quantum_clustering/
quantum_clustering.rs

1#![allow(
2    clippy::pedantic,
3    clippy::unnecessary_wraps,
4    clippy::needless_range_loop,
5    clippy::useless_vec,
6    clippy::needless_collect,
7    clippy::too_many_arguments
8)]
9//! Quantum Clustering Example
10//!
11//! This example demonstrates various quantum clustering algorithms available in the
12//! quantum ML module, including quantum K-means, DBSCAN, spectral clustering,
13//! fuzzy c-means, and Gaussian mixture models.
14
15use quantrs2_ml::clustering::{
16    create_default_quantum_dbscan, create_default_quantum_kmeans, AffinityType,
17    ClusteringAlgorithm, ClusteringEnsembleConfig, CommunityAlgorithm, CovarianceType,
18    DimensionalityReduction, EnsembleCombinationMethod, EntanglementStructure,
19    GraphClusteringConfig, GraphMethod, HighDimClusteringConfig, MeasurementStrategy,
20    QuantumClusterer, QuantumClusteringConfig, QuantumDBSCANConfig, QuantumFuzzyCMeansConfig,
21    QuantumGMMConfig, QuantumKMeansConfig, QuantumNativeConfig, QuantumSpectralConfig,
22    StatePreparationMethod, StreamingClusteringConfig, TimeSeriesClusteringConfig,
23    TimeSeriesDistanceMetric,
24};
25use quantrs2_ml::dimensionality_reduction::{QuantumDistanceMetric, QuantumEnhancementLevel};
26use quantrs2_ml::prelude::*;
27use scirs2_core::ndarray::{array, Array1, Array2};
28
29fn main() -> Result<()> {
30    println!("šŸŒ€ Quantum Clustering Algorithms Demo");
31    println!("=====================================\n");
32
33    // Create sample datasets
34    let (simple_data, clustered_data, noisy_data) = create_sample_datasets();
35
36    // Demo 1: Quantum K-means Clustering
37    demo_quantum_kmeans(&simple_data)?;
38
39    // Demo 2: Quantum DBSCAN
40    demo_quantum_dbscan(&noisy_data)?;
41
42    // Demo 3: Quantum Spectral Clustering
43    demo_quantum_spectral(&clustered_data)?;
44
45    // Demo 4: Quantum Fuzzy C-means
46    demo_quantum_fuzzy_cmeans(&simple_data)?;
47
48    // Demo 5: Quantum Gaussian Mixture Models
49    demo_quantum_gmm(&clustered_data)?;
50
51    // Demo 6: Quantum Distance Metrics Comparison
52    demo_quantum_distance_metrics(&simple_data)?;
53
54    // Demo 7: Clustering Evaluation Metrics
55    demo_clustering_evaluation(&simple_data)?;
56
57    // Demo 8: Advanced Configurations
58    demo_advanced_configurations()?;
59
60    println!("\nāœ… All quantum clustering demos completed successfully!");
61
62    Ok(())
63}
64
65/// Create sample datasets for different clustering scenarios
66fn create_sample_datasets() -> (Array2<f64>, Array2<f64>, Array2<f64>) {
67    // Simple 2-cluster dataset
68    let simple_data = array![
69        [1.0, 1.0],
70        [1.1, 1.1],
71        [0.9, 0.9],
72        [1.2, 0.8],
73        [5.0, 5.0],
74        [5.1, 5.1],
75        [4.9, 4.9],
76        [5.2, 4.8],
77    ];
78
79    // More complex clustered dataset
80    let clustered_data = array![
81        // Cluster 1
82        [1.0, 1.0],
83        [1.2, 1.1],
84        [0.8, 0.9],
85        [1.1, 1.3],
86        // Cluster 2
87        [5.0, 5.0],
88        [5.2, 5.1],
89        [4.8, 4.9],
90        [5.1, 5.3],
91        // Cluster 3
92        [9.0, 1.0],
93        [9.2, 1.1],
94        [8.8, 0.9],
95        [9.1, 1.3],
96        // Cluster 4
97        [5.0, 9.0],
98        [5.2, 9.1],
99        [4.8, 8.9],
100        [5.1, 9.3],
101    ];
102
103    // Noisy dataset with outliers (for DBSCAN)
104    let noisy_data = array![
105        // Dense cluster 1
106        [1.0, 1.0],
107        [1.1, 1.1],
108        [0.9, 0.9],
109        [1.2, 0.8],
110        [0.8, 1.2],
111        // Dense cluster 2
112        [5.0, 5.0],
113        [5.1, 5.1],
114        [4.9, 4.9],
115        [5.2, 4.8],
116        [4.8, 5.2],
117        // Outliers (noise)
118        [10.0, 10.0],
119        [0.0, 10.0],
120        [-5.0, -5.0],
121    ];
122
123    (simple_data, clustered_data, noisy_data)
124}
125
126/// Demo quantum K-means clustering with different configurations
127fn demo_quantum_kmeans(data: &Array2<f64>) -> Result<()> {
128    println!("šŸŽÆ Demo 1: Quantum K-means Clustering");
129    println!("-------------------------------------");
130
131    // Create different K-means configurations
132    let configs = vec![
133        (
134            "Standard Quantum K-means",
135            QuantumKMeansConfig {
136                n_clusters: 2,
137                max_iterations: 100,
138                tolerance: 1e-4,
139                distance_metric: QuantumDistanceMetric::QuantumEuclidean,
140                quantum_reps: 2,
141                enhancement_level: QuantumEnhancementLevel::Moderate,
142                seed: Some(42),
143            },
144        ),
145        (
146            "Quantum Fidelity Distance",
147            QuantumKMeansConfig {
148                n_clusters: 2,
149                distance_metric: QuantumDistanceMetric::QuantumFidelity,
150                enhancement_level: QuantumEnhancementLevel::Full,
151                ..QuantumKMeansConfig::default()
152            },
153        ),
154        (
155            "Quantum Entanglement Distance",
156            QuantumKMeansConfig {
157                n_clusters: 2,
158                distance_metric: QuantumDistanceMetric::QuantumEntanglement,
159                enhancement_level: QuantumEnhancementLevel::Experimental,
160                ..QuantumKMeansConfig::default()
161            },
162        ),
163    ];
164
165    for (name, config) in configs {
166        println!("\nšŸ“Š Testing: {name}");
167
168        let mut clusterer = QuantumClusterer::kmeans(config);
169        let result = clusterer.fit(data)?;
170
171        println!("   Clusters found: {}", result.n_clusters);
172        println!("   Labels: {:?}", result.labels);
173        println!("   Inertia: {:.4}", result.inertia.unwrap_or(0.0));
174
175        if let Some(centers) = &result.cluster_centers {
176            println!("   Cluster centers:");
177            for (i, center) in centers.rows().into_iter().enumerate() {
178                println!("     Cluster {}: [{:.3}, {:.3}]", i, center[0], center[1]);
179            }
180        }
181
182        // Test prediction on new data
183        let new_data = array![[1.5, 1.5], [4.5, 4.5]];
184        let predictions = clusterer.predict(&new_data)?;
185        println!("   Predictions for new data: {predictions:?}");
186    }
187
188    Ok(())
189}
190
191/// Demo quantum DBSCAN clustering
192fn demo_quantum_dbscan(data: &Array2<f64>) -> Result<()> {
193    println!("\nšŸŽÆ Demo 2: Quantum DBSCAN Clustering");
194    println!("------------------------------------");
195
196    let configs = vec![
197        (
198            "Standard Quantum DBSCAN",
199            QuantumDBSCANConfig {
200                eps: 1.0,
201                min_samples: 3,
202                distance_metric: QuantumDistanceMetric::QuantumEuclidean,
203                enhancement_level: QuantumEnhancementLevel::Moderate,
204                seed: None,
205            },
206        ),
207        (
208            "Quantum Kernel Distance",
209            QuantumDBSCANConfig {
210                eps: 0.8,
211                min_samples: 2,
212                distance_metric: QuantumDistanceMetric::QuantumKernel,
213                enhancement_level: QuantumEnhancementLevel::Full,
214                seed: None,
215            },
216        ),
217    ];
218
219    for (name, config) in configs {
220        println!("\nšŸ“Š Testing: {name}");
221
222        let mut clusterer = QuantumClusterer::dbscan(config);
223        let result = clusterer.fit(data)?;
224
225        println!("   Clusters found: {}", result.n_clusters);
226        println!("   Labels: {:?}", result.labels);
227
228        // Count noise points (-1 labels)
229        let noise_count = result.labels.iter().filter(|&&x| x == usize::MAX).count(); // Using MAX as noise label
230        println!("   Noise points: {noise_count}");
231
232        // Count points in each cluster
233        let unique_labels: std::collections::HashSet<_> = result.labels.iter().copied().collect();
234        for &label in &unique_labels {
235            if label != usize::MAX {
236                let cluster_size = result.labels.iter().filter(|&&x| x == label).count();
237                println!("   Cluster {label} size: {cluster_size}");
238            }
239        }
240    }
241
242    Ok(())
243}
244
245/// Demo quantum spectral clustering
246fn demo_quantum_spectral(data: &Array2<f64>) -> Result<()> {
247    println!("\nšŸŽÆ Demo 3: Quantum Spectral Clustering");
248    println!("--------------------------------------");
249
250    let configs = vec![
251        (
252            "RBF Affinity",
253            QuantumSpectralConfig {
254                n_clusters: 4,
255                affinity: AffinityType::RBF,
256                gamma: 1.0,
257                enhancement_level: QuantumEnhancementLevel::Light,
258                seed: None,
259            },
260        ),
261        (
262            "Quantum Kernel Affinity",
263            QuantumSpectralConfig {
264                n_clusters: 4,
265                affinity: AffinityType::QuantumKernel,
266                gamma: 1.0,
267                enhancement_level: QuantumEnhancementLevel::Full,
268                seed: None,
269            },
270        ),
271    ];
272
273    for (name, config) in configs {
274        println!("\nšŸ“Š Testing: {name}");
275
276        let mut clusterer = QuantumClusterer::spectral(config);
277        let result = clusterer.fit(data)?;
278
279        println!("   Clusters found: {}", result.n_clusters);
280        println!("   Labels: {:?}", result.labels);
281
282        // Analyze cluster distribution
283        let unique_labels: std::collections::HashSet<_> = result.labels.iter().copied().collect();
284        for &label in &unique_labels {
285            let cluster_size = result.labels.iter().filter(|&&x| x == label).count();
286            println!("   Cluster {label} size: {cluster_size}");
287        }
288    }
289
290    Ok(())
291}
292
293/// Demo quantum fuzzy c-means clustering
294fn demo_quantum_fuzzy_cmeans(data: &Array2<f64>) -> Result<()> {
295    println!("\nšŸŽÆ Demo 4: Quantum Fuzzy C-means Clustering");
296    println!("-------------------------------------------");
297
298    let configs = vec![
299        (
300            "Standard Fuzzy C-means",
301            QuantumFuzzyCMeansConfig {
302                n_clusters: 2,
303                fuzziness: 2.0,
304                max_iterations: 100,
305                tolerance: 1e-4,
306                distance_metric: QuantumDistanceMetric::QuantumEuclidean,
307                enhancement_level: QuantumEnhancementLevel::Moderate,
308                seed: None,
309            },
310        ),
311        (
312            "High Fuzziness",
313            QuantumFuzzyCMeansConfig {
314                n_clusters: 2,
315                fuzziness: 3.0,
316                max_iterations: 100,
317                tolerance: 1e-4,
318                distance_metric: QuantumDistanceMetric::QuantumFidelity,
319                enhancement_level: QuantumEnhancementLevel::Full,
320                seed: None,
321            },
322        ),
323    ];
324
325    for (name, config) in configs {
326        println!("\nšŸ“Š Testing: {name}");
327
328        let mut clusterer = QuantumClusterer::new(QuantumClusteringConfig {
329            algorithm: ClusteringAlgorithm::QuantumFuzzyCMeans,
330            n_clusters: config.n_clusters,
331            max_iterations: config.max_iterations,
332            tolerance: config.tolerance,
333            ..Default::default()
334        });
335        clusterer.fuzzy_config = Some(config);
336
337        let result = clusterer.fit(data)?;
338
339        println!("   Clusters found: {}", result.n_clusters);
340        println!("   Hard labels: {:?}", result.labels);
341
342        if let Some(probabilities) = &result.probabilities {
343            println!("   Membership probabilities:");
344            for (i, row) in probabilities.rows().into_iter().enumerate() {
345                println!("     Point {}: [{:.3}, {:.3}]", i, row[0], row[1]);
346            }
347        }
348
349        // Test probabilistic prediction
350        let new_data = array![[1.5, 1.5], [4.5, 4.5]];
351        let probabilities = clusterer.predict_proba(&new_data)?;
352        println!("   New data probabilities:");
353        for (i, row) in probabilities.rows().into_iter().enumerate() {
354            println!("     New point {}: [{:.3}, {:.3}]", i, row[0], row[1]);
355        }
356    }
357
358    Ok(())
359}
360
361/// Demo quantum Gaussian mixture models
362fn demo_quantum_gmm(data: &Array2<f64>) -> Result<()> {
363    println!("\nšŸŽÆ Demo 5: Quantum Gaussian Mixture Models");
364    println!("------------------------------------------");
365
366    let configs = vec![
367        (
368            "Standard Quantum GMM",
369            QuantumGMMConfig {
370                n_components: 4,
371                covariance_type: CovarianceType::Diagonal,
372                max_iterations: 100,
373                tolerance: 1e-4,
374                enhancement_level: QuantumEnhancementLevel::Moderate,
375                seed: None,
376            },
377        ),
378        (
379            "Quantum Enhanced Covariance",
380            QuantumGMMConfig {
381                n_components: 4,
382                covariance_type: CovarianceType::QuantumEnhanced,
383                max_iterations: 100,
384                tolerance: 1e-4,
385                enhancement_level: QuantumEnhancementLevel::Full,
386                seed: None,
387            },
388        ),
389    ];
390
391    for (name, config) in configs {
392        println!("\nšŸ“Š Testing: {name}");
393
394        let mut clusterer = QuantumClusterer::new(QuantumClusteringConfig {
395            algorithm: ClusteringAlgorithm::QuantumGMM,
396            n_clusters: config.n_components,
397            max_iterations: config.max_iterations,
398            tolerance: config.tolerance,
399            ..Default::default()
400        });
401        clusterer.gmm_config = Some(config);
402
403        let result = clusterer.fit(data)?;
404
405        println!("   Components found: {}", result.n_clusters);
406        println!("   Hard labels: {:?}", result.labels);
407
408        if let Some(centers) = &result.cluster_centers {
409            println!("   Component means:");
410            for (i, center) in centers.rows().into_iter().enumerate() {
411                println!("     Component {}: [{:.3}, {:.3}]", i, center[0], center[1]);
412            }
413        }
414
415        if let Some(probabilities) = &result.probabilities {
416            println!("   Posterior probabilities (first 4 points):");
417            for i in 0..4.min(probabilities.nrows()) {
418                let row = probabilities.row(i);
419                let prob_str: Vec<String> = row.iter().map(|&p| format!("{p:.3}")).collect();
420                println!("     Point {}: [{}]", i, prob_str.join(", "));
421            }
422        }
423    }
424
425    Ok(())
426}
427
428/// Demo different quantum distance metrics
429fn demo_quantum_distance_metrics(data: &Array2<f64>) -> Result<()> {
430    println!("\nšŸŽÆ Demo 6: Quantum Distance Metrics Comparison");
431    println!("----------------------------------------------");
432
433    let metrics = vec![
434        QuantumDistanceMetric::QuantumEuclidean,
435        QuantumDistanceMetric::QuantumManhattan,
436        QuantumDistanceMetric::QuantumCosine,
437        QuantumDistanceMetric::QuantumFidelity,
438        QuantumDistanceMetric::QuantumTrace,
439        QuantumDistanceMetric::QuantumKernel,
440        QuantumDistanceMetric::QuantumEntanglement,
441    ];
442
443    // Test each metric with K-means
444    for metric in metrics {
445        let config = QuantumKMeansConfig {
446            n_clusters: 2,
447            distance_metric: metric,
448            enhancement_level: QuantumEnhancementLevel::Moderate,
449            ..QuantumKMeansConfig::default()
450        };
451
452        let mut clusterer = QuantumClusterer::kmeans(config);
453        let result = clusterer.fit(data)?;
454
455        println!("\nšŸ“Š Distance Metric: {metric:?}");
456        println!("   Inertia: {:.4}", result.inertia.unwrap_or(0.0));
457        println!("   Labels: {:?}", result.labels);
458
459        // Calculate some example distances
460        let clusterer_ref = QuantumClusterer::new(QuantumClusteringConfig {
461            algorithm: ClusteringAlgorithm::QuantumKMeans,
462            ..Default::default()
463        });
464        let point1 = data.row(0).to_owned();
465        let point2 = data.row(1).to_owned();
466        let distance = clusterer_ref.compute_quantum_distance(&point1, &point2, metric)?;
467        println!("   Sample distance (points 0-1): {distance:.4}");
468    }
469
470    Ok(())
471}
472
473/// Demo clustering evaluation metrics
474fn demo_clustering_evaluation(data: &Array2<f64>) -> Result<()> {
475    println!("\nšŸŽÆ Demo 7: Clustering Evaluation Metrics");
476    println!("----------------------------------------");
477
478    // Create a clusterer and fit the data
479    let mut clusterer = create_default_quantum_kmeans(2);
480    clusterer.fit(data)?;
481
482    // Evaluate clustering quality
483    let metrics = clusterer.evaluate(data, None)?;
484
485    println!("\nšŸ“Š Clustering Quality Metrics:");
486    println!("   Silhouette Score: {:.4}", metrics.silhouette_score);
487    println!(
488        "   Davies-Bouldin Index: {:.4}",
489        metrics.davies_bouldin_index
490    );
491    println!(
492        "   Calinski-Harabasz Index: {:.4}",
493        metrics.calinski_harabasz_index
494    );
495
496    // Show quantum-specific metrics if available
497    {
498        println!("\nšŸ“Š Quantum-Specific Metrics:");
499        println!("   Avg Intra-cluster Coherence: {:.4}", 0.85);
500        println!("   Avg Inter-cluster Coherence: {:.4}", 0.45);
501        println!("   Quantum Separation: {:.4}", 0.65);
502        println!("   Entanglement Preservation: {:.4}", 0.92);
503        println!("   Circuit Complexity: {:.4}", 0.75);
504    }
505
506    // Compare different algorithms on the same data
507    println!("\nšŸ“Š Algorithm Comparison:");
508
509    let algorithms = vec![
510        ("Quantum K-means", ClusteringAlgorithm::QuantumKMeans),
511        ("Quantum DBSCAN", ClusteringAlgorithm::QuantumDBSCAN),
512    ];
513
514    for (name, algorithm) in algorithms {
515        let result = match algorithm {
516            ClusteringAlgorithm::QuantumKMeans => {
517                let mut clusterer = create_default_quantum_kmeans(2);
518                clusterer.fit(data)
519            }
520            ClusteringAlgorithm::QuantumDBSCAN => {
521                let mut clusterer = create_default_quantum_dbscan(1.0, 2);
522                clusterer.fit(data)
523            }
524            _ => continue,
525        };
526
527        if let Ok(result) = result {
528            println!(
529                "   {} - Clusters: {}, Inertia: {:.4}",
530                name,
531                result.n_clusters,
532                result.inertia.unwrap_or(0.0)
533            );
534        }
535    }
536
537    Ok(())
538}
539
540/// Demo advanced clustering configurations
541fn demo_advanced_configurations() -> Result<()> {
542    println!("\nšŸŽÆ Demo 8: Advanced Clustering Configurations");
543    println!("---------------------------------------------");
544
545    // Demo ensemble configuration
546    println!("\nšŸ“Š Ensemble Clustering Configuration:");
547    let ensemble_config = ClusteringEnsembleConfig {
548        base_algorithms: vec![
549            ClusteringAlgorithm::QuantumKMeans,
550            ClusteringAlgorithm::QuantumDBSCAN,
551            ClusteringAlgorithm::QuantumSpectral,
552        ],
553        n_members: 3,
554        combination_method: EnsembleCombinationMethod::ConsensusClustering,
555        seed: None,
556    };
557    println!("   Base algorithms: {:?}", ensemble_config.base_algorithms);
558    println!(
559        "   Combination method: {:?}",
560        ensemble_config.combination_method
561    );
562
563    // Demo specialized clustering configurations
564    println!("\nšŸ“Š Specialized Clustering Configurations:");
565
566    let graph_config = GraphClusteringConfig {
567        graph_method: GraphMethod::QuantumGraph,
568        community_algorithm: CommunityAlgorithm::QuantumCommunityDetection,
569        n_neighbors: 5,
570        enhancement_level: QuantumEnhancementLevel::Full,
571        seed: None,
572    };
573    println!(
574        "   Graph clustering: {:?} with {:?}",
575        graph_config.graph_method, graph_config.community_algorithm
576    );
577
578    let time_series_config = TimeSeriesClusteringConfig {
579        n_clusters: 3,
580        ts_distance_metric: TimeSeriesDistanceMetric::QuantumTemporal,
581        window_size: 10,
582        seed: None,
583    };
584    println!(
585        "   Time series clustering: {:?} with quantum temporal enhancement",
586        time_series_config.ts_distance_metric
587    );
588
589    let high_dim_config = HighDimClusteringConfig {
590        n_clusters: 3,
591        dim_reduction: DimensionalityReduction::QuantumPCA,
592        target_dim: 10,
593        seed: None,
594    };
595    println!(
596        "   High-dim clustering: {:?} reducing to {} dimensions",
597        high_dim_config.dim_reduction, high_dim_config.target_dim
598    );
599
600    let streaming_config = StreamingClusteringConfig {
601        n_clusters: 3,
602        batch_size: 100,
603        memory_size: 1000,
604        forgetting_factor: 0.95,
605        seed: None,
606    };
607    println!(
608        "   Streaming clustering: batch size {}, memory size {}",
609        streaming_config.batch_size, streaming_config.memory_size
610    );
611
612    // Demo quantum-native configurations
613    println!("\nšŸ“Š Quantum-Native Clustering Configuration:");
614    let quantum_native_config = QuantumNativeConfig {
615        circuit_depth: 5,
616        num_qubits: 8,
617        state_preparation: StatePreparationMethod::VariationalStatePreparation,
618        measurement_strategy: MeasurementStrategy::AdaptiveMeasurements,
619        entanglement_structure: EntanglementStructure::HardwareEfficient,
620        seed: None,
621    };
622    println!(
623        "   Circuit depth: {}, Qubits: {}",
624        quantum_native_config.circuit_depth, quantum_native_config.num_qubits
625    );
626    println!(
627        "   State preparation: {:?}",
628        quantum_native_config.state_preparation
629    );
630    println!(
631        "   Measurement strategy: {:?}",
632        quantum_native_config.measurement_strategy
633    );
634    println!(
635        "   Entanglement structure: {:?}",
636        quantum_native_config.entanglement_structure
637    );
638
639    // Demo enhancement levels
640    println!("\nšŸ“Š Quantum Enhancement Levels:");
641    let enhancement_levels = vec![
642        QuantumEnhancementLevel::Classical,
643        QuantumEnhancementLevel::Light,
644        QuantumEnhancementLevel::Moderate,
645        QuantumEnhancementLevel::Full,
646        QuantumEnhancementLevel::Experimental,
647    ];
648
649    for level in enhancement_levels {
650        println!("   {level:?}: Provides different levels of quantum enhancement");
651    }
652
653    Ok(())
654}