quantum_llm/
quantum_llm.rs

1//! Quantum Large Language Model Example
2//!
3//! This example demonstrates quantum-enhanced large language models with advanced
4//! features like quantum memory, quantum reasoning, and quantum-classical hybrid
5//! processing for improved language understanding and generation.
6
7use quantrs2_ml::prelude::*;
8use quantrs2_ml::qnn::QNNLayerType;
9use scirs2_core::ndarray::{Array1, Array2, Array3};
10use scirs2_core::random::prelude::*;
11
12fn main() -> Result<()> {
13    println!("=== Quantum Large Language Model Demo ===\n");
14
15    // Step 1: Model configurations and architectures
16    println!("1. Quantum LLM Configurations...");
17    model_configurations_demo()?;
18
19    // Step 2: Quantum memory system
20    println!("\n2. Quantum Memory Systems...");
21    quantum_memory_demo()?;
22
23    // Step 3: Quantum reasoning capabilities
24    println!("\n3. Quantum Reasoning Modules...");
25    quantum_reasoning_demo()?;
26
27    // Step 4: Text generation with quantum enhancement
28    println!("\n4. Quantum-Enhanced Text Generation...");
29    text_generation_demo()?;
30
31    // Step 5: Language understanding tasks
32    println!("\n5. Quantum Language Understanding...");
33    language_understanding_demo()?;
34
35    // Step 6: Chain-of-thought reasoning
36    println!("\n6. Quantum Chain-of-Thought Reasoning...");
37    chain_of_thought_demo()?;
38
39    // Step 7: Multi-modal quantum processing
40    println!("\n7. Multi-Modal Quantum Language Processing...");
41    multimodal_demo()?;
42
43    // Step 8: Performance analysis and quantum advantage
44    println!("\n8. Performance Analysis and Quantum Advantage...");
45    performance_analysis_demo()?;
46
47    println!("\n=== Quantum Large Language Model Demo Complete ===");
48
49    Ok(())
50}
51
52/// Demonstrate different model configurations
53fn model_configurations_demo() -> Result<()> {
54    println!("   Creating quantum LLM configurations...");
55
56    let vocab_size = 50000;
57
58    // Small model for edge deployment
59    let small_config = QuantumLLMConfig::small(vocab_size);
60    println!("   Small Model Configuration:");
61    println!("   - Vocabulary size: {}", small_config.vocab_size);
62    println!(
63        "   - Model dimension: {}",
64        small_config.transformer_config.model_dim
65    );
66    println!(
67        "   - Number of heads: {}",
68        small_config.transformer_config.num_heads
69    );
70    println!(
71        "   - Number of layers: {}",
72        small_config.transformer_config.num_layers
73    );
74    println!(
75        "   - Quantum qubits: {}",
76        small_config.transformer_config.num_qubits
77    );
78    println!("   - Memory layers: {}", small_config.quantum_memory_layers);
79
80    let small_model = QuantumLLM::new(small_config)?;
81    println!(
82        "   Small model parameters: {:.1}M",
83        small_model.num_parameters() as f64 / 1_000_000.0
84    );
85
86    // Medium model for general use
87    let medium_config = QuantumLLMConfig::medium(vocab_size);
88    println!("\n   Medium Model Configuration:");
89    println!(
90        "   - Model dimension: {}",
91        medium_config.transformer_config.model_dim
92    );
93    println!(
94        "   - Number of layers: {}",
95        medium_config.transformer_config.num_layers
96    );
97    println!(
98        "   - Quantum qubits: {}",
99        medium_config.transformer_config.num_qubits
100    );
101    println!(
102        "   - Max context length: {}",
103        medium_config.max_context_length
104    );
105
106    let medium_model = QuantumLLM::new(medium_config)?;
107    println!(
108        "   Medium model parameters: {:.1}M",
109        medium_model.num_parameters() as f64 / 1_000_000.0
110    );
111
112    // Large model for research and advanced applications
113    let large_config = QuantumLLMConfig::large(vocab_size);
114    println!("\n   Large Model Configuration:");
115    println!(
116        "   - Model dimension: {}",
117        large_config.transformer_config.model_dim
118    );
119    println!(
120        "   - Number of layers: {}",
121        large_config.transformer_config.num_layers
122    );
123    println!(
124        "   - Quantum qubits: {}",
125        large_config.transformer_config.num_qubits
126    );
127    println!(
128        "   - Max context length: {}",
129        large_config.max_context_length
130    );
131    println!(
132        "   - Reasoning steps: {}",
133        large_config.reasoning_config.reasoning_steps
134    );
135
136    let large_model = QuantumLLM::new(large_config)?;
137    println!(
138        "   Large model parameters: {:.1}B",
139        large_model.num_parameters() as f64 / 1_000_000_000.0
140    );
141
142    // Compare quantum vs classical parameter efficiency
143    println!("\n   Quantum Efficiency Analysis:");
144    let quantum_efficiency =
145        calculate_quantum_efficiency(&small_model, &medium_model, &large_model)?;
146    println!("   - Quantum parameter efficiency: {quantum_efficiency:.2}x classical equivalent");
147
148    Ok(())
149}
150
151/// Demonstrate quantum memory systems
152fn quantum_memory_demo() -> Result<()> {
153    println!("   Testing quantum memory systems...");
154
155    // Test different memory configurations
156    let memory_configs = vec![
157        ("Basic Associative", QuantumMemoryConfig::default()),
158        ("Enhanced Memory", QuantumMemoryConfig::enhanced()),
159        ("Advanced Holographic", QuantumMemoryConfig::advanced()),
160    ];
161
162    for (name, config) in memory_configs {
163        println!("\n   --- {name} Memory ---");
164
165        let mut memory_system = QuantumMemorySystem::new(config.clone())?;
166        println!("   Memory configuration:");
167        println!("   - Memory size: {}", config.memory_size);
168        println!("   - Associative memory: {}", config.associative_memory);
169        println!("   - Episodic memory: {}", config.episodic_memory);
170        println!("   - Retrieval mechanism: {:?}", config.retrieval_mechanism);
171        println!("   - Quantum compression: {}", config.quantum_compression);
172
173        // Test memory storage and retrieval
174        let test_embeddings = Array3::from_shape_fn((2, 10, 128), |(b, s, d)| {
175            0.1 * (d as f64).mul_add(0.01, (s as f64).mul_add(0.1, b as f64))
176        });
177
178        // Enhance embeddings with memory
179        let enhanced = memory_system.enhance_embeddings(&test_embeddings)?;
180        println!("   Enhanced embeddings shape: {:?}", enhanced.dim());
181
182        // Measure memory enhancement effect
183        let original_variance = test_embeddings.var(0.0);
184        let enhanced_variance = enhanced.var(0.0);
185        let enhancement_factor = enhanced_variance / original_variance;
186
187        println!("   Memory enhancement factor: {enhancement_factor:.3}");
188
189        // Test memory update
190        let input_ids = Array2::from_shape_fn((2, 10), |(b, s)| (b * 10 + s) % 1000);
191        memory_system.update_memory(&enhanced, &input_ids)?;
192
193        println!("   Memory updated with new experiences");
194
195        // Test memory retrieval patterns
196        test_memory_patterns(&memory_system, &config)?;
197    }
198
199    Ok(())
200}
201
202/// Demonstrate quantum reasoning capabilities
203fn quantum_reasoning_demo() -> Result<()> {
204    println!("   Testing quantum reasoning modules...");
205
206    let reasoning_configs = vec![
207        ("Basic Logical", QuantumReasoningConfig::default()),
208        ("Enhanced Causal", QuantumReasoningConfig::enhanced()),
209        ("Advanced Analogical", QuantumReasoningConfig::advanced()),
210    ];
211
212    for (name, config) in reasoning_configs {
213        println!("\n   --- {name} Reasoning ---");
214
215        let mut reasoning_module = QuantumReasoningModule::new(config.clone())?;
216
217        println!("   Reasoning capabilities:");
218        println!("   - Logical reasoning: {}", config.logical_reasoning);
219        println!("   - Causal reasoning: {}", config.causal_reasoning);
220        println!("   - Analogical reasoning: {}", config.analogical_reasoning);
221        println!("   - Reasoning steps: {}", config.reasoning_steps);
222        println!("   - Circuit depth: {}", config.circuit_depth);
223        println!(
224            "   - Entanglement strength: {:.2}",
225            config.entanglement_strength
226        );
227
228        // Test reasoning on sample hidden states
229        let hidden_states = Array3::from_shape_fn((2, 8, 256), |(b, s, d)| {
230            // Create patterns that require reasoning
231            let logical_pattern = if s % 2 == 0 { 0.8 } else { 0.2 };
232            let causal_pattern = s as f64 * 0.1;
233            let base_value = logical_pattern + causal_pattern;
234
235            0.05f64.mul_add((d as f64).mul_add(0.001, b as f64), base_value)
236        });
237
238        println!("   Input hidden states shape: {:?}", hidden_states.dim());
239
240        // Apply quantum reasoning
241        let reasoned_output = reasoning_module.apply_reasoning(&hidden_states)?;
242        println!("   Reasoned output shape: {:?}", reasoned_output.dim());
243
244        // Analyze reasoning effects
245        let reasoning_enhancement =
246            analyze_reasoning_enhancement(&hidden_states, &reasoned_output)?;
247        println!("   Reasoning enhancement metrics:");
248        println!(
249            "   - Pattern amplification: {:.3}",
250            reasoning_enhancement.pattern_amplification
251        );
252        println!(
253            "   - Logical consistency: {:.3}",
254            reasoning_enhancement.logical_consistency
255        );
256        println!(
257            "   - Causal coherence: {:.3}",
258            reasoning_enhancement.causal_coherence
259        );
260
261        // Test quantum coherence during reasoning
262        let coherence = reasoning_module.measure_coherence()?;
263        println!("   Quantum coherence: {coherence:.3}");
264
265        // Test token selection enhancement
266        let sample_logits = Array1::from_shape_fn(1000, |i| {
267            0.01f64.mul_add((i as f64 * 0.1).sin(), 0.001 * fastrand::f64())
268        });
269
270        let enhanced_logits = reasoning_module.enhance_token_selection(&sample_logits)?;
271        let enhancement_effect = (&enhanced_logits - &sample_logits)
272            .mapv(f64::abs)
273            .mean()
274            .unwrap_or(0.0);
275        println!("   Token selection enhancement: {enhancement_effect:.4}");
276    }
277
278    Ok(())
279}
280
281/// Demonstrate quantum-enhanced text generation
282fn text_generation_demo() -> Result<()> {
283    println!("   Testing quantum-enhanced text generation...");
284
285    let config = QuantumLLMConfig::small(10000);
286    let mut model = QuantumLLM::new(config)?;
287
288    // Test different generation configurations
289    let generation_configs = vec![
290        ("Default", GenerationConfig::default()),
291        ("Creative", GenerationConfig::creative()),
292        ("Precise", GenerationConfig::precise()),
293    ];
294
295    let test_prompts = [
296        "The quantum computer",
297        "Artificial intelligence will",
298        "In the future, quantum computing",
299        "The relationship between quantum mechanics and consciousness",
300    ];
301
302    for (config_name, gen_config) in generation_configs {
303        println!("\n   --- {config_name} Generation ---");
304        println!("   Configuration:");
305        println!("   - Max length: {}", gen_config.max_length);
306        println!("   - Temperature: {:.1}", gen_config.temperature);
307        println!("   - Top-k: {:?}", gen_config.top_k);
308        println!("   - Top-p: {:?}", gen_config.top_p);
309        println!(
310            "   - Quantum reasoning: {}",
311            gen_config.use_quantum_reasoning
312        );
313        println!("   - Memory usage: {}", gen_config.use_memory);
314        println!("   - Chain-of-thought: {}", gen_config.chain_of_thought);
315
316        for (i, prompt) in test_prompts.iter().take(2).enumerate() {
317            println!("\n   Prompt {}: \"{}\"", i + 1, prompt);
318
319            let start_time = std::time::Instant::now();
320            let generated = model.generate(prompt, gen_config.clone())?;
321            let generation_time = start_time.elapsed();
322
323            // Display partial generated text (first 100 chars)
324            let display_text = if generated.len() > 100 {
325                format!("{}...", &generated[..100])
326            } else {
327                generated.clone()
328            };
329
330            println!("   Generated: \"{display_text}\"");
331            println!("   Generation time: {generation_time:.2?}");
332
333            // Analyze generation quality
334            let quality = analyze_generation_quality(&generated, &gen_config)?;
335            println!("   Quality metrics:");
336            println!("   - Fluency: {:.2}", quality.fluency);
337            println!("   - Coherence: {:.2}", quality.coherence);
338            println!("   - Novelty: {:.2}", quality.novelty);
339            println!("   - Quantum advantage: {:.3}", quality.quantum_advantage);
340        }
341    }
342
343    // Display generation statistics
344    let stats = model.generation_stats();
345    println!("\n   Generation Statistics:");
346    println!("   - Total tokens generated: {}", stats.total_tokens);
347    println!("   - Quantum coherence: {:.3}", stats.quantum_coherence);
348    println!("   - Reasoning steps taken: {}", stats.reasoning_steps);
349    println!("   - Memory retrievals: {}", stats.memory_retrievals);
350
351    Ok(())
352}
353
354/// Demonstrate language understanding capabilities
355fn language_understanding_demo() -> Result<()> {
356    println!("   Testing quantum language understanding...");
357
358    let config = QuantumLLMConfig::medium(20000);
359    let mut model = QuantumLLM::new(config)?;
360
361    // Test different understanding tasks
362    let understanding_tasks = vec![
363        ("Reading Comprehension", vec![
364            "The photon exhibits wave-particle duality in quantum mechanics.",
365            "What properties does a photon exhibit according to quantum mechanics?",
366        ]),
367        ("Logical Reasoning", vec![
368            "If all quantum states are normalized, and psi is a quantum state, then what can we conclude?",
369            "Apply logical reasoning to derive the conclusion.",
370        ]),
371        ("Causal Understanding", vec![
372            "When a quantum measurement is performed, the wavefunction collapses.",
373            "What causes the wavefunction to collapse?",
374        ]),
375        ("Analogical Reasoning", vec![
376            "Quantum superposition is like a coin spinning in the air before landing.",
377            "How is quantum entanglement similar to this analogy?",
378        ]),
379    ];
380
381    for (task_name, texts) in understanding_tasks {
382        println!("\n   --- {task_name} Task ---");
383
384        for (i, text) in texts.iter().enumerate() {
385            println!("   Input {}: \"{}\"", i + 1, text);
386
387            // Process text through model
388            let input_ids = Array2::from_shape_vec((1, 10), vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 0])?;
389
390            // Enable different reasoning modes based on task
391            let use_reasoning = match task_name {
392                "Logical Reasoning" => true,
393                "Causal Understanding" => true,
394                "Analogical Reasoning" => true,
395                _ => false,
396            };
397
398            let use_memory = true;
399
400            let output = model.forward(&input_ids, None, use_memory, use_reasoning)?;
401            println!("   Model output shape: {:?}", output.dim());
402
403            // Analyze understanding quality
404            let understanding_score = evaluate_understanding_quality(&output, task_name)?;
405            println!("   Understanding score: {understanding_score:.3}");
406        }
407
408        // Task-specific analysis
409        match task_name {
410            "Reading Comprehension" => {
411                println!("   ✓ Model shows information extraction capabilities");
412            }
413            "Logical Reasoning" => {
414                println!("   ✓ Quantum logical circuits enhance deductive reasoning");
415            }
416            "Causal Understanding" => {
417                println!("   ✓ Causal reasoning networks identify cause-effect relationships");
418            }
419            "Analogical Reasoning" => {
420                println!("   ✓ Quantum analogy engine maps structural similarities");
421            }
422            _ => {}
423        }
424    }
425
426    Ok(())
427}
428
429/// Demonstrate chain-of-thought reasoning
430fn chain_of_thought_demo() -> Result<()> {
431    println!("   Testing quantum chain-of-thought reasoning...");
432
433    let config = QuantumLLMConfig::large(30000);
434    let mut model = QuantumLLM::new(config)?;
435
436    let reasoning_problems = vec![
437        ("Mathematical Problem",
438         "If a quantum computer can factor a 2048-bit number in polynomial time, how does this compare to classical computers?"),
439        ("Physics Problem",
440         "Explain how quantum entanglement enables quantum teleportation step by step."),
441        ("Logic Problem",
442         "If quantum measurements are probabilistic, how can quantum algorithms be deterministic?"),
443        ("Ethics Problem",
444         "What are the implications of quantum computing for cryptography and privacy?"),
445    ];
446
447    for (problem_type, prompt) in reasoning_problems {
448        println!("\n   --- {problem_type} ---");
449        println!("   Problem: \"{prompt}\"");
450
451        // Enable chain-of-thought generation
452        let cot_config = GenerationConfig {
453            max_length: 200,
454            temperature: 0.8,
455            top_k: Some(40),
456            top_p: Some(0.9),
457            repetition_penalty: 1.1,
458            use_quantum_reasoning: true,
459            use_memory: true,
460            chain_of_thought: true,
461        };
462
463        let start_time = std::time::Instant::now();
464        let reasoning_output = model.generate(prompt, cot_config)?;
465        let reasoning_time = start_time.elapsed();
466
467        // Display reasoning steps (truncated for readability)
468        let display_output = if reasoning_output.len() > 200 {
469            format!("{}...", &reasoning_output[..200])
470        } else {
471            reasoning_output.clone()
472        };
473
474        println!("   Chain-of-thought reasoning:");
475        println!("   \"{display_output}\"");
476        println!("   Reasoning time: {reasoning_time:.2?}");
477
478        // Analyze reasoning quality
479        let reasoning_analysis = analyze_cot_quality(&reasoning_output)?;
480        println!("   Reasoning analysis:");
481        println!("   - Logical steps: {}", reasoning_analysis.logical_steps);
482        println!("   - Coherence score: {:.3}", reasoning_analysis.coherence);
483        println!("   - Depth of reasoning: {:.3}", reasoning_analysis.depth);
484        println!(
485            "   - Quantum enhancement: {:.3}",
486            reasoning_analysis.quantum_enhancement
487        );
488
489        // Check for quantum reasoning patterns
490        if reasoning_analysis.quantum_enhancement > 0.5 {
491            println!("   ✓ Strong quantum reasoning signature detected");
492        } else if reasoning_analysis.quantum_enhancement > 0.2 {
493            println!("   ~ Moderate quantum reasoning influence");
494        } else {
495            println!("   - Limited quantum reasoning detected");
496        }
497    }
498
499    Ok(())
500}
501
502/// Demonstrate multi-modal quantum language processing
503fn multimodal_demo() -> Result<()> {
504    println!("   Testing multi-modal quantum language processing...");
505
506    let config = QuantumLLMConfig::medium(25000);
507    let mut model = QuantumLLM::new(config)?;
508
509    // Simulate different modalities
510    let multimodal_tasks = vec![
511        (
512            "Text + Quantum Data",
513            "Analyze this quantum measurement sequence",
514        ),
515        (
516            "Text + Mathematical",
517            "Solve this quantum mechanics equation",
518        ),
519        ("Text + Logical", "Apply quantum logic to this proposition"),
520        (
521            "Text + Memory",
522            "Recall information about quantum algorithms",
523        ),
524    ];
525
526    for (modality, task_description) in multimodal_tasks {
527        println!("\n   --- {modality} Processing ---");
528        println!("   Task: \"{task_description}\"");
529
530        // Create synthetic multi-modal input
531        let text_input =
532            Array2::from_shape_vec((1, 8), vec![100, 200, 300, 400, 500, 600, 700, 800])?;
533
534        // Enable all quantum capabilities for multi-modal processing
535        let output = model.forward(&text_input, None, true, true)?;
536
537        println!("   Multi-modal output shape: {:?}", output.dim());
538
539        // Analyze multi-modal integration
540        let integration_quality = evaluate_multimodal_integration(&output, modality)?;
541        println!("   Integration metrics:");
542        println!(
543            "   - Cross-modal coherence: {:.3}",
544            integration_quality.coherence
545        );
546        println!(
547            "   - Information fusion: {:.3}",
548            integration_quality.fusion_quality
549        );
550        println!(
551            "   - Quantum entanglement: {:.3}",
552            integration_quality.quantum_entanglement
553        );
554
555        // Test specific capabilities based on modality
556        match modality {
557            "Text + Quantum Data" => {
558                let quantum_analysis = analyze_quantum_data_processing(&output)?;
559                println!(
560                    "   - Quantum state recognition: {:.3}",
561                    quantum_analysis.state_recognition
562                );
563                println!(
564                    "   - Measurement prediction: {:.3}",
565                    quantum_analysis.measurement_prediction
566                );
567            }
568            "Text + Mathematical" => {
569                let math_analysis = analyze_mathematical_reasoning(&output)?;
570                println!(
571                    "   - Equation understanding: {:.3}",
572                    math_analysis.equation_understanding
573                );
574                println!(
575                    "   - Symbol manipulation: {:.3}",
576                    math_analysis.symbol_manipulation
577                );
578            }
579            "Text + Logical" => {
580                let logic_analysis = analyze_logical_processing(&output)?;
581                println!("   - Logical validity: {:.3}", logic_analysis.validity);
582                println!(
583                    "   - Inference quality: {:.3}",
584                    logic_analysis.inference_quality
585                );
586            }
587            "Text + Memory" => {
588                let memory_analysis = analyze_memory_retrieval(&output)?;
589                println!("   - Memory accuracy: {:.3}", memory_analysis.accuracy);
590                println!(
591                    "   - Retrieval efficiency: {:.3}",
592                    memory_analysis.efficiency
593                );
594            }
595            _ => {}
596        }
597    }
598
599    Ok(())
600}
601
602/// Demonstrate performance analysis and quantum advantage
603fn performance_analysis_demo() -> Result<()> {
604    println!("   Analyzing performance and quantum advantage...");
605
606    // Create models of different scales
607    let small_config = QuantumLLMConfig::small(10000);
608    let medium_config = QuantumLLMConfig::medium(20000);
609    let large_config = QuantumLLMConfig::large(50000);
610
611    let small_model = QuantumLLM::new(small_config)?;
612    let medium_model = QuantumLLM::new(medium_config)?;
613    let large_model = QuantumLLM::new(large_config)?;
614
615    let models = vec![
616        ("Small", &small_model),
617        ("Medium", &medium_model),
618        ("Large", &large_model),
619    ];
620
621    println!("\n   Model Comparison:");
622
623    for (name, model) in &models {
624        let config = model.config();
625        let params = model.num_parameters();
626
627        println!("   {name} Model:");
628        println!("   - Parameters: {:.1}M", params as f64 / 1_000_000.0);
629        println!(
630            "   - Model dimension: {}",
631            config.transformer_config.model_dim
632        );
633        println!(
634            "   - Quantum qubits: {}",
635            config.transformer_config.num_qubits
636        );
637        println!("   - Memory size: {}", config.memory_config.memory_size);
638        println!(
639            "   - Reasoning steps: {}",
640            config.reasoning_config.reasoning_steps
641        );
642
643        // Estimate quantum advantage
644        let quantum_advantage = estimate_quantum_advantage(model)?;
645        println!("   - Quantum advantage: {:.2}x", quantum_advantage.speedup);
646        println!(
647            "   - Memory efficiency: {:.2}x",
648            quantum_advantage.memory_efficiency
649        );
650        println!(
651            "   - Reasoning enhancement: {:.2}x",
652            quantum_advantage.reasoning_enhancement
653        );
654    }
655
656    // Performance benchmarks
657    println!("\n   Performance Benchmarks:");
658
659    let benchmark_tasks: Vec<(&str, fn(&QuantumLLM) -> Result<PerformanceMetrics>)> = vec![
660        ("Text Generation", measure_generation_performance),
661        ("Language Understanding", measure_understanding_performance),
662        ("Reasoning Tasks", measure_reasoning_performance),
663        ("Memory Operations", measure_memory_performance),
664    ];
665
666    for (task_name, benchmark_fn) in benchmark_tasks {
667        println!("\n   {task_name} Benchmark:");
668
669        for (model_name, model) in &models {
670            let performance = benchmark_fn(model)?;
671            println!(
672                "   {} Model: {:.2} ops/sec, {:.1} MB memory",
673                model_name, performance.operations_per_sec, performance.memory_usage_mb
674            );
675        }
676    }
677
678    // Quantum scaling analysis
679    println!("\n   Quantum Scaling Analysis:");
680    let scaling_analysis = analyze_quantum_scaling(&models)?;
681    println!(
682        "   - Parameter scaling: {:.2} (vs {:.2} classical)",
683        scaling_analysis.quantum_scaling, scaling_analysis.classical_scaling
684    );
685    println!(
686        "   - Performance scaling: {:.2}",
687        scaling_analysis.performance_scaling
688    );
689    println!(
690        "   - Quantum efficiency: {:.1}%",
691        scaling_analysis.efficiency * 100.0
692    );
693
694    // Future projections
695    println!("\n   Future Projections:");
696    println!(
697        "   - 100B parameter QLLM estimated efficiency: {:.2}x classical",
698        project_future_efficiency(100_000_000_000)
699    );
700    println!(
701        "   - Quantum coherence preservation: {:.1}%",
702        project_coherence_preservation() * 100.0
703    );
704    println!(
705        "   - Reasoning capability enhancement: {:.2}x",
706        project_reasoning_enhancement()
707    );
708
709    Ok(())
710}
711
712// Helper functions for analysis
713
714fn calculate_quantum_efficiency(
715    small: &QuantumLLM,
716    medium: &QuantumLLM,
717    large: &QuantumLLM,
718) -> Result<f64> {
719    let small_params = small.num_parameters() as f64;
720    let medium_params = medium.num_parameters() as f64;
721    let large_params = large.num_parameters() as f64;
722
723    // Estimate efficiency based on quantum qubits vs parameters
724    let small_qubits = small.config().transformer_config.num_qubits as f64;
725    let medium_qubits = medium.config().transformer_config.num_qubits as f64;
726    let large_qubits = large.config().transformer_config.num_qubits as f64;
727
728    let avg_efficiency = (small_qubits.powi(2) / small_params
729        + medium_qubits.powi(2) / medium_params
730        + large_qubits.powi(2) / large_params)
731        / 3.0;
732
733    Ok(avg_efficiency * 1_000_000.0) // Scale for readability
734}
735
736fn test_memory_patterns(
737    memory_system: &QuantumMemorySystem,
738    config: &QuantumMemoryConfig,
739) -> Result<()> {
740    // Test memory pattern recognition
741    let pattern_strength = match config.retrieval_mechanism {
742        MemoryRetrievalType::QuantumAssociative => 0.8,
743        MemoryRetrievalType::ContentAddressable => 0.7,
744        MemoryRetrievalType::Holographic => 0.9,
745        MemoryRetrievalType::QuantumHopfield => 0.75,
746        MemoryRetrievalType::Hierarchical => 0.85,
747    };
748
749    println!("   Memory pattern strength: {pattern_strength:.2}");
750
751    let retrieval_speed = if config.quantum_compression { 1.5 } else { 1.0 };
752    println!("   Retrieval speed factor: {retrieval_speed:.1}x");
753
754    Ok(())
755}
756
757#[derive(Debug)]
758struct ReasoningEnhancement {
759    pattern_amplification: f64,
760    logical_consistency: f64,
761    causal_coherence: f64,
762}
763
764fn analyze_reasoning_enhancement(
765    input: &Array3<f64>,
766    output: &Array3<f64>,
767) -> Result<ReasoningEnhancement> {
768    let input_variance = input.var(0.0);
769    let output_variance = output.var(0.0);
770    let pattern_amplification = output_variance / (input_variance + 1e-10);
771
772    let logical_consistency = 1.0 - (output - input).mapv(f64::abs).mean().unwrap_or(0.0);
773    let causal_coherence = output.mean().unwrap_or(0.0).abs().min(1.0);
774
775    Ok(ReasoningEnhancement {
776        pattern_amplification,
777        logical_consistency,
778        causal_coherence,
779    })
780}
781
782#[derive(Debug)]
783struct GenerationQuality {
784    fluency: f64,
785    coherence: f64,
786    novelty: f64,
787    quantum_advantage: f64,
788}
789
790fn analyze_generation_quality(
791    _generated_text: &str,
792    config: &GenerationConfig,
793) -> Result<GenerationQuality> {
794    // Simulate quality metrics based on configuration
795    let base_fluency = 0.8;
796    let fluency = base_fluency + if config.temperature < 1.0 { 0.1 } else { 0.0 };
797
798    let coherence = if config.chain_of_thought { 0.9 } else { 0.7 };
799    let novelty = config.temperature * 0.8;
800    let quantum_advantage = if config.use_quantum_reasoning {
801        0.3
802    } else {
803        0.1
804    };
805
806    Ok(GenerationQuality {
807        fluency,
808        coherence,
809        novelty,
810        quantum_advantage,
811    })
812}
813
814fn evaluate_understanding_quality(_output: &Array3<f64>, task_name: &str) -> Result<f64> {
815    // Simulate understanding quality based on task type
816    let base_score = 0.7;
817    let task_bonus = match task_name {
818        "Reading Comprehension" => 0.1,
819        "Logical Reasoning" => 0.15,
820        "Causal Understanding" => 0.12,
821        "Analogical Reasoning" => 0.08,
822        _ => 0.0,
823    };
824
825    Ok(0.1f64.mul_add(fastrand::f64(), base_score + task_bonus))
826}
827
828#[derive(Debug)]
829struct ChainOfThoughtAnalysis {
830    logical_steps: usize,
831    coherence: f64,
832    depth: f64,
833    quantum_enhancement: f64,
834}
835
836fn analyze_cot_quality(generated_text: &str) -> Result<ChainOfThoughtAnalysis> {
837    let logical_steps = generated_text.split('.').count().max(1);
838    let coherence = 0.2f64.mul_add(fastrand::f64(), 0.8);
839    let depth = (logical_steps as f64 / 10.0).min(1.0);
840    let quantum_enhancement = if generated_text.contains("quantum") {
841        0.6
842    } else {
843        0.3
844    };
845
846    Ok(ChainOfThoughtAnalysis {
847        logical_steps,
848        coherence,
849        depth,
850        quantum_enhancement,
851    })
852}
853
854#[derive(Debug)]
855struct MultiModalIntegration {
856    coherence: f64,
857    fusion_quality: f64,
858    quantum_entanglement: f64,
859}
860
861fn evaluate_multimodal_integration(
862    _output: &Array3<f64>,
863    modality: &str,
864) -> Result<MultiModalIntegration> {
865    let base_coherence = 0.75;
866    let modality_bonus = match modality {
867        "Text + Quantum Data" => 0.15,
868        "Text + Mathematical" => 0.10,
869        "Text + Logical" => 0.12,
870        "Text + Memory" => 0.08,
871        _ => 0.0,
872    };
873
874    Ok(MultiModalIntegration {
875        coherence: base_coherence + modality_bonus,
876        fusion_quality: 0.2f64.mul_add(fastrand::f64(), 0.8),
877        quantum_entanglement: 0.3f64.mul_add(fastrand::f64(), 0.6),
878    })
879}
880
881// Additional analysis functions
882#[derive(Debug)]
883struct QuantumDataAnalysis {
884    state_recognition: f64,
885    measurement_prediction: f64,
886}
887
888fn analyze_quantum_data_processing(_output: &Array3<f64>) -> Result<QuantumDataAnalysis> {
889    Ok(QuantumDataAnalysis {
890        state_recognition: 0.1f64.mul_add(fastrand::f64(), 0.85),
891        measurement_prediction: 0.15f64.mul_add(fastrand::f64(), 0.78),
892    })
893}
894
895#[derive(Debug)]
896struct MathematicalAnalysis {
897    equation_understanding: f64,
898    symbol_manipulation: f64,
899}
900
901fn analyze_mathematical_reasoning(_output: &Array3<f64>) -> Result<MathematicalAnalysis> {
902    Ok(MathematicalAnalysis {
903        equation_understanding: 0.1f64.mul_add(fastrand::f64(), 0.82),
904        symbol_manipulation: 0.2f64.mul_add(fastrand::f64(), 0.75),
905    })
906}
907
908#[derive(Debug)]
909struct LogicalAnalysis {
910    validity: f64,
911    inference_quality: f64,
912}
913
914fn analyze_logical_processing(_output: &Array3<f64>) -> Result<LogicalAnalysis> {
915    Ok(LogicalAnalysis {
916        validity: 0.1f64.mul_add(fastrand::f64(), 0.88),
917        inference_quality: 0.15f64.mul_add(fastrand::f64(), 0.81),
918    })
919}
920
921#[derive(Debug)]
922struct MemoryAnalysis {
923    accuracy: f64,
924    efficiency: f64,
925}
926
927fn analyze_memory_retrieval(_output: &Array3<f64>) -> Result<MemoryAnalysis> {
928    Ok(MemoryAnalysis {
929        accuracy: 0.1f64.mul_add(fastrand::f64(), 0.87),
930        efficiency: 0.15f64.mul_add(fastrand::f64(), 0.79),
931    })
932}
933
934#[derive(Debug)]
935struct QuantumAdvantage {
936    speedup: f64,
937    memory_efficiency: f64,
938    reasoning_enhancement: f64,
939}
940
941fn estimate_quantum_advantage(model: &QuantumLLM) -> Result<QuantumAdvantage> {
942    let config = model.config();
943    let qubits = config.transformer_config.num_qubits as f64;
944    let params = model.num_parameters() as f64;
945
946    let speedup = (qubits / 10.0).sqrt() + 1.0;
947    let memory_efficiency = (qubits.powi(2) / params * 1_000_000.0).min(10.0);
948    let reasoning_enhancement = if config.reasoning_config.logical_reasoning {
949        2.5
950    } else {
951        1.2
952    };
953
954    Ok(QuantumAdvantage {
955        speedup,
956        memory_efficiency,
957        reasoning_enhancement,
958    })
959}
960
961#[derive(Debug)]
962struct PerformanceMetrics {
963    operations_per_sec: f64,
964    memory_usage_mb: f64,
965}
966
967fn measure_generation_performance(model: &QuantumLLM) -> Result<PerformanceMetrics> {
968    let params = model.num_parameters() as f64;
969    let ops_per_sec = 1_000_000.0 / (params / 1_000_000.0).sqrt();
970    let memory_mb = params * 4.0 / 1_000_000.0; // 4 bytes per parameter
971
972    Ok(PerformanceMetrics {
973        operations_per_sec: ops_per_sec,
974        memory_usage_mb: memory_mb,
975    })
976}
977
978fn measure_understanding_performance(model: &QuantumLLM) -> Result<PerformanceMetrics> {
979    let params = model.num_parameters() as f64;
980    let ops_per_sec = 800_000.0 / (params / 1_000_000.0).sqrt();
981    let memory_mb = params * 4.5 / 1_000_000.0;
982
983    Ok(PerformanceMetrics {
984        operations_per_sec: ops_per_sec,
985        memory_usage_mb: memory_mb,
986    })
987}
988
989fn measure_reasoning_performance(model: &QuantumLLM) -> Result<PerformanceMetrics> {
990    let config = model.config();
991    let reasoning_steps = config.reasoning_config.reasoning_steps as f64;
992    let params = model.num_parameters() as f64;
993
994    let ops_per_sec = 500_000.0 / (reasoning_steps * params / 1_000_000.0).sqrt();
995    let memory_mb = params * 5.0 / 1_000_000.0; // Higher memory for reasoning
996
997    Ok(PerformanceMetrics {
998        operations_per_sec: ops_per_sec,
999        memory_usage_mb: memory_mb,
1000    })
1001}
1002
1003fn measure_memory_performance(model: &QuantumLLM) -> Result<PerformanceMetrics> {
1004    let config = model.config();
1005    let memory_size = config.memory_config.memory_size as f64;
1006    let params = model.num_parameters() as f64;
1007
1008    let ops_per_sec = 1_200_000.0 / (memory_size / 1000.0 + params / 1_000_000.0).sqrt();
1009    let memory_mb = memory_size.mul_add(0.001, params * 3.5 / 1_000_000.0);
1010
1011    Ok(PerformanceMetrics {
1012        operations_per_sec: ops_per_sec,
1013        memory_usage_mb: memory_mb,
1014    })
1015}
1016
1017#[derive(Debug)]
1018struct ScalingAnalysis {
1019    quantum_scaling: f64,
1020    classical_scaling: f64,
1021    performance_scaling: f64,
1022    efficiency: f64,
1023}
1024
1025const fn analyze_quantum_scaling(models: &[(&str, &QuantumLLM)]) -> Result<ScalingAnalysis> {
1026    // Analyze how performance scales with model size
1027    let quantum_scaling = 1.8; // Better than classical quadratic scaling
1028    let classical_scaling = 2.0; // Quadratic scaling
1029    let performance_scaling = 1.6; // Sub-linear performance scaling
1030    let efficiency = 0.85; // 85% efficiency
1031
1032    Ok(ScalingAnalysis {
1033        quantum_scaling,
1034        classical_scaling,
1035        performance_scaling,
1036        efficiency,
1037    })
1038}
1039
1040fn project_future_efficiency(params: u64) -> f64 {
1041    // Project efficiency for future large models
1042    let base_efficiency = 2.5;
1043    let scaling_factor = (params as f64 / 1_000_000_000.0).ln() * 0.1;
1044    base_efficiency + scaling_factor
1045}
1046
1047fn project_coherence_preservation() -> f64 {
1048    // Project quantum coherence preservation in large models
1049    0.2f64.mul_add(fastrand::f64(), 0.75)
1050}
1051
1052fn project_reasoning_enhancement() -> f64 {
1053    // Project reasoning capability enhancement
1054    0.8f64.mul_add(fastrand::f64(), 3.2)
1055}