1use crate::autodiff::optimizers::Optimizer;
8use crate::error::{MLError, Result};
9use crate::optimization::OptimizationMethod;
10use crate::qnn::{QNNLayerType, QuantumNeuralNetwork, TrainingResult};
11use quantrs2_circuit::builder::{Circuit, Simulator};
12use quantrs2_core::gate::{
13 single::{RotationX, RotationY, RotationZ},
14 GateOp,
15};
16use quantrs2_sim::statevector::StateVectorSimulator;
17use scirs2_core::ndarray::{Array1, Array2};
18use scirs2_core::random::prelude::*;
19use std::collections::HashMap;
20
21#[derive(Debug, Clone, Copy, PartialEq)]
23pub enum TransferStrategy {
24 FineTuning { num_trainable_layers: usize },
26
27 FeatureExtraction,
29
30 SelectiveAdaptation,
32
33 ProgressiveUnfreezing { unfreeze_rate: usize },
35}
36
37#[derive(Debug, Clone)]
39pub struct LayerConfig {
40 pub frozen: bool,
42
43 pub learning_rate_multiplier: f64,
45
46 pub parameter_indices: Vec<usize>,
48}
49
50#[derive(Debug, Clone)]
52pub struct PretrainedModel {
53 pub qnn: QuantumNeuralNetwork,
55
56 pub task_description: String,
58
59 pub performance_metrics: HashMap<String, f64>,
61
62 pub metadata: HashMap<String, String>,
64}
65
66pub struct QuantumTransferLearning {
68 source_model: PretrainedModel,
70
71 target_model: QuantumNeuralNetwork,
73
74 strategy: TransferStrategy,
76
77 layer_configs: Vec<LayerConfig>,
79
80 current_epoch: usize,
82}
83
84impl QuantumTransferLearning {
85 pub fn new(
87 source_model: PretrainedModel,
88 target_layers: Vec<QNNLayerType>,
89 strategy: TransferStrategy,
90 ) -> Result<Self> {
91 let mut all_layers = source_model.qnn.layers.clone();
96
97 match strategy {
99 TransferStrategy::FineTuning { .. } => {
100 all_layers.extend(target_layers);
102 }
103 TransferStrategy::FeatureExtraction => {
104 if all_layers.len() > 2 {
106 all_layers.truncate(all_layers.len() - 2);
107 }
108 all_layers.extend(target_layers);
109 }
110 _ => {
111 all_layers.extend(target_layers);
113 }
114 }
115
116 let target_model = QuantumNeuralNetwork::new(
118 all_layers,
119 source_model.qnn.num_qubits,
120 source_model.qnn.input_dim,
121 source_model.qnn.output_dim,
122 )?;
123
124 let layer_configs = Self::configure_layers(&target_model, &strategy);
126
127 Ok(Self {
128 source_model,
129 target_model,
130 strategy,
131 layer_configs,
132 current_epoch: 0,
133 })
134 }
135
136 fn configure_layers(
138 model: &QuantumNeuralNetwork,
139 strategy: &TransferStrategy,
140 ) -> Vec<LayerConfig> {
141 let mut configs = Vec::new();
142 let num_layers = model.layers.len();
143
144 match strategy {
145 TransferStrategy::FineTuning {
146 num_trainable_layers,
147 } => {
148 for i in 0..num_layers {
150 configs.push(LayerConfig {
151 frozen: i < num_layers - num_trainable_layers,
152 learning_rate_multiplier: if i < num_layers - num_trainable_layers {
153 0.0
154 } else {
155 1.0
156 },
157 parameter_indices: Self::get_layer_parameters(model, i),
158 });
159 }
160 }
161 TransferStrategy::FeatureExtraction => {
162 for i in 0..num_layers {
164 let is_new_layer = i >= num_layers - 2; configs.push(LayerConfig {
166 frozen: !is_new_layer,
167 learning_rate_multiplier: if is_new_layer { 1.0 } else { 0.0 },
168 parameter_indices: Self::get_layer_parameters(model, i),
169 });
170 }
171 }
172 TransferStrategy::SelectiveAdaptation => {
173 for (i, layer) in model.layers.iter().enumerate() {
175 let frozen = matches!(layer, QNNLayerType::EncodingLayer { .. });
176 configs.push(LayerConfig {
177 frozen,
178 learning_rate_multiplier: if frozen { 0.0 } else { 0.5 },
179 parameter_indices: Self::get_layer_parameters(model, i),
180 });
181 }
182 }
183 TransferStrategy::ProgressiveUnfreezing { .. } => {
184 for i in 0..num_layers {
186 configs.push(LayerConfig {
187 frozen: i < num_layers - 1,
188 learning_rate_multiplier: if i == num_layers - 1 { 1.0 } else { 0.0 },
189 parameter_indices: Self::get_layer_parameters(model, i),
190 });
191 }
192 }
193 }
194
195 configs
196 }
197
198 fn get_layer_parameters(model: &QuantumNeuralNetwork, layer_idx: usize) -> Vec<usize> {
200 let params_per_layer = model.parameters.len() / model.layers.len();
203 let start = layer_idx * params_per_layer;
204 let end = start + params_per_layer;
205 (start..end).collect()
206 }
207
208 pub fn train(
210 &mut self,
211 training_data: &Array2<f64>,
212 labels: &Array1<f64>,
213 optimizer: &mut dyn Optimizer,
214 epochs: usize,
215 batch_size: usize,
216 ) -> Result<TrainingResult> {
217 let mut loss_history = Vec::new();
218 let mut best_loss = f64::INFINITY;
219 let mut best_params = self.target_model.parameters.clone();
220
221 let mut params_map = HashMap::new();
223 for (i, value) in self.target_model.parameters.iter().enumerate() {
224 params_map.insert(format!("param_{}", i), *value);
225 }
226
227 for epoch in 0..epochs {
228 self.current_epoch = epoch;
229
230 if let TransferStrategy::ProgressiveUnfreezing { unfreeze_rate } = self.strategy {
232 if epoch > 0 && epoch % unfreeze_rate == 0 {
233 self.unfreeze_next_layer();
234 }
235 }
236
237 let gradients = self.compute_gradients(training_data, labels)?;
239
240 let scaled_gradients = self.scale_gradients(&gradients);
242
243 let mut grads_map = HashMap::new();
245 for (i, grad) in scaled_gradients.iter().enumerate() {
246 grads_map.insert(format!("param_{}", i), *grad);
247 }
248
249 optimizer.step(&mut params_map, &grads_map);
251
252 for (i, value) in self.target_model.parameters.iter_mut().enumerate() {
254 if let Some(new_val) = params_map.get(&format!("param_{}", i)) {
255 *value = *new_val;
256 }
257 }
258
259 let loss = self.compute_loss(training_data, labels)?;
261 loss_history.push(loss);
262
263 if loss < best_loss {
264 best_loss = loss;
265 best_params = self.target_model.parameters.clone();
266 }
267 }
268
269 let predictions = self.predict(training_data)?;
271 let accuracy = Self::compute_accuracy(&predictions, labels);
272
273 Ok(TrainingResult {
274 final_loss: best_loss,
275 accuracy,
276 loss_history,
277 optimal_parameters: best_params,
278 })
279 }
280
281 fn unfreeze_next_layer(&mut self) {
283 let num_layers = self.layer_configs.len();
285 for (i, config) in self.layer_configs.iter_mut().enumerate().rev() {
286 if config.frozen {
287 config.frozen = false;
288 config.learning_rate_multiplier = 0.1 * (i as f64 / num_layers as f64);
289 break;
290 }
291 }
292 }
293
294 fn compute_gradients(&self, data: &Array2<f64>, labels: &Array1<f64>) -> Result<Array1<f64>> {
296 let mut gradients = Array1::zeros(self.target_model.parameters.len());
299
300 for config in &self.layer_configs {
302 if !config.frozen {
303 for &idx in &config.parameter_indices {
304 if idx < gradients.len() {
305 gradients[idx] = 0.1 * (2.0 * thread_rng().gen::<f64>() - 1.0);
306 }
307 }
308 }
309 }
310
311 Ok(gradients)
312 }
313
314 fn scale_gradients(&self, gradients: &Array1<f64>) -> Array1<f64> {
316 let mut scaled = gradients.clone();
317
318 for config in &self.layer_configs {
319 for &idx in &config.parameter_indices {
320 if idx < scaled.len() {
321 scaled[idx] *= config.learning_rate_multiplier;
322 }
323 }
324 }
325
326 scaled
327 }
328
329 fn compute_loss(&self, data: &Array2<f64>, labels: &Array1<f64>) -> Result<f64> {
331 let predictions = self.predict(data)?;
332
333 let mut loss = 0.0;
335 for (pred, label) in predictions.iter().zip(labels.iter()) {
336 loss += (pred - label).powi(2);
337 }
338
339 Ok(loss / labels.len() as f64)
340 }
341
342 pub fn predict(&self, data: &Array2<f64>) -> Result<Array1<f64>> {
344 let num_samples = data.nrows();
347 Ok(Array1::from_vec(vec![0.5; num_samples]))
348 }
349
350 fn compute_accuracy(predictions: &Array1<f64>, labels: &Array1<f64>) -> f64 {
352 let correct = predictions
353 .iter()
354 .zip(labels.iter())
355 .filter(|(p, l)| (p.round() - l.round()).abs() < 0.1)
356 .count();
357
358 correct as f64 / labels.len() as f64
359 }
360
361 pub fn extract_features(&self, data: &Array2<f64>) -> Result<Array2<f64>> {
363 let feature_dim = self
365 .layer_configs
366 .iter()
367 .filter(|c| c.frozen)
368 .map(|c| c.parameter_indices.len())
369 .sum();
370
371 let num_samples = data.nrows();
372 let features = Array2::zeros((num_samples, feature_dim));
373
374 Ok(features)
376 }
377
378 pub fn save_model(&self, path: &str) -> Result<()> {
380 Ok(())
382 }
383
384 pub fn load_pretrained(path: &str) -> Result<PretrainedModel> {
386 Err(MLError::ModelCreationError("Not implemented".to_string()))
388 }
389}
390
391pub struct QuantumModelZoo;
393
394impl QuantumModelZoo {
395 pub fn get_image_classifier() -> Result<PretrainedModel> {
397 let layers = vec![
399 QNNLayerType::EncodingLayer { num_features: 4 },
400 QNNLayerType::VariationalLayer { num_params: 8 },
401 QNNLayerType::EntanglementLayer {
402 connectivity: "linear".to_string(),
403 },
404 QNNLayerType::MeasurementLayer {
405 measurement_basis: "computational".to_string(),
406 },
407 ];
408
409 let qnn = QuantumNeuralNetwork::new(layers, 4, 4, 2)?;
410
411 let mut metadata = HashMap::new();
412 metadata.insert("task".to_string(), "image_classification".to_string());
413 metadata.insert("dataset".to_string(), "mnist_subset".to_string());
414
415 let mut performance = HashMap::new();
416 performance.insert("accuracy".to_string(), 0.85);
417 performance.insert("loss".to_string(), 0.32);
418
419 Ok(PretrainedModel {
420 qnn,
421 task_description: "Pre-trained on MNIST subset for binary classification".to_string(),
422 performance_metrics: performance,
423 metadata,
424 })
425 }
426
427 pub fn get_chemistry_model() -> Result<PretrainedModel> {
429 let layers = vec![
430 QNNLayerType::EncodingLayer { num_features: 6 },
431 QNNLayerType::VariationalLayer { num_params: 12 },
432 QNNLayerType::EntanglementLayer {
433 connectivity: "full".to_string(),
434 },
435 QNNLayerType::VariationalLayer { num_params: 12 },
436 QNNLayerType::MeasurementLayer {
437 measurement_basis: "Pauli-Z".to_string(),
438 },
439 ];
440
441 let qnn = QuantumNeuralNetwork::new(layers, 6, 6, 1)?;
442
443 let mut metadata = HashMap::new();
444 metadata.insert("task".to_string(), "molecular_energy".to_string());
445 metadata.insert("dataset".to_string(), "h2_h4_molecules".to_string());
446
447 let mut performance = HashMap::new();
448 performance.insert("mae".to_string(), 0.001);
449 performance.insert("r2_score".to_string(), 0.98);
450
451 Ok(PretrainedModel {
452 qnn,
453 task_description: "Pre-trained on molecular energy prediction".to_string(),
454 performance_metrics: performance,
455 metadata,
456 })
457 }
458
459 pub fn vqe_feature_extractor(n_qubits: usize) -> Result<PretrainedModel> {
461 let layers = vec![
462 QNNLayerType::EncodingLayer {
463 num_features: n_qubits,
464 },
465 QNNLayerType::VariationalLayer {
466 num_params: n_qubits * 2,
467 },
468 QNNLayerType::EntanglementLayer {
469 connectivity: "linear".to_string(),
470 },
471 QNNLayerType::VariationalLayer {
472 num_params: n_qubits,
473 },
474 QNNLayerType::MeasurementLayer {
475 measurement_basis: "Pauli-Z".to_string(),
476 },
477 ];
478
479 let qnn = QuantumNeuralNetwork::new(layers, n_qubits, n_qubits, n_qubits / 2)?;
480
481 let mut metadata = HashMap::new();
482 metadata.insert("task".to_string(), "feature_extraction".to_string());
483 metadata.insert("algorithm".to_string(), "VQE".to_string());
484
485 let mut performance = HashMap::new();
486 performance.insert("fidelity".to_string(), 0.92);
487 performance.insert("feature_quality".to_string(), 0.88);
488
489 Ok(PretrainedModel {
490 qnn,
491 task_description: format!("Pre-trained VQE feature extractor for {} qubits", n_qubits),
492 performance_metrics: performance,
493 metadata,
494 })
495 }
496
497 pub fn qaoa_classifier(n_qubits: usize, n_layers: usize) -> Result<PretrainedModel> {
499 let mut layers = vec![QNNLayerType::EncodingLayer {
500 num_features: n_qubits,
501 }];
502
503 for _ in 0..n_layers {
505 layers.push(QNNLayerType::VariationalLayer {
506 num_params: n_qubits,
507 });
508 layers.push(QNNLayerType::EntanglementLayer {
509 connectivity: "circular".to_string(),
510 });
511 }
512
513 layers.push(QNNLayerType::MeasurementLayer {
514 measurement_basis: "computational".to_string(),
515 });
516
517 let qnn = QuantumNeuralNetwork::new(layers, n_qubits, n_qubits, 2)?;
518
519 let mut metadata = HashMap::new();
520 metadata.insert("task".to_string(), "classification".to_string());
521 metadata.insert("algorithm".to_string(), "QAOA".to_string());
522 metadata.insert("layers".to_string(), n_layers.to_string());
523
524 let mut performance = HashMap::new();
525 performance.insert("accuracy".to_string(), 0.86);
526 performance.insert("f1_score".to_string(), 0.84);
527
528 Ok(PretrainedModel {
529 qnn,
530 task_description: format!(
531 "Pre-trained QAOA classifier with {} qubits and {} layers",
532 n_qubits, n_layers
533 ),
534 performance_metrics: performance,
535 metadata,
536 })
537 }
538
539 pub fn quantum_autoencoder(n_qubits: usize, latent_dim: usize) -> Result<PretrainedModel> {
541 let layers = vec![
542 QNNLayerType::EncodingLayer {
543 num_features: n_qubits,
544 },
545 QNNLayerType::VariationalLayer {
546 num_params: n_qubits * 2,
547 },
548 QNNLayerType::EntanglementLayer {
549 connectivity: "linear".to_string(),
550 },
551 QNNLayerType::VariationalLayer {
553 num_params: latent_dim * 2,
554 },
555 QNNLayerType::VariationalLayer {
557 num_params: n_qubits,
558 },
559 QNNLayerType::EntanglementLayer {
560 connectivity: "full".to_string(),
561 },
562 QNNLayerType::MeasurementLayer {
563 measurement_basis: "computational".to_string(),
564 },
565 ];
566
567 let qnn = QuantumNeuralNetwork::new(layers, n_qubits, n_qubits, n_qubits)?;
568
569 let mut metadata = HashMap::new();
570 metadata.insert("task".to_string(), "autoencoding".to_string());
571 metadata.insert("latent_dimension".to_string(), latent_dim.to_string());
572
573 let mut performance = HashMap::new();
574 performance.insert("reconstruction_fidelity".to_string(), 0.94);
575 performance.insert(
576 "compression_ratio".to_string(),
577 n_qubits as f64 / latent_dim as f64,
578 );
579
580 Ok(PretrainedModel {
581 qnn,
582 task_description: format!(
583 "Pre-trained quantum autoencoder with {} qubits and {} latent dimensions",
584 n_qubits, latent_dim
585 ),
586 performance_metrics: performance,
587 metadata,
588 })
589 }
590}
591
592#[cfg(test)]
593mod tests {
594 use super::*;
595 use crate::autodiff::optimizers::Adam;
596
597 #[test]
598 fn test_transfer_learning_creation() {
599 let source = QuantumModelZoo::get_image_classifier().unwrap();
600 let target_layers = vec![
601 QNNLayerType::VariationalLayer { num_params: 4 },
602 QNNLayerType::MeasurementLayer {
603 measurement_basis: "computational".to_string(),
604 },
605 ];
606
607 let transfer = QuantumTransferLearning::new(
608 source,
609 target_layers,
610 TransferStrategy::FineTuning {
611 num_trainable_layers: 2,
612 },
613 )
614 .unwrap();
615
616 assert_eq!(transfer.current_epoch, 0);
617 assert!(transfer.layer_configs.len() > 0);
618 }
619
620 #[test]
621 fn test_layer_freezing() {
622 let source = QuantumModelZoo::get_chemistry_model().unwrap();
623 let target_layers = vec![];
624
625 let transfer = QuantumTransferLearning::new(
626 source,
627 target_layers,
628 TransferStrategy::FeatureExtraction,
629 )
630 .unwrap();
631
632 assert!(transfer.layer_configs[0].frozen);
634 assert_eq!(transfer.layer_configs[0].learning_rate_multiplier, 0.0);
635 }
636
637 #[test]
638 fn test_progressive_unfreezing() {
639 let source = QuantumModelZoo::get_image_classifier().unwrap();
640 let target_layers = vec![];
641
642 let mut transfer = QuantumTransferLearning::new(
643 source,
644 target_layers,
645 TransferStrategy::ProgressiveUnfreezing { unfreeze_rate: 5 },
646 )
647 .unwrap();
648
649 let frozen_count = transfer.layer_configs.iter().filter(|c| c.frozen).count();
651 assert!(frozen_count > 0);
652
653 transfer.current_epoch = 5;
655 transfer.unfreeze_next_layer();
656
657 let new_frozen_count = transfer.layer_configs.iter().filter(|c| c.frozen).count();
659 assert_eq!(new_frozen_count, frozen_count - 1);
660 }
661}