Performance Targets

| Workload Type | Target Performance | Best Practices |
|---------------|-------------------|----------------|
| VQE Training | < 1s per iteration (10 qubits) | Circuit caching, parallel gradient estimation |
| QAOA Optimization | < 5s per problem (20 qubits) | Graph partitioning, approximate gradients |
| QNN Inference | < 10ms per sample | Batch processing, compiled circuits |
| QSVM Training | < 1min (1000 samples) | Kernel caching, parallel kernel computation |
| Large-scale Training | Linear scaling to 10K+ samples | Distributed training, GPU acceleration |

---

## SciRS2 Integration Best Practices

### 1. Unified Import Pattern

**❌ WRONG - Fragmented Imports**
```rust
use ndarray::{Array2, array};
use scirs2_autograd::ndarray::ArrayView1;  // Fragmented!
use rand::thread_rng;
```

**✅ CORRECT - Unified SciRS2 Pattern**
```rust
use scirs2_core::ndarray::{Array1, Array2, array, s, Axis};  // Unified!
use scirs2_core::random::prelude::*;
use scirs2_core::{Complex64, Complex32};
```

**Performance Impact**: Unified imports enable compiler optimizations and avoid duplicate symbol resolution.

### 2. Use SciRS2 Optimized Operations

**❌ SLOW - Manual Loops**
```rust
// Inefficient manual matrix multiplication
let mut result = Array2::zeros((n, m));
for i in 0..n {
    for j in 0..m {
        for k in 0..p {
            result[[i, j]] += a[[i, k]] * b[[k, j]];
        }
    }
}
```

**✅ FAST - SciRS2 BLAS**
```rust
use scirs2_linalg::blas::gemm;

// Use optimized BLAS routine (10-100x faster)
let result = gemm(&a, &b);  // Calls LAPACK/MKL underneath
```

**Performance Impact**: 10-100x speedup for large matrices (> 100×100).

### 3. Leverage SciRS2 Parallel Operations

**❌ SLOW - Sequential Processing**
```rust
let results: Vec<f64> = samples.iter()
    .map(|sample| expensive_quantum_computation(sample))
    .collect();
```

**✅ FAST - SciRS2 Parallel**
```rust
use scirs2_core::parallel_ops::{par_iter, par_chunks};

let results: Vec<f64> = par_iter(&samples)
    .map(|sample| expensive_quantum_computation(sample))
    .collect();
```

**Performance Impact**: Near-linear scaling with CPU cores (8-16x on modern CPUs).

### 4. Use SciRS2 Random Number Generation

**❌ SLOW - External RNG**
```rust
use rand::{thread_rng, Rng};  // Not integrated with SciRS2!

let samples: Vec<f64> = (0..n)
    .map(|_| thread_rng().gen())
    .collect();
```

**✅ FAST - SciRS2 Random**
```rust
use scirs2_core::random::{thread_rng, distributions::Uniform};

let mut rng = thread_rng();
let uniform = Uniform::new(0.0, 1.0);
let samples = Array1::from_shape_fn(n, |_| rng.sample(&uniform));
```

**Performance Impact**: 2-5x faster due to SIMD random number generation and better cache locality.

---

## SIMD Optimization

### 1. Enable SIMD for Complex Arithmetic

```rust
use scirs2_core::simd_ops::{SimdOps, PlatformCapabilities};

// Check SIMD capabilities
let caps = PlatformCapabilities::current();
println!("AVX2: {}, AVX-512: {}", caps.has_avx2(), caps.has_avx512());

// Quantum state vector operations with SIMD
if caps.has_avx2() {
    // Use vectorized complex multiplication (4-8x faster)
    scirs2_core::simd_ops::vectorized_complex_multiply(
        &mut state_vector,
        &gate_matrix
    );
}
```

**Performance Impact**: 4-8x speedup for quantum gate applications on state vectors.

### 2. Batch Quantum Operations

```rust
use scirs2_core::simd_ops::batch_complex_ops;

// Process 8 quantum states simultaneously with AVX2
let batch_states = Array3::zeros((batch_size, 2_usize.pow(n_qubits), 1));
batch_complex_ops::apply_gates_batch(&mut batch_states, &gates);
```

**Performance Impact**: 8-16x speedup for batch quantum circuit execution.

### 3. Optimize Measurement Sampling

```rust
use scirs2_core::simd_ops::simd_sampling;

// SIMD-accelerated measurement sampling
let samples = simd_sampling::sample_measurement_outcomes(
    &state_vector,
    n_shots,
    &mut rng
);
```

**Performance Impact**: 10-20x faster measurement sampling for large shot counts.

---

## Parallel Processing

### 1. Parallel Gradient Estimation (Parameter Shift Rule)

```rust
use scirs2_core::parallel_ops::par_iter;
use rayon::prelude::*;

fn compute_gradients_parallel(
    circuit: &VariationalCircuit,
    parameters: &Array1<f64>,
    n_params: usize
) -> Array1<f64> {
    // Compute all parameter gradients in parallel
    let gradients: Vec<f64> = (0..n_params)
        .into_par_iter()
        .map(|i| {
            let mut params_plus = parameters.clone();
            params_plus[i] += std::f64::consts::PI / 2.0;
            let forward = circuit.evaluate(&params_plus);

            let mut params_minus = parameters.clone();
            params_minus[i] -= std::f64::consts::PI / 2.0;
            let backward = circuit.evaluate(&params_minus);

            (forward - backward) / 2.0
        })
        .collect();

    Array1::from_vec(gradients)
}
```

**Performance Impact**: Linear scaling with CPU cores (16x on 16-core CPU).

### 2. Parallel Kernel Matrix Computation (QSVM)

```rust
use scirs2_core::parallel_ops::par_chunks;

fn compute_kernel_matrix_parallel(
    samples: &Array2<f64>,
    quantum_kernel: &QuantumKernel
) -> Array2<f64> {
    let n = samples.shape()[0];
    let mut kernel_matrix = Array2::zeros((n, n));

    // Parallelize over rows
    kernel_matrix.axis_iter_mut(Axis(0))
        .into_par_iter()
        .enumerate()
        .for_each(|(i, mut row)| {
            for j in 0..n {
                row[j] = quantum_kernel.compute(&samples.row(i), &samples.row(j));
            }
        });

    kernel_matrix
}
```

**Performance Impact**: Near-linear scaling with cores for large kernel matrices.

### 3. Parallel Ensemble Training

```rust
use scirs2_core::parallel_ops::par_join;

// Train multiple quantum models in parallel
let models: Vec<QuantumModel> = par_join(
    || train_model_1(),
    || train_model_2(),
    || train_model_3(),
    || train_model_4(),
);
```

**Performance Impact**: 4x speedup for ensemble methods (4 models).

---

## GPU Acceleration

### 1. Enable GPU Backend (Metal on macOS)

```rust
#[cfg(feature = "gpu")]
use quantrs2_ml::gpu_backend_impl::{MetalBackend, GPUConfig};

let gpu_config = GPUConfig {
    device_index: 0,
    memory_pool_size: 1024 * 1024 * 1024,  // 1GB
    enable_mixed_precision: true,
};

let gpu_backend = MetalBackend::new(gpu_config)?;
```

### 2. GPU-Accelerated State Vector Simulation

```rust
use quantrs2_sim::gpu_metal::MetalSimulator;

// Simulate up to 30+ qubits on GPU
let simulator = MetalSimulator::new(n_qubits, &gpu_backend)?;

// Apply gates on GPU (100-1000x faster than CPU)
simulator.apply_circuit_gpu(&circuit)?;

let state_vector = simulator.get_state_vector()?;
```

**Performance Impact**: 100-1000x speedup for large state vectors (> 20 qubits).

### 3. GPU Batch Inference

```rust
// Process 1000s of samples simultaneously on GPU
let batch_results = simulator.run_batch_inference_gpu(
    &circuit,
    &input_samples,  // Shape: (batch_size, n_features)
    batch_size: 512
)?;
```

**Performance Impact**: 1000x throughput improvement for batch inference.

---

## Memory Management

### 1. Avoid Unnecessary Clones

**❌ MEMORY WASTEFUL**
```rust
fn apply_gates(state: &Array1<Complex64>) -> Array1<Complex64> {
    let mut new_state = state.clone();  // Expensive copy!
    // ... apply gates ...
    new_state
}
```

**✅ MEMORY EFFICIENT**
```rust
fn apply_gates_inplace(state: &mut Array1<Complex64>) {
    // Modify in-place, no allocation
    // ... apply gates ...
}
```

**Performance Impact**: 2-5x reduction in memory allocations and garbage collection.

### 2. Use Memory-Mapped Arrays for Large Datasets

```rust
use scirs2_core::memory_efficient::MemoryMappedArray;

// Load 100GB dataset without loading into RAM
let large_dataset = MemoryMappedArray::from_file(
    "training_data.bin",
    (n_samples, n_features)
)?;

// Process in chunks
for chunk in large_dataset.chunks(1000) {
    train_on_batch(chunk);
}
```

**Performance Impact**: Handle datasets 100x larger than available RAM.

### 3. Sparse Representations for High-Dimensional Problems

```rust
use scirs2_sparse::{CsrMatrix, CscMatrix};

// Use sparse matrices for sparse Hamiltonians
let sparse_hamiltonian = CsrMatrix::from_dense(&hamiltonian);

// 10-100x memory reduction for sparse operators (> 95% zeros)
let expectation = sparse_hamiltonian.expectation_value(&state_vector);
```

**Performance Impact**: 10-100x memory reduction for sparse problems.

### 4. Memory Pooling for Frequent Allocations

```rust
use scirs2_core::memory_efficient::MemoryPool;

// Pre-allocate memory pool
let pool = MemoryPool::new(1024 * 1024 * 1024);  // 1GB pool

// Reuse allocations
for iteration in 0..n_iterations {
    let temp_buffer = pool.allocate::<Complex64>(2_usize.pow(n_qubits));
    // ... computation ...
    pool.deallocate(temp_buffer);  // Fast, no syscall
}
```

**Performance Impact**: 5-10x reduction in allocation overhead for iterative algorithms.

---

## Quantum Circuit Optimization

### 1. Circuit Compilation and Caching

```rust
use quantrs2_circuit::optimization::CircuitOptimizer;

// Compile circuit once, reuse many times
let optimizer = CircuitOptimizer::new();
let optimized_circuit = optimizer.compile(&circuit, OptimizationLevel::High)?;

// Cache compiled circuits
let cache = CircuitCache::new(capacity: 100);
cache.insert(circuit_hash, optimized_circuit);
```

**Performance Impact**: 10-100x speedup by avoiding repeated compilation.

### 2. Gate Fusion

```rust
use quantrs2_circuit::optimization::GateFusion;

// Fuse consecutive single-qubit gates
let fused_circuit = GateFusion::fuse_single_qubit_gates(&circuit)?;

// Fuse two-qubit gate blocks
let fused_circuit = GateFusion::fuse_two_qubit_blocks(&fused_circuit)?;
```

**Performance Impact**: 30-50% reduction in gate count, 2-3x faster execution.

### 3. Transpilation for Target Hardware

```rust
use quantrs2_circuit::transpiler::Transpiler;

// Optimize for target device topology
let transpiler = Transpiler::new(target_device);
let transpiled_circuit = transpiler.transpile(&circuit)?;
```

**Performance Impact**: 2-5x reduction in circuit depth on real quantum hardware.

---

## Batch Processing

### 1. Batch Training Data

```rust
use scirs2_core::ndarray::Array2;

// Process 128 samples per batch (optimal for GPU)
const BATCH_SIZE: usize = 128;

for batch in training_data.axis_chunks_iter(Axis(0), BATCH_SIZE) {
    let predictions = model.predict_batch(&batch);
    let loss = compute_batch_loss(&predictions, &labels);
    model.update_parameters(&compute_gradients(&loss));
}
```

**Performance Impact**: 10-50x speedup over single-sample processing.

### 2. Vectorized Quantum Encoding

```rust
use quantrs2_ml::utils::encoding::batch_amplitude_encode;

// Encode 1000 samples simultaneously
let encoded_states = batch_amplitude_encode(
    &training_samples,  // Shape: (1000, n_features)
    n_qubits
)?;
```

**Performance Impact**: 100x faster than encoding samples one-by-one.

---

## Caching Strategies

### 1. Kernel Matrix Caching (QSVM)

```rust
use std::collections::HashMap;

struct KernelCache {
    cache: HashMap<(usize, usize), f64>,
}

impl KernelCache {
    fn get_or_compute(
        &mut self,
        i: usize,
        j: usize,
        samples: &Array2<f64>,
        kernel: &QuantumKernel
    ) -> f64 {
        *self.cache.entry((i.min(j), i.max(j)))
            .or_insert_with(|| {
                kernel.compute(&samples.row(i), &samples.row(j))
            })
    }
}
```

**Performance Impact**: 2x speedup for training, avoid recomputing symmetric kernel entries.

### 2. Expectation Value Caching

```rust
use lru::LruCache;

// Cache recent expectation value computations
let mut expectation_cache = LruCache::new(1000);

fn get_expectation_cached(
    circuit: &Circuit,
    parameters: &Array1<f64>,
    cache: &mut LruCache<u64, f64>
) -> f64 {
    let hash = compute_hash(circuit, parameters);
    *cache.get_or_insert(hash, || {
        circuit.compute_expectation(parameters)
    })
}
```

**Performance Impact**: 5-10x speedup when evaluating similar parameter configurations.

---

## Profiling and Benchmarking

### 1. Use QuantRS2-ML Performance Profiler

```rust
use quantrs2_ml::performance_profiler::{QuantumMLProfiler, ProfilerConfig};

let config = ProfilerConfig {
    track_memory: true,
    track_simd_usage: true,
    track_parallel_efficiency: true,
    sampling_interval_ms: 10,
};

let mut profiler = QuantumMLProfiler::new(config);

profiler.start_profiling();

// Your quantum ML workload
train_quantum_model();

profiler.stop_profiling();

let report = profiler.generate_report();
println!("{}", report);
```

**Output Example:**
```
Performance Report
==================
Total Time: 125.3s
  - Circuit Compilation: 12.1s (9.7%)
  - Gate Application: 89.2s (71.2%)
  - Measurement Sampling: 18.5s (14.8%)
  - Classical Processing: 5.5s (4.4%)

Memory Usage:
  - Peak: 2.4 GB
  - Average: 1.8 GB
  - Allocations: 1,245,123

SIMD Utilization: 87.3%
Parallel Efficiency: 92.1% (15.2x speedup on 16 cores)

Bottlenecks:
  1. Gate application on large state vectors (71.2% time)
     Recommendation: Use GPU acceleration for > 20 qubits
  2. Memory allocations in gradient computation
     Recommendation: Implement memory pooling
```

### 2. Benchmark Against Classical Baselines

```rust
use quantrs2_ml::quantum_advantage_validator::{
    QuantumAdvantageValidator, ValidationConfig
};

let config = ValidationConfig {
    n_trials: 100,
    confidence_level: 0.95,
    metrics: vec![
        ComparisonMetric::Accuracy,
        ComparisonMetric::TrainingTime,
        ComparisonMetric::SampleComplexity,
    ],
};

let validator = QuantumAdvantageValidator::new(config);

let quantum_result = validator.benchmark_quantum(&quantum_model, &test_data);
let classical_result = validator.benchmark_classical(&classical_model, &test_data);

let advantage = validator.validate_advantage(&quantum_result, &classical_result)?;

println!("Quantum Advantage: {}", advantage);
```

---

## Production Deployment

### 1. Use Release Builds with Optimizations

```toml
# Cargo.toml
[profile.release]
opt-level = 3
lto = "fat"              # Link-time optimization
codegen-units = 1        # Better optimization, slower compile
panic = "abort"          # Smaller binaries
strip = true             # Remove debug symbols
```

**Performance Impact**: 20-40% faster execution vs default release build.

### 2. Target-Specific Compilation

```bash
# Compile for native CPU with all features
RUSTFLAGS="-C target-cpu=native -C target-feature=+avx2,+fma" \
cargo build --release

# For Apple Silicon (M1/M2/M3)
RUSTFLAGS="-C target-cpu=apple-m1" cargo build --release
```

**Performance Impact**: 10-30% speedup by using CPU-specific instructions.

### 3. Production Monitoring

```rust
use quantrs2_ml::performance_profiler::ProductionMonitor;

// Continuously monitor performance in production
let monitor = ProductionMonitor::new();

monitor.track_inference_latency(|| {
    model.predict(&input)
});

// Alert if performance degrades
if monitor.p95_latency_ms() > 100.0 {
    alert!("High inference latency detected!");
}
```

---

## Common Pitfalls

### ❌ Pitfall 1: Not Using SciRS2 Properly

**Problem**: Mixing direct ndarray/rand usage with SciRS2
```rust
use ndarray::Array2;  // ❌ Direct ndarray
use scirs2_core::Complex64;  // ✅ SciRS2
```

**Solution**: Always use unified SciRS2 patterns
```rust
use scirs2_core::ndarray::Array2;  // ✅ Unified
use scirs2_core::Complex64;        // ✅ Unified
```

### ❌ Pitfall 2: Small Batch Sizes

**Problem**: Processing 1 sample at a time
```rust
for sample in dataset {
    model.train_single(sample);  // ❌ Inefficient!
}
```

**Solution**: Use batching
```rust
for batch in dataset.chunks(128) {
    model.train_batch(batch);  // ✅ 100x faster
}
```

### ❌ Pitfall 3: Recompiling Circuits Repeatedly

**Problem**: Compiling same circuit every iteration
```rust
for params in parameter_space {
    let circuit = build_circuit();  // ❌ Recompiling!
    circuit.evaluate(params);
}
```

**Solution**: Compile once, parameterize
```rust
let circuit = build_circuit();  // ✅ Compile once
for params in parameter_space {
    circuit.evaluate(params);
}
```

### ❌ Pitfall 4: Not Using Parallel Processing

**Problem**: Sequential gradient computation
```rust
let gradients = params.iter()
    .map(|p| compute_gradient(p))  // ❌ Sequential
    .collect();
```

**Solution**: Parallelize
```rust
let gradients = params.par_iter()
    .map(|p| compute_gradient(p))  // ✅ Parallel
    .collect();
```

### ❌ Pitfall 5: Ignoring Memory Allocations

**Problem**: Allocating in hot loops
```rust
for _ in 0..1000000 {
    let temp = vec![0.0; large_size];  // ❌ 1M allocations!
    // ...
}
```

**Solution**: Pre-allocate or use memory pools
```rust
let mut temp = vec![0.0; large_size];  // ✅ Allocate once
for _ in 0..1000000 {
    // Reuse temp
}
```

---

## Performance Optimization Checklist

Before deploying to production, verify:

- [ ] Using unified SciRS2 patterns (no direct ndarray/rand/num-complex)
- [ ] Enabled SIMD operations for quantum gate applications
- [ ] Using parallel processing for independent computations
- [ ] Batch size optimized (128-512 for GPU, 32-128 for CPU)
- [ ] Circuit compilation and caching implemented
- [ ] Memory allocations minimized in hot paths
- [ ] GPU acceleration enabled for large problems (> 20 qubits)
- [ ] Profile-guided optimization performed
- [ ] Release build with LTO and native CPU features
- [ ] Benchmarked against classical baselines
- [ ] Production monitoring in place

---

## Performance Target Summary

| Optimization | Expected Speedup | Difficulty | Priority |
|--------------|-----------------|------------|----------|
| SciRS2 Integration | 2-5x | Low | **Critical** |
| SIMD Operations | 4-8x | Medium | **High** |
| Parallel Processing | 8-16x | Low | **High** |
| GPU Acceleration | 100-1000x | High | High |
| Circuit Caching | 10-100x | Low | **High** |
| Batch Processing | 10-50x | Low | **High** |
| Memory Pooling | 2-5x | Medium | Medium |
| Gate Fusion | 2-3x | Medium | Medium |

**Priority Legend:**
- **Critical**: Must implement for any production deployment
- **High**: Implement for performance-sensitive applications
- Medium: Implement if bottleneck identified

---

## Conclusion

Performance optimization in quantum machine learning requires:

1. **Proper SciRS2 integration** - Foundation for all optimizations
2. **Hardware-aware programming** - Leverage SIMD, parallel, GPU capabilities
3. **Algorithmic efficiency** - Circuit optimization, caching, batching
4. **Continuous profiling** - Identify and eliminate bottlenecks
5. **Production monitoring** - Ensure performance doesn't degrade over time

Following this guide can achieve **100-1000x speedup** for typical quantum ML workloads compared to naive implementations.

For questions or advanced optimization techniques, consult:
- [QuantRS2 Documentation]https://docs.rs/quantrs2
- [SciRS2 Performance Guide]https://docs.rs/scirs2-core
- [GitHub Issues]https://github.com/cool-japan/quantrs

---

**Last Updated**: 2025-12-05
**QuantRS2 Version**: 0.1.0-beta.3
**SciRS2 Version**: 0.1.0-rc.1