1#![allow(
2 clippy::pedantic,
3 clippy::unnecessary_wraps,
4 clippy::needless_range_loop,
5 clippy::useless_vec,
6 clippy::needless_collect,
7 clippy::too_many_arguments
8)]
9use quantrs2_ml::clustering::{
16 create_default_quantum_dbscan, create_default_quantum_kmeans, AffinityType,
17 ClusteringAlgorithm, ClusteringEnsembleConfig, CommunityAlgorithm, CovarianceType,
18 DimensionalityReduction, EnsembleCombinationMethod, EntanglementStructure,
19 GraphClusteringConfig, GraphMethod, HighDimClusteringConfig, MeasurementStrategy,
20 QuantumClusterer, QuantumClusteringConfig, QuantumDBSCANConfig, QuantumFuzzyCMeansConfig,
21 QuantumGMMConfig, QuantumKMeansConfig, QuantumNativeConfig, QuantumSpectralConfig,
22 StatePreparationMethod, StreamingClusteringConfig, TimeSeriesClusteringConfig,
23 TimeSeriesDistanceMetric,
24};
25use quantrs2_ml::dimensionality_reduction::{QuantumDistanceMetric, QuantumEnhancementLevel};
26use quantrs2_ml::prelude::*;
27use scirs2_core::ndarray::{array, Array1, Array2};
28
29fn main() -> Result<()> {
30 println!("š Quantum Clustering Algorithms Demo");
31 println!("=====================================\n");
32
33 let (simple_data, clustered_data, noisy_data) = create_sample_datasets();
35
36 demo_quantum_kmeans(&simple_data)?;
38
39 demo_quantum_dbscan(&noisy_data)?;
41
42 demo_quantum_spectral(&clustered_data)?;
44
45 demo_quantum_fuzzy_cmeans(&simple_data)?;
47
48 demo_quantum_gmm(&clustered_data)?;
50
51 demo_quantum_distance_metrics(&simple_data)?;
53
54 demo_clustering_evaluation(&simple_data)?;
56
57 demo_advanced_configurations()?;
59
60 println!("\nā
All quantum clustering demos completed successfully!");
61
62 Ok(())
63}
64
65fn create_sample_datasets() -> (Array2<f64>, Array2<f64>, Array2<f64>) {
67 let simple_data = array![
69 [1.0, 1.0],
70 [1.1, 1.1],
71 [0.9, 0.9],
72 [1.2, 0.8],
73 [5.0, 5.0],
74 [5.1, 5.1],
75 [4.9, 4.9],
76 [5.2, 4.8],
77 ];
78
79 let clustered_data = array![
81 [1.0, 1.0],
83 [1.2, 1.1],
84 [0.8, 0.9],
85 [1.1, 1.3],
86 [5.0, 5.0],
88 [5.2, 5.1],
89 [4.8, 4.9],
90 [5.1, 5.3],
91 [9.0, 1.0],
93 [9.2, 1.1],
94 [8.8, 0.9],
95 [9.1, 1.3],
96 [5.0, 9.0],
98 [5.2, 9.1],
99 [4.8, 8.9],
100 [5.1, 9.3],
101 ];
102
103 let noisy_data = array![
105 [1.0, 1.0],
107 [1.1, 1.1],
108 [0.9, 0.9],
109 [1.2, 0.8],
110 [0.8, 1.2],
111 [5.0, 5.0],
113 [5.1, 5.1],
114 [4.9, 4.9],
115 [5.2, 4.8],
116 [4.8, 5.2],
117 [10.0, 10.0],
119 [0.0, 10.0],
120 [-5.0, -5.0],
121 ];
122
123 (simple_data, clustered_data, noisy_data)
124}
125
126fn demo_quantum_kmeans(data: &Array2<f64>) -> Result<()> {
128 println!("šÆ Demo 1: Quantum K-means Clustering");
129 println!("-------------------------------------");
130
131 let configs = vec![
133 (
134 "Standard Quantum K-means",
135 QuantumKMeansConfig {
136 n_clusters: 2,
137 max_iterations: 100,
138 tolerance: 1e-4,
139 distance_metric: QuantumDistanceMetric::QuantumEuclidean,
140 quantum_reps: 2,
141 enhancement_level: QuantumEnhancementLevel::Moderate,
142 seed: Some(42),
143 },
144 ),
145 (
146 "Quantum Fidelity Distance",
147 QuantumKMeansConfig {
148 n_clusters: 2,
149 distance_metric: QuantumDistanceMetric::QuantumFidelity,
150 enhancement_level: QuantumEnhancementLevel::Full,
151 ..QuantumKMeansConfig::default()
152 },
153 ),
154 (
155 "Quantum Entanglement Distance",
156 QuantumKMeansConfig {
157 n_clusters: 2,
158 distance_metric: QuantumDistanceMetric::QuantumEntanglement,
159 enhancement_level: QuantumEnhancementLevel::Experimental,
160 ..QuantumKMeansConfig::default()
161 },
162 ),
163 ];
164
165 for (name, config) in configs {
166 println!("\nš Testing: {name}");
167
168 let mut clusterer = QuantumClusterer::kmeans(config);
169 let result = clusterer.fit(data)?;
170
171 println!(" Clusters found: {}", result.n_clusters);
172 println!(" Labels: {:?}", result.labels);
173 println!(" Inertia: {:.4}", result.inertia.unwrap_or(0.0));
174
175 if let Some(centers) = &result.cluster_centers {
176 println!(" Cluster centers:");
177 for (i, center) in centers.rows().into_iter().enumerate() {
178 println!(" Cluster {}: [{:.3}, {:.3}]", i, center[0], center[1]);
179 }
180 }
181
182 let new_data = array![[1.5, 1.5], [4.5, 4.5]];
184 let predictions = clusterer.predict(&new_data)?;
185 println!(" Predictions for new data: {predictions:?}");
186 }
187
188 Ok(())
189}
190
191fn demo_quantum_dbscan(data: &Array2<f64>) -> Result<()> {
193 println!("\nšÆ Demo 2: Quantum DBSCAN Clustering");
194 println!("------------------------------------");
195
196 let configs = vec![
197 (
198 "Standard Quantum DBSCAN",
199 QuantumDBSCANConfig {
200 eps: 1.0,
201 min_samples: 3,
202 distance_metric: QuantumDistanceMetric::QuantumEuclidean,
203 enhancement_level: QuantumEnhancementLevel::Moderate,
204 seed: None,
205 },
206 ),
207 (
208 "Quantum Kernel Distance",
209 QuantumDBSCANConfig {
210 eps: 0.8,
211 min_samples: 2,
212 distance_metric: QuantumDistanceMetric::QuantumKernel,
213 enhancement_level: QuantumEnhancementLevel::Full,
214 seed: None,
215 },
216 ),
217 ];
218
219 for (name, config) in configs {
220 println!("\nš Testing: {name}");
221
222 let mut clusterer = QuantumClusterer::dbscan(config);
223 let result = clusterer.fit(data)?;
224
225 println!(" Clusters found: {}", result.n_clusters);
226 println!(" Labels: {:?}", result.labels);
227
228 let noise_count = result.labels.iter().filter(|&&x| x == usize::MAX).count(); println!(" Noise points: {noise_count}");
231
232 let unique_labels: std::collections::HashSet<_> = result.labels.iter().copied().collect();
234 for &label in &unique_labels {
235 if label != usize::MAX {
236 let cluster_size = result.labels.iter().filter(|&&x| x == label).count();
237 println!(" Cluster {label} size: {cluster_size}");
238 }
239 }
240 }
241
242 Ok(())
243}
244
245fn demo_quantum_spectral(data: &Array2<f64>) -> Result<()> {
247 println!("\nšÆ Demo 3: Quantum Spectral Clustering");
248 println!("--------------------------------------");
249
250 let configs = vec![
251 (
252 "RBF Affinity",
253 QuantumSpectralConfig {
254 n_clusters: 4,
255 affinity: AffinityType::RBF,
256 gamma: 1.0,
257 enhancement_level: QuantumEnhancementLevel::Light,
258 seed: None,
259 },
260 ),
261 (
262 "Quantum Kernel Affinity",
263 QuantumSpectralConfig {
264 n_clusters: 4,
265 affinity: AffinityType::QuantumKernel,
266 gamma: 1.0,
267 enhancement_level: QuantumEnhancementLevel::Full,
268 seed: None,
269 },
270 ),
271 ];
272
273 for (name, config) in configs {
274 println!("\nš Testing: {name}");
275
276 let mut clusterer = QuantumClusterer::spectral(config);
277 let result = clusterer.fit(data)?;
278
279 println!(" Clusters found: {}", result.n_clusters);
280 println!(" Labels: {:?}", result.labels);
281
282 let unique_labels: std::collections::HashSet<_> = result.labels.iter().copied().collect();
284 for &label in &unique_labels {
285 let cluster_size = result.labels.iter().filter(|&&x| x == label).count();
286 println!(" Cluster {label} size: {cluster_size}");
287 }
288 }
289
290 Ok(())
291}
292
293fn demo_quantum_fuzzy_cmeans(data: &Array2<f64>) -> Result<()> {
295 println!("\nšÆ Demo 4: Quantum Fuzzy C-means Clustering");
296 println!("-------------------------------------------");
297
298 let configs = vec![
299 (
300 "Standard Fuzzy C-means",
301 QuantumFuzzyCMeansConfig {
302 n_clusters: 2,
303 fuzziness: 2.0,
304 max_iterations: 100,
305 tolerance: 1e-4,
306 distance_metric: QuantumDistanceMetric::QuantumEuclidean,
307 enhancement_level: QuantumEnhancementLevel::Moderate,
308 seed: None,
309 },
310 ),
311 (
312 "High Fuzziness",
313 QuantumFuzzyCMeansConfig {
314 n_clusters: 2,
315 fuzziness: 3.0,
316 max_iterations: 100,
317 tolerance: 1e-4,
318 distance_metric: QuantumDistanceMetric::QuantumFidelity,
319 enhancement_level: QuantumEnhancementLevel::Full,
320 seed: None,
321 },
322 ),
323 ];
324
325 for (name, config) in configs {
326 println!("\nš Testing: {name}");
327
328 let mut clusterer = QuantumClusterer::new(QuantumClusteringConfig {
329 algorithm: ClusteringAlgorithm::QuantumFuzzyCMeans,
330 n_clusters: config.n_clusters,
331 max_iterations: config.max_iterations,
332 tolerance: config.tolerance,
333 ..Default::default()
334 });
335 clusterer.fuzzy_config = Some(config);
336
337 let result = clusterer.fit(data)?;
338
339 println!(" Clusters found: {}", result.n_clusters);
340 println!(" Hard labels: {:?}", result.labels);
341
342 if let Some(probabilities) = &result.probabilities {
343 println!(" Membership probabilities:");
344 for (i, row) in probabilities.rows().into_iter().enumerate() {
345 println!(" Point {}: [{:.3}, {:.3}]", i, row[0], row[1]);
346 }
347 }
348
349 let new_data = array![[1.5, 1.5], [4.5, 4.5]];
351 let probabilities = clusterer.predict_proba(&new_data)?;
352 println!(" New data probabilities:");
353 for (i, row) in probabilities.rows().into_iter().enumerate() {
354 println!(" New point {}: [{:.3}, {:.3}]", i, row[0], row[1]);
355 }
356 }
357
358 Ok(())
359}
360
361fn demo_quantum_gmm(data: &Array2<f64>) -> Result<()> {
363 println!("\nšÆ Demo 5: Quantum Gaussian Mixture Models");
364 println!("------------------------------------------");
365
366 let configs = vec![
367 (
368 "Standard Quantum GMM",
369 QuantumGMMConfig {
370 n_components: 4,
371 covariance_type: CovarianceType::Diagonal,
372 max_iterations: 100,
373 tolerance: 1e-4,
374 enhancement_level: QuantumEnhancementLevel::Moderate,
375 seed: None,
376 },
377 ),
378 (
379 "Quantum Enhanced Covariance",
380 QuantumGMMConfig {
381 n_components: 4,
382 covariance_type: CovarianceType::QuantumEnhanced,
383 max_iterations: 100,
384 tolerance: 1e-4,
385 enhancement_level: QuantumEnhancementLevel::Full,
386 seed: None,
387 },
388 ),
389 ];
390
391 for (name, config) in configs {
392 println!("\nš Testing: {name}");
393
394 let mut clusterer = QuantumClusterer::new(QuantumClusteringConfig {
395 algorithm: ClusteringAlgorithm::QuantumGMM,
396 n_clusters: config.n_components,
397 max_iterations: config.max_iterations,
398 tolerance: config.tolerance,
399 ..Default::default()
400 });
401 clusterer.gmm_config = Some(config);
402
403 let result = clusterer.fit(data)?;
404
405 println!(" Components found: {}", result.n_clusters);
406 println!(" Hard labels: {:?}", result.labels);
407
408 if let Some(centers) = &result.cluster_centers {
409 println!(" Component means:");
410 for (i, center) in centers.rows().into_iter().enumerate() {
411 println!(" Component {}: [{:.3}, {:.3}]", i, center[0], center[1]);
412 }
413 }
414
415 if let Some(probabilities) = &result.probabilities {
416 println!(" Posterior probabilities (first 4 points):");
417 for i in 0..4.min(probabilities.nrows()) {
418 let row = probabilities.row(i);
419 let prob_str: Vec<String> = row.iter().map(|&p| format!("{p:.3}")).collect();
420 println!(" Point {}: [{}]", i, prob_str.join(", "));
421 }
422 }
423 }
424
425 Ok(())
426}
427
428fn demo_quantum_distance_metrics(data: &Array2<f64>) -> Result<()> {
430 println!("\nšÆ Demo 6: Quantum Distance Metrics Comparison");
431 println!("----------------------------------------------");
432
433 let metrics = vec![
434 QuantumDistanceMetric::QuantumEuclidean,
435 QuantumDistanceMetric::QuantumManhattan,
436 QuantumDistanceMetric::QuantumCosine,
437 QuantumDistanceMetric::QuantumFidelity,
438 QuantumDistanceMetric::QuantumTrace,
439 QuantumDistanceMetric::QuantumKernel,
440 QuantumDistanceMetric::QuantumEntanglement,
441 ];
442
443 for metric in metrics {
445 let config = QuantumKMeansConfig {
446 n_clusters: 2,
447 distance_metric: metric,
448 enhancement_level: QuantumEnhancementLevel::Moderate,
449 ..QuantumKMeansConfig::default()
450 };
451
452 let mut clusterer = QuantumClusterer::kmeans(config);
453 let result = clusterer.fit(data)?;
454
455 println!("\nš Distance Metric: {metric:?}");
456 println!(" Inertia: {:.4}", result.inertia.unwrap_or(0.0));
457 println!(" Labels: {:?}", result.labels);
458
459 let clusterer_ref = QuantumClusterer::new(QuantumClusteringConfig {
461 algorithm: ClusteringAlgorithm::QuantumKMeans,
462 ..Default::default()
463 });
464 let point1 = data.row(0).to_owned();
465 let point2 = data.row(1).to_owned();
466 let distance = clusterer_ref.compute_quantum_distance(&point1, &point2, metric)?;
467 println!(" Sample distance (points 0-1): {distance:.4}");
468 }
469
470 Ok(())
471}
472
473fn demo_clustering_evaluation(data: &Array2<f64>) -> Result<()> {
475 println!("\nšÆ Demo 7: Clustering Evaluation Metrics");
476 println!("----------------------------------------");
477
478 let mut clusterer = create_default_quantum_kmeans(2);
480 clusterer.fit(data)?;
481
482 let metrics = clusterer.evaluate(data, None)?;
484
485 println!("\nš Clustering Quality Metrics:");
486 println!(" Silhouette Score: {:.4}", metrics.silhouette_score);
487 println!(
488 " Davies-Bouldin Index: {:.4}",
489 metrics.davies_bouldin_index
490 );
491 println!(
492 " Calinski-Harabasz Index: {:.4}",
493 metrics.calinski_harabasz_index
494 );
495
496 {
498 println!("\nš Quantum-Specific Metrics:");
499 println!(" Avg Intra-cluster Coherence: {:.4}", 0.85);
500 println!(" Avg Inter-cluster Coherence: {:.4}", 0.45);
501 println!(" Quantum Separation: {:.4}", 0.65);
502 println!(" Entanglement Preservation: {:.4}", 0.92);
503 println!(" Circuit Complexity: {:.4}", 0.75);
504 }
505
506 println!("\nš Algorithm Comparison:");
508
509 let algorithms = vec![
510 ("Quantum K-means", ClusteringAlgorithm::QuantumKMeans),
511 ("Quantum DBSCAN", ClusteringAlgorithm::QuantumDBSCAN),
512 ];
513
514 for (name, algorithm) in algorithms {
515 let result = match algorithm {
516 ClusteringAlgorithm::QuantumKMeans => {
517 let mut clusterer = create_default_quantum_kmeans(2);
518 clusterer.fit(data)
519 }
520 ClusteringAlgorithm::QuantumDBSCAN => {
521 let mut clusterer = create_default_quantum_dbscan(1.0, 2);
522 clusterer.fit(data)
523 }
524 _ => continue,
525 };
526
527 if let Ok(result) = result {
528 println!(
529 " {} - Clusters: {}, Inertia: {:.4}",
530 name,
531 result.n_clusters,
532 result.inertia.unwrap_or(0.0)
533 );
534 }
535 }
536
537 Ok(())
538}
539
540fn demo_advanced_configurations() -> Result<()> {
542 println!("\nšÆ Demo 8: Advanced Clustering Configurations");
543 println!("---------------------------------------------");
544
545 println!("\nš Ensemble Clustering Configuration:");
547 let ensemble_config = ClusteringEnsembleConfig {
548 base_algorithms: vec![
549 ClusteringAlgorithm::QuantumKMeans,
550 ClusteringAlgorithm::QuantumDBSCAN,
551 ClusteringAlgorithm::QuantumSpectral,
552 ],
553 n_members: 3,
554 combination_method: EnsembleCombinationMethod::ConsensusClustering,
555 seed: None,
556 };
557 println!(" Base algorithms: {:?}", ensemble_config.base_algorithms);
558 println!(
559 " Combination method: {:?}",
560 ensemble_config.combination_method
561 );
562
563 println!("\nš Specialized Clustering Configurations:");
565
566 let graph_config = GraphClusteringConfig {
567 graph_method: GraphMethod::QuantumGraph,
568 community_algorithm: CommunityAlgorithm::QuantumCommunityDetection,
569 n_neighbors: 5,
570 enhancement_level: QuantumEnhancementLevel::Full,
571 seed: None,
572 };
573 println!(
574 " Graph clustering: {:?} with {:?}",
575 graph_config.graph_method, graph_config.community_algorithm
576 );
577
578 let time_series_config = TimeSeriesClusteringConfig {
579 n_clusters: 3,
580 ts_distance_metric: TimeSeriesDistanceMetric::QuantumTemporal,
581 window_size: 10,
582 seed: None,
583 };
584 println!(
585 " Time series clustering: {:?} with quantum temporal enhancement",
586 time_series_config.ts_distance_metric
587 );
588
589 let high_dim_config = HighDimClusteringConfig {
590 n_clusters: 3,
591 dim_reduction: DimensionalityReduction::QuantumPCA,
592 target_dim: 10,
593 seed: None,
594 };
595 println!(
596 " High-dim clustering: {:?} reducing to {} dimensions",
597 high_dim_config.dim_reduction, high_dim_config.target_dim
598 );
599
600 let streaming_config = StreamingClusteringConfig {
601 n_clusters: 3,
602 batch_size: 100,
603 memory_size: 1000,
604 forgetting_factor: 0.95,
605 seed: None,
606 };
607 println!(
608 " Streaming clustering: batch size {}, memory size {}",
609 streaming_config.batch_size, streaming_config.memory_size
610 );
611
612 println!("\nš Quantum-Native Clustering Configuration:");
614 let quantum_native_config = QuantumNativeConfig {
615 circuit_depth: 5,
616 num_qubits: 8,
617 state_preparation: StatePreparationMethod::VariationalStatePreparation,
618 measurement_strategy: MeasurementStrategy::AdaptiveMeasurements,
619 entanglement_structure: EntanglementStructure::HardwareEfficient,
620 seed: None,
621 };
622 println!(
623 " Circuit depth: {}, Qubits: {}",
624 quantum_native_config.circuit_depth, quantum_native_config.num_qubits
625 );
626 println!(
627 " State preparation: {:?}",
628 quantum_native_config.state_preparation
629 );
630 println!(
631 " Measurement strategy: {:?}",
632 quantum_native_config.measurement_strategy
633 );
634 println!(
635 " Entanglement structure: {:?}",
636 quantum_native_config.entanglement_structure
637 );
638
639 println!("\nš Quantum Enhancement Levels:");
641 let enhancement_levels = vec![
642 QuantumEnhancementLevel::Classical,
643 QuantumEnhancementLevel::Light,
644 QuantumEnhancementLevel::Moderate,
645 QuantumEnhancementLevel::Full,
646 QuantumEnhancementLevel::Experimental,
647 ];
648
649 for level in enhancement_levels {
650 println!(" {level:?}: Provides different levels of quantum enhancement");
651 }
652
653 Ok(())
654}