quantrs2_ml/
nlp.rs

1use crate::error::{MLError, Result};
2use crate::qnn::QuantumNeuralNetwork;
3use scirs2_core::ndarray::{Array1, Array2};
4use scirs2_core::random::prelude::*;
5use std::collections::HashMap;
6use std::fmt;
7
8/// Type of NLP task
9#[derive(Debug, Clone, Copy, PartialEq)]
10pub enum NLPTaskType {
11    /// Text classification
12    Classification,
13
14    /// Sequence labeling
15    SequenceLabeling,
16
17    /// Machine translation
18    Translation,
19
20    /// Language generation
21    Generation,
22
23    /// Sentiment analysis
24    SentimentAnalysis,
25
26    /// Text summarization
27    Summarization,
28}
29
30/// Strategy for text embedding
31#[derive(Debug, Clone, Copy, PartialEq)]
32pub enum EmbeddingStrategy {
33    /// Bag of words
34    BagOfWords,
35
36    /// Term frequency-inverse document frequency
37    TFIDF,
38
39    /// Word2Vec
40    Word2Vec,
41
42    /// Custom embedding
43    Custom,
44}
45
46impl From<usize> for EmbeddingStrategy {
47    fn from(value: usize) -> Self {
48        match value {
49            0 => EmbeddingStrategy::BagOfWords,
50            1 => EmbeddingStrategy::TFIDF,
51            2 => EmbeddingStrategy::Word2Vec,
52            _ => EmbeddingStrategy::Custom,
53        }
54    }
55}
56
57/// Text preprocessing for NLP
58#[derive(Debug, Clone)]
59pub struct TextPreprocessor {
60    /// Whether to convert to lowercase
61    pub lowercase: bool,
62
63    /// Whether to remove stopwords
64    pub remove_stopwords: bool,
65
66    /// Whether to lemmatize
67    pub lemmatize: bool,
68
69    /// Whether to stem
70    pub stem: bool,
71
72    /// Custom stopwords
73    pub stopwords: Vec<String>,
74}
75
76impl TextPreprocessor {
77    /// Creates a new text preprocessor with default settings
78    pub fn new() -> Self {
79        TextPreprocessor {
80            lowercase: true,
81            remove_stopwords: true,
82            lemmatize: false,
83            stem: false,
84            stopwords: Vec::new(),
85        }
86    }
87
88    /// Sets whether to convert to lowercase
89    pub fn with_lowercase(mut self, lowercase: bool) -> Self {
90        self.lowercase = lowercase;
91        self
92    }
93
94    /// Sets whether to remove stopwords
95    pub fn with_remove_stopwords(mut self, remove_stopwords: bool) -> Self {
96        self.remove_stopwords = remove_stopwords;
97        self
98    }
99
100    /// Sets whether to lemmatize
101    pub fn with_lemmatize(mut self, lemmatize: bool) -> Self {
102        self.lemmatize = lemmatize;
103        self
104    }
105
106    /// Sets whether to stem
107    pub fn with_stem(mut self, stem: bool) -> Self {
108        self.stem = stem;
109        self
110    }
111
112    /// Sets custom stopwords
113    pub fn with_stopwords(mut self, stopwords: Vec<String>) -> Self {
114        self.stopwords = stopwords;
115        self
116    }
117
118    /// Preprocesses text
119    pub fn preprocess(&self, text: &str) -> Result<String> {
120        // This is a dummy implementation
121        // In a real system, this would apply the specified preprocessing steps
122
123        let mut processed = text.to_string();
124
125        if self.lowercase {
126            processed = processed.to_lowercase();
127        }
128
129        if self.remove_stopwords {
130            for stopword in &self.stopwords {
131                processed = processed.replace(stopword, "");
132            }
133        }
134
135        Ok(processed)
136    }
137
138    /// Tokenizes text
139    pub fn tokenize(&self, text: &str) -> Result<Vec<String>> {
140        // This is a dummy implementation
141        // In a real system, this would use a proper tokenizer
142
143        let processed = self.preprocess(text)?;
144        let tokens = processed
145            .split_whitespace()
146            .map(|s| s.to_string())
147            .collect::<Vec<_>>();
148
149        Ok(tokens)
150    }
151}
152
153/// Word embedding for text representation
154#[derive(Debug, Clone)]
155pub struct WordEmbedding {
156    /// Embedding strategy
157    pub strategy: EmbeddingStrategy,
158
159    /// Embedding dimension
160    pub dimension: usize,
161
162    /// Word-to-embedding mapping
163    pub embeddings: HashMap<String, Array1<f64>>,
164
165    /// Vocabulary
166    pub vocabulary: Vec<String>,
167}
168
169impl WordEmbedding {
170    /// Creates a new word embedding
171    pub fn new(strategy: EmbeddingStrategy, dimension: usize) -> Self {
172        WordEmbedding {
173            strategy,
174            dimension,
175            embeddings: HashMap::new(),
176            vocabulary: Vec::new(),
177        }
178    }
179
180    /// Fits the embedding on a corpus
181    pub fn fit(&mut self, corpus: &[&str]) -> Result<()> {
182        // This is a dummy implementation
183        // In a real system, this would build the vocabulary and compute embeddings
184
185        let mut vocabulary = HashMap::new();
186
187        // Build the vocabulary
188        for text in corpus {
189            for word in text.split_whitespace() {
190                let count = vocabulary.entry(word.to_string()).or_insert(0);
191                *count += 1;
192            }
193        }
194
195        // Sort by frequency
196        let mut vocab_items = vocabulary
197            .iter()
198            .map(|(word, count)| (word.clone(), *count))
199            .collect::<Vec<_>>();
200
201        vocab_items.sort_by(|a, b| b.1.cmp(&a.1));
202
203        // Take the top N words
204        self.vocabulary = vocab_items
205            .iter()
206            .map(|(word, _)| word.clone())
207            .take(10000)
208            .collect();
209
210        // Generate random embeddings for each word
211        for word in &self.vocabulary {
212            let embedding = Array1::from_vec(
213                (0..self.dimension)
214                    .map(|_| thread_rng().gen::<f64>() * 2.0 - 1.0)
215                    .collect(),
216            );
217
218            self.embeddings.insert(word.clone(), embedding);
219        }
220
221        Ok(())
222    }
223
224    /// Gets the embedding for a word
225    pub fn get_embedding(&self, word: &str) -> Option<&Array1<f64>> {
226        self.embeddings.get(word)
227    }
228
229    /// Gets the embedding for a sentence
230    pub fn embed_text(&self, text: &str) -> Result<Array1<f64>> {
231        // This is a simplified implementation
232        // In a real system, this would properly combine word embeddings
233
234        let words = text.split_whitespace().collect::<Vec<_>>();
235        let mut embedding = Array1::zeros(self.dimension);
236        let mut count = 0;
237
238        for word in words {
239            if let Some(word_embedding) = self.get_embedding(word) {
240                embedding += word_embedding;
241                count += 1;
242            }
243        }
244
245        if count > 0 {
246            embedding /= count as f64;
247        }
248
249        Ok(embedding)
250    }
251}
252
253/// Quantum language model for NLP tasks
254#[derive(Debug, Clone)]
255pub struct QuantumLanguageModel {
256    /// Number of qubits
257    pub num_qubits: usize,
258
259    /// Embedding strategy
260    pub embedding_strategy: EmbeddingStrategy,
261
262    /// Text preprocessor
263    pub preprocessor: TextPreprocessor,
264
265    /// Word embedding
266    pub embedding: WordEmbedding,
267
268    /// Quantum neural network
269    pub qnn: QuantumNeuralNetwork,
270
271    /// Type of NLP task
272    pub task: NLPTaskType,
273
274    /// Class labels (for classification tasks)
275    pub labels: Vec<String>,
276}
277
278impl QuantumLanguageModel {
279    /// Creates a new quantum language model
280    pub fn new(
281        num_qubits: usize,
282        embedding_dimension: usize,
283        strategy: EmbeddingStrategy,
284        task: NLPTaskType,
285        labels: Vec<String>,
286    ) -> Result<Self> {
287        let preprocessor = TextPreprocessor::new();
288        let embedding = WordEmbedding::new(strategy, embedding_dimension);
289
290        // Create a QNN architecture suitable for the task
291        let layers = vec![
292            crate::qnn::QNNLayerType::EncodingLayer {
293                num_features: embedding_dimension,
294            },
295            crate::qnn::QNNLayerType::VariationalLayer {
296                num_params: 2 * num_qubits,
297            },
298            crate::qnn::QNNLayerType::EntanglementLayer {
299                connectivity: "full".to_string(),
300            },
301            crate::qnn::QNNLayerType::VariationalLayer {
302                num_params: 2 * num_qubits,
303            },
304            crate::qnn::QNNLayerType::MeasurementLayer {
305                measurement_basis: "computational".to_string(),
306            },
307        ];
308
309        let output_dim = match task {
310            NLPTaskType::Classification | NLPTaskType::SentimentAnalysis => labels.len(),
311            NLPTaskType::SequenceLabeling => labels.len(),
312            NLPTaskType::Translation => embedding_dimension,
313            NLPTaskType::Generation => embedding_dimension,
314            NLPTaskType::Summarization => embedding_dimension,
315        };
316
317        let qnn = QuantumNeuralNetwork::new(layers, num_qubits, embedding_dimension, output_dim)?;
318
319        Ok(QuantumLanguageModel {
320            num_qubits,
321            embedding_strategy: strategy,
322            preprocessor,
323            embedding,
324            qnn,
325            task,
326            labels,
327        })
328    }
329
330    /// Fits the model on a corpus
331    pub fn fit(&mut self, texts: &[&str], labels: &[usize]) -> Result<()> {
332        // First, fit the embedding on the corpus
333        self.embedding.fit(texts)?;
334
335        // Convert texts to embeddings
336        let mut embeddings = Vec::with_capacity(texts.len());
337
338        for text in texts {
339            let embedding = self.embedding.embed_text(text)?;
340            embeddings.push(embedding);
341        }
342
343        // Convert to ndarray
344        let x_train = Array2::from_shape_vec(
345            (embeddings.len(), self.embedding.dimension),
346            embeddings.iter().flat_map(|e| e.iter().cloned()).collect(),
347        )
348        .map_err(|e| MLError::DataError(format!("Failed to create training data: {}", e)))?;
349
350        // Convert labels to one-hot encoding
351        let y_train = Array1::from_vec(labels.iter().map(|&l| l as f64).collect());
352
353        // Train the QNN
354        self.qnn.train_1d(&x_train, &y_train, 100, 0.01)?;
355
356        Ok(())
357    }
358
359    /// Predicts the label for a text
360    pub fn predict(&self, text: &str) -> Result<(String, f64)> {
361        // Embed the text
362        let embedding = self.embedding.embed_text(text)?;
363
364        // Run the QNN
365        let output = self.qnn.forward(&embedding)?;
366
367        // Find the label with the highest score
368        let mut best_label = 0;
369        let mut best_score = output[0];
370
371        for i in 1..output.len() {
372            if output[i] > best_score {
373                best_score = output[i];
374                best_label = i;
375            }
376        }
377
378        if best_label < self.labels.len() {
379            Ok((self.labels[best_label].clone(), best_score))
380        } else {
381            Err(MLError::MLOperationError(format!(
382                "Invalid prediction index: {}",
383                best_label
384            )))
385        }
386    }
387}
388
389/// Sentiment analyzer using quantum language models
390#[derive(Debug, Clone)]
391pub struct SentimentAnalyzer {
392    /// Quantum language model
393    model: QuantumLanguageModel,
394}
395
396impl SentimentAnalyzer {
397    /// Creates a new sentiment analyzer
398    pub fn new(num_qubits: usize) -> Result<Self> {
399        let model = QuantumLanguageModel::new(
400            num_qubits,
401            32, // embedding dimension
402            EmbeddingStrategy::BagOfWords,
403            NLPTaskType::SentimentAnalysis,
404            vec![
405                "negative".to_string(),
406                "neutral".to_string(),
407                "positive".to_string(),
408            ],
409        )?;
410
411        Ok(SentimentAnalyzer { model })
412    }
413
414    /// Analyzes the sentiment of text
415    pub fn analyze(&self, text: &str) -> Result<(String, f64)> {
416        self.model.predict(text)
417    }
418
419    /// Trains the sentiment analyzer
420    pub fn train(&mut self, texts: &[&str], labels: &[usize]) -> Result<()> {
421        self.model.fit(texts, labels)
422    }
423}
424
425/// Text summarizer using quantum language models
426#[derive(Debug, Clone)]
427pub struct TextSummarizer {
428    /// Quantum language model
429    model: QuantumLanguageModel,
430
431    /// Maximum summary length
432    max_length: usize,
433}
434
435impl TextSummarizer {
436    /// Creates a new text summarizer
437    pub fn new(num_qubits: usize) -> Result<Self> {
438        let model = QuantumLanguageModel::new(
439            num_qubits,
440            64, // embedding dimension
441            EmbeddingStrategy::BagOfWords,
442            NLPTaskType::Summarization,
443            Vec::new(), // No specific labels for summarization
444        )?;
445
446        Ok(TextSummarizer {
447            model,
448            max_length: 100,
449        })
450    }
451
452    /// Sets the maximum summary length
453    pub fn with_max_length(mut self, max_length: usize) -> Self {
454        self.max_length = max_length;
455        self
456    }
457
458    /// Summarizes text
459    pub fn summarize(&self, text: &str) -> Result<String> {
460        // This is a dummy implementation
461        // In a real system, this would use the quantum language model to generate a summary
462
463        let sentences = text.split('.').collect::<Vec<_>>();
464        let num_sentences = sentences.len();
465
466        // Generate a summary by selecting key sentences
467        let num_summary_sentences = (num_sentences / 4).max(1);
468        let selected_indices = vec![0, num_sentences / 2, num_sentences - 1];
469
470        let mut summary = String::new();
471
472        for &index in selected_indices.iter().take(num_summary_sentences) {
473            if index < sentences.len() {
474                summary.push_str(sentences[index]);
475                summary.push('.');
476            }
477        }
478
479        // Truncate to max length if needed
480        if summary.len() > self.max_length {
481            let truncated = summary.chars().take(self.max_length).collect::<String>();
482            let last_space = truncated.rfind(' ').unwrap_or(truncated.len());
483            summary = truncated[..last_space].to_string();
484            summary.push_str("...");
485        }
486
487        Ok(summary)
488    }
489}
490
491impl fmt::Display for NLPTaskType {
492    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
493        match self {
494            NLPTaskType::Classification => write!(f, "Classification"),
495            NLPTaskType::SequenceLabeling => write!(f, "Sequence Labeling"),
496            NLPTaskType::Translation => write!(f, "Translation"),
497            NLPTaskType::Generation => write!(f, "Generation"),
498            NLPTaskType::SentimentAnalysis => write!(f, "Sentiment Analysis"),
499            NLPTaskType::Summarization => write!(f, "Summarization"),
500        }
501    }
502}
503
504impl fmt::Display for EmbeddingStrategy {
505    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
506        match self {
507            EmbeddingStrategy::BagOfWords => write!(f, "Bag of Words"),
508            EmbeddingStrategy::TFIDF => write!(f, "TF-IDF"),
509            EmbeddingStrategy::Word2Vec => write!(f, "Word2Vec"),
510            EmbeddingStrategy::Custom => write!(f, "Custom"),
511        }
512    }
513}
514
515/// Implementation of missing methods for QuantumLanguageModel
516impl QuantumLanguageModel {
517    /// Builds vocabulary from a set of texts
518    pub fn build_vocabulary(&mut self, texts: &[String]) -> Result<usize> {
519        // In a full implementation, this would analyze texts and build vocabulary
520        // For now, just return a dummy vocabulary size
521        let vocab_size = texts
522            .iter()
523            .flat_map(|text| text.split_whitespace())
524            .collect::<std::collections::HashSet<_>>()
525            .len();
526
527        Ok(vocab_size)
528    }
529
530    /// Trains word embeddings
531    pub fn train_embeddings(&mut self, texts: &[String]) -> Result<()> {
532        // Dummy implementation that would train word embeddings
533        // In reality, this would update the embedding matrix based on texts
534        println!(
535            "  Training embeddings for {} texts with strategy: {}",
536            texts.len(),
537            self.embedding_strategy
538        );
539
540        Ok(())
541    }
542
543    /// Trains the language model
544    pub fn train(
545        &mut self,
546        texts: &[String],
547        labels: &[usize],
548        epochs: usize,
549        learning_rate: f64,
550    ) -> Result<()> {
551        // Convert texts to feature vectors using the embedding
552        let num_samples = texts.len();
553        let mut features = Array2::zeros((num_samples, self.embedding.dimension));
554
555        // Create dummy features
556        for (i, text) in texts.iter().enumerate() {
557            // Simple hash-based feature extraction
558            let feature_vec = text
559                .chars()
560                .enumerate()
561                .map(|(j, c)| (c as u32 % 8) as f64 / 8.0 + j as f64 * 0.001)
562                .take(self.embedding.dimension)
563                .collect::<Vec<_>>();
564
565            for (j, &val) in feature_vec
566                .iter()
567                .enumerate()
568                .take(self.embedding.dimension)
569            {
570                if j < features.ncols() {
571                    features[[i, j]] = val;
572                }
573            }
574        }
575
576        // Convert labels to float array
577        let y_train = Array1::from_vec(labels.iter().map(|&l| l as f64).collect());
578
579        // Train the underlying QNN
580        self.qnn
581            .train_1d(&features, &y_train, epochs, learning_rate)?;
582
583        Ok(())
584    }
585
586    /// Classifies a text
587    pub fn classify(&self, text: &str) -> Result<(String, f64)> {
588        // In a real implementation, this would encode the text and run it through the QNN
589
590        // Simple hash-based classification for demonstration
591        let hash = text.chars().map(|c| c as u32).sum::<u32>();
592        let class_idx = (hash % self.labels.len() as u32) as usize;
593        let confidence = 0.7 + 0.3 * (hash % 100) as f64 / 100.0;
594
595        Ok((self.labels[class_idx].clone(), confidence))
596    }
597}