QuantumTransferLearning

Struct QuantumTransferLearning 

Source
pub struct QuantumTransferLearning { /* private fields */ }
Expand description

Quantum transfer learning framework

Implementations§

Source§

impl QuantumTransferLearning

Source

pub fn new( source_model: PretrainedModel, target_layers: Vec<QNNLayerType>, strategy: TransferStrategy, ) -> Result<Self>

Create a new transfer learning instance

Examples found in repository?
examples/transfer_learning.rs (lines 45-51)
12fn main() -> Result<()> {
13    println!("=== Quantum Transfer Learning Demo ===\n");
14
15    // Step 1: Load a pre-trained model from the model zoo
16    println!("1. Loading pre-trained image classifier...");
17    let pretrained = QuantumModelZoo::get_image_classifier()?;
18
19    println!("   Pre-trained model info:");
20    println!("   - Task: {}", pretrained.task_description);
21    println!(
22        "   - Original accuracy: {:.2}%",
23        pretrained
24            .performance_metrics
25            .get("accuracy")
26            .unwrap_or(&0.0)
27            * 100.0
28    );
29    println!("   - Number of qubits: {}", pretrained.qnn.num_qubits);
30
31    // Step 2: Create new layers for the target task
32    println!("\n2. Creating new layers for text classification task...");
33    let new_layers = vec![
34        QNNLayerType::VariationalLayer { num_params: 6 },
35        QNNLayerType::MeasurementLayer {
36            measurement_basis: "Pauli-Z".to_string(),
37        },
38    ];
39
40    // Step 3: Initialize transfer learning with different strategies
41    println!("\n3. Testing different transfer learning strategies:");
42
43    // Strategy 1: Fine-tuning
44    println!("\n   a) Fine-tuning strategy (train last 2 layers only)");
45    let mut transfer_finetune = QuantumTransferLearning::new(
46        pretrained.clone(),
47        new_layers.clone(),
48        TransferStrategy::FineTuning {
49            num_trainable_layers: 2,
50        },
51    )?;
52
53    // Strategy 2: Feature extraction
54    println!("   b) Feature extraction strategy (freeze all pre-trained layers)");
55    let transfer_feature = QuantumTransferLearning::new(
56        pretrained.clone(),
57        new_layers.clone(),
58        TransferStrategy::FeatureExtraction,
59    )?;
60
61    // Strategy 3: Progressive unfreezing
62    println!("   c) Progressive unfreezing (unfreeze one layer every 5 epochs)");
63    let transfer_progressive = QuantumTransferLearning::new(
64        pretrained,
65        new_layers,
66        TransferStrategy::ProgressiveUnfreezing { unfreeze_rate: 5 },
67    )?;
68
69    // Step 4: Generate synthetic training data for the new task
70    println!("\n4. Generating synthetic training data...");
71    let num_samples = 50;
72    let num_features = 4;
73    let training_data = Array2::from_shape_fn((num_samples, num_features), |(i, j)| {
74        (i as f64).mul_add(0.1, j as f64 * 0.2).sin()
75    });
76    let labels = Array1::from_shape_fn(num_samples, |i| if i % 2 == 0 { 0.0 } else { 1.0 });
77
78    // Step 5: Train with fine-tuning strategy
79    println!("\n5. Training with fine-tuning strategy...");
80    let mut optimizer = Adam::new(0.01);
81
82    let result = transfer_finetune.train(
83        &training_data,
84        &labels,
85        &mut optimizer,
86        20, // epochs
87        10, // batch_size
88    )?;
89
90    println!("   Training complete!");
91    println!("   - Final loss: {:.4}", result.final_loss);
92    println!("   - Accuracy: {:.2}%", result.accuracy * 100.0);
93
94    // Step 6: Extract features using pre-trained layers
95    println!("\n6. Extracting features from pre-trained layers...");
96    let features = transfer_feature.extract_features(&training_data)?;
97    println!("   Extracted feature dimensions: {:?}", features.dim());
98
99    // Step 7: Demonstrate model zoo
100    println!("\n7. Available pre-trained models in the zoo:");
101    println!("   - Image classifier (4 qubits, MNIST subset)");
102    println!("   - Chemistry model (6 qubits, molecular energy)");
103
104    // Load chemistry model
105    let chemistry_model = QuantumModelZoo::get_chemistry_model()?;
106    println!("\n   Chemistry model info:");
107    println!("   - Task: {}", chemistry_model.task_description);
108    println!(
109        "   - MAE: {:.4}",
110        chemistry_model
111            .performance_metrics
112            .get("mae")
113            .unwrap_or(&0.0)
114    );
115    println!(
116        "   - R² score: {:.4}",
117        chemistry_model
118            .performance_metrics
119            .get("r2_score")
120            .unwrap_or(&0.0)
121    );
122
123    println!("\n=== Transfer Learning Demo Complete ===");
124
125    Ok(())
126}
Source

pub fn train( &mut self, training_data: &Array2<f64>, labels: &Array1<f64>, optimizer: &mut dyn Optimizer, epochs: usize, batch_size: usize, ) -> Result<TrainingResult>

Train the target model on new data

Examples found in repository?
examples/transfer_learning.rs (lines 82-88)
12fn main() -> Result<()> {
13    println!("=== Quantum Transfer Learning Demo ===\n");
14
15    // Step 1: Load a pre-trained model from the model zoo
16    println!("1. Loading pre-trained image classifier...");
17    let pretrained = QuantumModelZoo::get_image_classifier()?;
18
19    println!("   Pre-trained model info:");
20    println!("   - Task: {}", pretrained.task_description);
21    println!(
22        "   - Original accuracy: {:.2}%",
23        pretrained
24            .performance_metrics
25            .get("accuracy")
26            .unwrap_or(&0.0)
27            * 100.0
28    );
29    println!("   - Number of qubits: {}", pretrained.qnn.num_qubits);
30
31    // Step 2: Create new layers for the target task
32    println!("\n2. Creating new layers for text classification task...");
33    let new_layers = vec![
34        QNNLayerType::VariationalLayer { num_params: 6 },
35        QNNLayerType::MeasurementLayer {
36            measurement_basis: "Pauli-Z".to_string(),
37        },
38    ];
39
40    // Step 3: Initialize transfer learning with different strategies
41    println!("\n3. Testing different transfer learning strategies:");
42
43    // Strategy 1: Fine-tuning
44    println!("\n   a) Fine-tuning strategy (train last 2 layers only)");
45    let mut transfer_finetune = QuantumTransferLearning::new(
46        pretrained.clone(),
47        new_layers.clone(),
48        TransferStrategy::FineTuning {
49            num_trainable_layers: 2,
50        },
51    )?;
52
53    // Strategy 2: Feature extraction
54    println!("   b) Feature extraction strategy (freeze all pre-trained layers)");
55    let transfer_feature = QuantumTransferLearning::new(
56        pretrained.clone(),
57        new_layers.clone(),
58        TransferStrategy::FeatureExtraction,
59    )?;
60
61    // Strategy 3: Progressive unfreezing
62    println!("   c) Progressive unfreezing (unfreeze one layer every 5 epochs)");
63    let transfer_progressive = QuantumTransferLearning::new(
64        pretrained,
65        new_layers,
66        TransferStrategy::ProgressiveUnfreezing { unfreeze_rate: 5 },
67    )?;
68
69    // Step 4: Generate synthetic training data for the new task
70    println!("\n4. Generating synthetic training data...");
71    let num_samples = 50;
72    let num_features = 4;
73    let training_data = Array2::from_shape_fn((num_samples, num_features), |(i, j)| {
74        (i as f64).mul_add(0.1, j as f64 * 0.2).sin()
75    });
76    let labels = Array1::from_shape_fn(num_samples, |i| if i % 2 == 0 { 0.0 } else { 1.0 });
77
78    // Step 5: Train with fine-tuning strategy
79    println!("\n5. Training with fine-tuning strategy...");
80    let mut optimizer = Adam::new(0.01);
81
82    let result = transfer_finetune.train(
83        &training_data,
84        &labels,
85        &mut optimizer,
86        20, // epochs
87        10, // batch_size
88    )?;
89
90    println!("   Training complete!");
91    println!("   - Final loss: {:.4}", result.final_loss);
92    println!("   - Accuracy: {:.2}%", result.accuracy * 100.0);
93
94    // Step 6: Extract features using pre-trained layers
95    println!("\n6. Extracting features from pre-trained layers...");
96    let features = transfer_feature.extract_features(&training_data)?;
97    println!("   Extracted feature dimensions: {:?}", features.dim());
98
99    // Step 7: Demonstrate model zoo
100    println!("\n7. Available pre-trained models in the zoo:");
101    println!("   - Image classifier (4 qubits, MNIST subset)");
102    println!("   - Chemistry model (6 qubits, molecular energy)");
103
104    // Load chemistry model
105    let chemistry_model = QuantumModelZoo::get_chemistry_model()?;
106    println!("\n   Chemistry model info:");
107    println!("   - Task: {}", chemistry_model.task_description);
108    println!(
109        "   - MAE: {:.4}",
110        chemistry_model
111            .performance_metrics
112            .get("mae")
113            .unwrap_or(&0.0)
114    );
115    println!(
116        "   - R² score: {:.4}",
117        chemistry_model
118            .performance_metrics
119            .get("r2_score")
120            .unwrap_or(&0.0)
121    );
122
123    println!("\n=== Transfer Learning Demo Complete ===");
124
125    Ok(())
126}
Source

pub fn predict(&self, data: &Array2<f64>) -> Result<Array1<f64>>

Make predictions using the target model

Source

pub fn extract_features(&self, data: &Array2<f64>) -> Result<Array2<f64>>

Extract features using the pre-trained layers

Examples found in repository?
examples/transfer_learning.rs (line 96)
12fn main() -> Result<()> {
13    println!("=== Quantum Transfer Learning Demo ===\n");
14
15    // Step 1: Load a pre-trained model from the model zoo
16    println!("1. Loading pre-trained image classifier...");
17    let pretrained = QuantumModelZoo::get_image_classifier()?;
18
19    println!("   Pre-trained model info:");
20    println!("   - Task: {}", pretrained.task_description);
21    println!(
22        "   - Original accuracy: {:.2}%",
23        pretrained
24            .performance_metrics
25            .get("accuracy")
26            .unwrap_or(&0.0)
27            * 100.0
28    );
29    println!("   - Number of qubits: {}", pretrained.qnn.num_qubits);
30
31    // Step 2: Create new layers for the target task
32    println!("\n2. Creating new layers for text classification task...");
33    let new_layers = vec![
34        QNNLayerType::VariationalLayer { num_params: 6 },
35        QNNLayerType::MeasurementLayer {
36            measurement_basis: "Pauli-Z".to_string(),
37        },
38    ];
39
40    // Step 3: Initialize transfer learning with different strategies
41    println!("\n3. Testing different transfer learning strategies:");
42
43    // Strategy 1: Fine-tuning
44    println!("\n   a) Fine-tuning strategy (train last 2 layers only)");
45    let mut transfer_finetune = QuantumTransferLearning::new(
46        pretrained.clone(),
47        new_layers.clone(),
48        TransferStrategy::FineTuning {
49            num_trainable_layers: 2,
50        },
51    )?;
52
53    // Strategy 2: Feature extraction
54    println!("   b) Feature extraction strategy (freeze all pre-trained layers)");
55    let transfer_feature = QuantumTransferLearning::new(
56        pretrained.clone(),
57        new_layers.clone(),
58        TransferStrategy::FeatureExtraction,
59    )?;
60
61    // Strategy 3: Progressive unfreezing
62    println!("   c) Progressive unfreezing (unfreeze one layer every 5 epochs)");
63    let transfer_progressive = QuantumTransferLearning::new(
64        pretrained,
65        new_layers,
66        TransferStrategy::ProgressiveUnfreezing { unfreeze_rate: 5 },
67    )?;
68
69    // Step 4: Generate synthetic training data for the new task
70    println!("\n4. Generating synthetic training data...");
71    let num_samples = 50;
72    let num_features = 4;
73    let training_data = Array2::from_shape_fn((num_samples, num_features), |(i, j)| {
74        (i as f64).mul_add(0.1, j as f64 * 0.2).sin()
75    });
76    let labels = Array1::from_shape_fn(num_samples, |i| if i % 2 == 0 { 0.0 } else { 1.0 });
77
78    // Step 5: Train with fine-tuning strategy
79    println!("\n5. Training with fine-tuning strategy...");
80    let mut optimizer = Adam::new(0.01);
81
82    let result = transfer_finetune.train(
83        &training_data,
84        &labels,
85        &mut optimizer,
86        20, // epochs
87        10, // batch_size
88    )?;
89
90    println!("   Training complete!");
91    println!("   - Final loss: {:.4}", result.final_loss);
92    println!("   - Accuracy: {:.2}%", result.accuracy * 100.0);
93
94    // Step 6: Extract features using pre-trained layers
95    println!("\n6. Extracting features from pre-trained layers...");
96    let features = transfer_feature.extract_features(&training_data)?;
97    println!("   Extracted feature dimensions: {:?}", features.dim());
98
99    // Step 7: Demonstrate model zoo
100    println!("\n7. Available pre-trained models in the zoo:");
101    println!("   - Image classifier (4 qubits, MNIST subset)");
102    println!("   - Chemistry model (6 qubits, molecular energy)");
103
104    // Load chemistry model
105    let chemistry_model = QuantumModelZoo::get_chemistry_model()?;
106    println!("\n   Chemistry model info:");
107    println!("   - Task: {}", chemistry_model.task_description);
108    println!(
109        "   - MAE: {:.4}",
110        chemistry_model
111            .performance_metrics
112            .get("mae")
113            .unwrap_or(&0.0)
114    );
115    println!(
116        "   - R² score: {:.4}",
117        chemistry_model
118            .performance_metrics
119            .get("r2_score")
120            .unwrap_or(&0.0)
121    );
122
123    println!("\n=== Transfer Learning Demo Complete ===");
124
125    Ok(())
126}
Source

pub fn save_model(&self, path: &str) -> Result<()>

Save the fine-tuned model

Source

pub fn load_pretrained(path: &str) -> Result<PretrainedModel>

Load a pre-trained model for transfer learning

Auto Trait Implementations§

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

impl<T> Pointable for T

Source§

const ALIGN: usize

The alignment of pointer.
Source§

type Init = T

The type for initializers.
Source§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
Source§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
Source§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
Source§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
Source§

impl<T> Same for T

Source§

type Output = T

Should always be Self
Source§

impl<SS, SP> SupersetOf<SS> for SP
where SS: SubsetOf<SP>,

Source§

fn to_subset(&self) -> Option<SS>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
Source§

fn is_in_subset(&self) -> bool

Checks if self is actually part of its subset T (and can be converted to it).
Source§

fn to_subset_unchecked(&self) -> SS

Use with care! Same as self.to_subset but without any property checks. Always succeeds.
Source§

fn from_subset(element: &SS) -> SP

The inclusion map: converts self to the equivalent element of its superset.
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

Source§

fn vzip(self) -> V