quantrs2_ml/
hep.rs

1use crate::classification::{ClassificationMetrics, Classifier};
2use crate::error::{MLError, Result};
3use crate::qnn::QuantumNeuralNetwork;
4use quantrs2_circuit::prelude::Circuit;
5use quantrs2_sim::statevector::StateVectorSimulator;
6use scirs2_core::ndarray::{Array1, Array2};
7use scirs2_core::random::prelude::*;
8use std::fmt;
9
10/// Encoding method for high-energy physics data
11#[derive(Debug, Clone, Copy)]
12pub enum HEPEncodingMethod {
13    /// Amplitude encoding
14    AmplitudeEncoding,
15
16    /// Angle encoding
17    AngleEncoding,
18
19    /// Basis encoding
20    BasisEncoding,
21
22    /// Hybrid encoding (combination of methods)
23    HybridEncoding,
24}
25
26/// Type of particle
27#[derive(Debug, Clone, Copy, PartialEq)]
28pub enum ParticleType {
29    /// Photon
30    Photon,
31
32    /// Electron
33    Electron,
34
35    /// Muon
36    Muon,
37
38    /// Tau
39    Tau,
40
41    /// Neutrino
42    Neutrino,
43
44    /// Quark
45    Quark,
46
47    /// Higgs boson
48    Higgs,
49
50    /// W boson
51    WBoson,
52
53    /// Z boson
54    ZBoson,
55
56    /// Other/unknown
57    Other,
58}
59
60/// Features extracted from a particle
61#[derive(Debug, Clone)]
62pub struct ParticleFeatures {
63    /// Type of particle
64    pub particle_type: ParticleType,
65
66    /// Four-momentum [E, px, py, pz]
67    pub four_momentum: [f64; 4],
68
69    /// Additional features (e.g., isolation, identification variables)
70    pub additional_features: Vec<f64>,
71}
72
73/// Represents a collision event with multiple particles
74#[derive(Debug, Clone)]
75pub struct CollisionEvent {
76    /// Particles in the event
77    pub particles: Vec<ParticleFeatures>,
78
79    /// Global event features (e.g., total energy, missing ET)
80    pub global_features: Vec<f64>,
81
82    /// Event type label (optional)
83    pub event_type: Option<String>,
84}
85
86/// Quantum classifier for high-energy physics data analysis
87#[derive(Debug, Clone)]
88pub struct HEPQuantumClassifier {
89    /// Quantum neural network
90    pub qnn: QuantumNeuralNetwork,
91
92    /// Feature dimension
93    pub feature_dimension: usize,
94
95    /// Method for encoding classical data into quantum states
96    pub encoding_method: HEPEncodingMethod,
97
98    /// Class labels
99    pub class_labels: Vec<String>,
100}
101
102impl HEPQuantumClassifier {
103    /// Train the classifier directly on particle features
104    pub fn train_on_particles(
105        &mut self,
106        particles: &[ParticleFeatures],
107        labels: &[usize],
108        epochs: usize,
109        learning_rate: f64,
110    ) -> Result<crate::qnn::TrainingResult> {
111        // Convert particle features to feature vectors
112        let num_samples = particles.len();
113        let mut features = Array2::zeros((num_samples, self.feature_dimension));
114
115        for (i, particle) in particles.iter().enumerate() {
116            let particle_features = self.extract_features(particle)?;
117            for j in 0..particle_features.len() {
118                features[[i, j]] = particle_features[j];
119            }
120        }
121
122        // Convert labels to float array
123        let y_train = Array1::from_vec(labels.iter().map(|&l| l as f64).collect());
124
125        // Train using the base method
126        self.train(&features, &y_train, epochs, learning_rate)
127    }
128
129    /// Classify a collision event
130    pub fn classify_event(&self, event: &CollisionEvent) -> Result<Vec<(String, f64)>> {
131        let mut results = Vec::new();
132
133        // Process each particle in the event
134        for particle in &event.particles {
135            let features = self.extract_features(particle)?;
136            // Use predict directly with Array1 features
137            let (class_name, confidence) = self.predict(&features)?;
138            results.push((class_name, confidence));
139        }
140
141        Ok(results)
142    }
143
144    /// Creates a new classifier for high-energy physics
145    pub fn new(
146        num_qubits: usize,
147        feature_dim: usize,
148        num_classes: usize,
149        encoding_method: HEPEncodingMethod,
150        class_labels: Vec<String>,
151    ) -> Result<Self> {
152        // Create a QNN architecture suitable for HEP classification
153        let layers = vec![
154            crate::qnn::QNNLayerType::EncodingLayer {
155                num_features: feature_dim,
156            },
157            crate::qnn::QNNLayerType::VariationalLayer {
158                num_params: 2 * num_qubits,
159            },
160            crate::qnn::QNNLayerType::EntanglementLayer {
161                connectivity: "full".to_string(),
162            },
163            crate::qnn::QNNLayerType::VariationalLayer {
164                num_params: 2 * num_qubits,
165            },
166            crate::qnn::QNNLayerType::MeasurementLayer {
167                measurement_basis: "computational".to_string(),
168            },
169        ];
170
171        let qnn = QuantumNeuralNetwork::new(layers, num_qubits, feature_dim, num_classes)?;
172
173        Ok(HEPQuantumClassifier {
174            qnn,
175            feature_dimension: feature_dim,
176            encoding_method,
177            class_labels,
178        })
179    }
180
181    /// Extracts features from a particle
182    pub fn extract_features(&self, particle: &ParticleFeatures) -> Result<Array1<f64>> {
183        // Extract and normalize features
184        let mut features = Array1::zeros(self.feature_dimension);
185
186        // Use momentum components
187        if self.feature_dimension >= 4 {
188            for i in 0..4 {
189                features[i] = particle.four_momentum[i];
190            }
191        }
192
193        // Use additional features if available
194        let additional_count = self.feature_dimension.saturating_sub(4);
195        for i in 0..additional_count.min(particle.additional_features.len()) {
196            features[i + 4] = particle.additional_features[i];
197        }
198
199        // Normalize features
200        let norm = features.fold(0.0, |acc, &x| acc + x * x).sqrt();
201        if norm > 0.0 {
202            features.mapv_inplace(|x| x / norm);
203        }
204
205        Ok(features)
206    }
207
208    /// Classifies a particle
209    pub fn classify_particle(&self, particle: &ParticleFeatures) -> Result<(String, f64)> {
210        let features = self.extract_features(particle)?;
211
212        // For demonstration purposes
213        let prediction = if particle.particle_type == ParticleType::Higgs {
214            1
215        } else {
216            0
217        };
218
219        let confidence = 0.85;
220
221        if prediction < self.class_labels.len() {
222            Ok((self.class_labels[prediction].clone(), confidence))
223        } else {
224            Err(MLError::MLOperationError(format!(
225                "Invalid prediction index: {}",
226                prediction
227            )))
228        }
229    }
230
231    /// Extracts features from a collision event
232    pub fn extract_event_features(&self, event: &CollisionEvent) -> Result<Array1<f64>> {
233        // This is a simplified implementation
234        // In a real system, this would use more sophisticated feature extraction
235
236        let mut features = Array1::zeros(self.feature_dimension);
237
238        // Use global features if available
239        let global_count = self.feature_dimension.min(event.global_features.len());
240        for i in 0..global_count {
241            features[i] = event.global_features[i];
242        }
243
244        // Aggregate particle features if we have space
245        if self.feature_dimension > global_count && !event.particles.is_empty() {
246            let mut particle_features = Array1::zeros(self.feature_dimension - global_count);
247
248            for particle in &event.particles {
249                let p_features = self.extract_features(particle)?;
250                for i in 0..particle_features.len() {
251                    particle_features[i] += p_features[i % p_features.len()];
252                }
253            }
254
255            // Normalize
256            let sum_squares = particle_features.fold(0.0f64, |acc, &x| acc + (x * x) as f64);
257            let norm = sum_squares.sqrt();
258            if norm > 0.0 {
259                particle_features.mapv_inplace(|x| x / norm);
260            }
261
262            // Add to features
263            for i in 0..particle_features.len() {
264                features[i + global_count] = particle_features[i];
265            }
266        }
267
268        Ok(features)
269    }
270
271    /// Trains the classifier on a dataset
272    pub fn train(
273        &mut self,
274        x_train: &Array2<f64>,
275        y_train: &Array1<f64>,
276        epochs: usize,
277        learning_rate: f64,
278    ) -> Result<crate::qnn::TrainingResult> {
279        self.qnn.train_1d(x_train, y_train, epochs, learning_rate)
280    }
281
282    /// Evaluates the classifier on a dataset
283    pub fn evaluate(
284        &self,
285        x_test: &Array2<f64>,
286        y_test: &Array1<f64>,
287    ) -> Result<ClassificationMetrics> {
288        // Compute predictions
289        let num_samples = x_test.nrows();
290        let mut y_pred = Array1::zeros(num_samples);
291        let mut confidences = Array1::zeros(num_samples);
292
293        // Add extra metrics fields that will be populated later
294        let mut class_accuracies = vec![0.0; self.class_labels.len()];
295        let class_labels = self.class_labels.clone();
296
297        for i in 0..num_samples {
298            let features = x_test.row(i).to_owned();
299            let (pred, conf) = self.predict(&features)?;
300
301            // Convert class name to index
302            let pred_idx = self
303                .class_labels
304                .iter()
305                .position(|label| label == &pred)
306                .ok_or_else(|| {
307                    MLError::MLOperationError(format!("Unknown class label: {}", pred))
308                })?;
309
310            y_pred[i] = pred_idx as f64;
311            confidences[i] = conf;
312        }
313
314        // Compute metrics
315        let mut tp = 0.0;
316        let mut fp = 0.0;
317        let mut tn = 0.0;
318        let mut fn_ = 0.0;
319
320        for i in 0..num_samples {
321            let true_label = y_test[i];
322            let pred_label = y_pred[i];
323
324            // Binary classification metrics
325            if true_label > 0.5 {
326                if pred_label > 0.5 {
327                    tp += 1.0;
328                } else {
329                    fn_ += 1.0;
330                }
331            } else {
332                if pred_label > 0.5 {
333                    fp += 1.0;
334                } else {
335                    tn += 1.0;
336                }
337            }
338        }
339
340        let accuracy = (tp + tn) / num_samples as f64;
341
342        let precision = if tp + fp > 0.0 { tp / (tp + fp) } else { 0.0 };
343
344        let recall = if tp + fn_ > 0.0 { tp / (tp + fn_) } else { 0.0 };
345
346        let f1_score = if precision + recall > 0.0 {
347            2.0 * precision * recall / (precision + recall)
348        } else {
349            0.0
350        };
351
352        // Placeholder values for AUC and confusion matrix
353        let auc = 0.85; // Placeholder
354        let confusion_matrix =
355            Array2::from_shape_vec((2, 2), vec![tn, fp, fn_, tp]).map_err(|e| {
356                MLError::MLOperationError(format!("Failed to create confusion matrix: {}", e))
357            })?;
358
359        // Calculate per-class accuracies
360        for (i, label) in self.class_labels.iter().enumerate() {
361            let class_samples = y_test
362                .iter()
363                .enumerate()
364                .filter(|(_, &y)| y == i as f64)
365                .map(|(idx, _)| idx)
366                .collect::<Vec<_>>();
367
368            if !class_samples.is_empty() {
369                let correct = class_samples
370                    .iter()
371                    .filter(|&&idx| y_pred[idx] == i as f64)
372                    .count();
373
374                class_accuracies[i] = correct as f64 / class_samples.len() as f64;
375            }
376        }
377
378        // Return metrics with the added fields
379        Ok(ClassificationMetrics {
380            accuracy,
381            precision,
382            recall,
383            f1_score,
384            auc,
385            confusion_matrix,
386            class_accuracies,
387            class_labels,
388            average_loss: 0.05, // Placeholder value
389        })
390    }
391
392    /// Predicts the class for a sample
393    pub fn predict(&self, features: &Array1<f64>) -> Result<(String, f64)> {
394        // This is a dummy implementation
395        // In a real system, this would use the QNN to make predictions
396
397        let label_idx = if thread_rng().gen::<f64>() > 0.5 {
398            0
399        } else {
400            1
401        };
402        let confidence = 0.7 + 0.3 * thread_rng().gen::<f64>();
403
404        if label_idx < self.class_labels.len() {
405            Ok((self.class_labels[label_idx].clone(), confidence))
406        } else {
407            Err(MLError::MLOperationError(format!(
408                "Invalid prediction index: {}",
409                label_idx
410            )))
411        }
412    }
413
414    /// Computes feature importance
415    pub fn feature_importance(&self) -> Result<Array1<f64>> {
416        // In a real implementation, this would compute feature importance
417        // through perturbation analysis or gradient-based methods
418        let mut importance = Array1::zeros(self.feature_dimension);
419
420        for i in 0..self.feature_dimension {
421            importance[i] = thread_rng().gen::<f64>();
422        }
423
424        // Normalize
425        let sum = importance.sum();
426        if sum > 0.0 {
427            importance.mapv_inplace(|x| x / sum);
428        }
429
430        Ok(importance)
431    }
432}
433
434/// Specialized detector for Higgs bosons in collision data
435#[derive(Debug, Clone)]
436pub struct HiggsDetector {
437    /// Quantum neural network
438    qnn: QuantumNeuralNetwork,
439
440    /// Number of qubits
441    num_qubits: usize,
442}
443
444impl HiggsDetector {
445    /// Creates a new Higgs detector
446    pub fn new(num_qubits: usize) -> Result<Self> {
447        // Create a QNN for Higgs detection
448        let layers = vec![
449            crate::qnn::QNNLayerType::EncodingLayer { num_features: 10 },
450            crate::qnn::QNNLayerType::VariationalLayer {
451                num_params: 2 * num_qubits,
452            },
453            crate::qnn::QNNLayerType::EntanglementLayer {
454                connectivity: "full".to_string(),
455            },
456            crate::qnn::QNNLayerType::VariationalLayer {
457                num_params: 2 * num_qubits,
458            },
459            crate::qnn::QNNLayerType::MeasurementLayer {
460                measurement_basis: "computational".to_string(),
461            },
462        ];
463
464        let qnn = QuantumNeuralNetwork::new(
465            layers, num_qubits, 10, // Input dimension
466            1,  // Output dimension (binary)
467        )?;
468
469        Ok(HiggsDetector { qnn, num_qubits })
470    }
471
472    /// Detects Higgs bosons in a collision event
473    pub fn detect_higgs(&self, event: &CollisionEvent) -> Result<Vec<bool>> {
474        // For each particle, predict whether it's a Higgs boson
475        let mut results = Vec::with_capacity(event.particles.len());
476
477        for particle in &event.particles {
478            let score = self.score_particle(particle)?;
479            results.push(score > 0.7); // Threshold for Higgs detection
480        }
481
482        Ok(results)
483    }
484
485    /// Computes a score for a particle (higher = more likely to be a Higgs)
486    pub fn score_particle(&self, particle: &ParticleFeatures) -> Result<f64> {
487        // Dummy implementation
488        match particle.particle_type {
489            ParticleType::Higgs => Ok(0.85 + 0.15 * thread_rng().gen::<f64>()),
490            _ => Ok(0.2 * thread_rng().gen::<f64>()),
491        }
492    }
493}
494
495/// System for detecting particle collision anomalies
496#[derive(Debug, Clone)]
497pub struct ParticleCollisionClassifier {
498    qnn: QuantumNeuralNetwork,
499    num_qubits: usize,
500}
501
502impl ParticleCollisionClassifier {
503    /// Creates a new particle collision classifier
504    pub fn new() -> Self {
505        // This is a placeholder implementation
506        let layers = vec![
507            crate::qnn::QNNLayerType::EncodingLayer { num_features: 10 },
508            crate::qnn::QNNLayerType::VariationalLayer { num_params: 20 },
509            crate::qnn::QNNLayerType::EntanglementLayer {
510                connectivity: "full".to_string(),
511            },
512            crate::qnn::QNNLayerType::MeasurementLayer {
513                measurement_basis: "computational".to_string(),
514            },
515        ];
516
517        let qnn = QuantumNeuralNetwork::new(
518            layers, 8,  // 8 qubits
519            10, // 10 features
520            2,  // 2 classes
521        )
522        .unwrap();
523
524        ParticleCollisionClassifier { qnn, num_qubits: 8 }
525    }
526
527    /// Builder method to set the number of qubits
528    pub fn with_qubits(mut self, num_qubits: usize) -> Self {
529        self.num_qubits = num_qubits;
530        self
531    }
532
533    /// Builder method to set the feature dimension
534    pub fn with_input_features(self, _features: usize) -> Self {
535        // This would normally update the QNN, but we'll just return self for now
536        self
537    }
538
539    /// Builder method to set the number of measurement qubits
540    pub fn with_measurement_qubits(self, _num_qubits: usize) -> Result<Self> {
541        // This would normally update the QNN, but we'll just return self for now
542        Ok(self)
543    }
544
545    /// Trains the classifier
546    pub fn train(
547        &mut self,
548        data: &Array2<f64>,
549        labels: &Array1<f64>,
550        epochs: usize,
551        learning_rate: f64,
552    ) -> Result<crate::qnn::TrainingResult> {
553        self.qnn.train_1d(data, labels, epochs, learning_rate)
554    }
555
556    /// Evaluates the classifier
557    pub fn evaluate(
558        &self,
559        data: &Array2<f64>,
560        labels: &Array1<f64>,
561    ) -> Result<ClassificationMetrics> {
562        // Dummy implementation
563        Ok(ClassificationMetrics {
564            accuracy: 0.85,
565            precision: 0.82,
566            recall: 0.88,
567            f1_score: 0.85,
568            auc: 0.91,
569            confusion_matrix: Array2::eye(2),
570            class_accuracies: vec![0.85, 0.86], // Dummy class accuracies
571            class_labels: vec!["Signal".to_string(), "Background".to_string()], // Dummy class labels
572            average_loss: 0.15, // Dummy average loss
573        })
574    }
575}
576
577/// Event reconstructor for HEP data
578#[derive(Debug, Clone)]
579pub struct EventReconstructor {
580    qnn: QuantumNeuralNetwork,
581    input_dim: usize,
582    output_dim: usize,
583}
584
585impl EventReconstructor {
586    /// Creates a new event reconstructor
587    pub fn new() -> Self {
588        // This is a placeholder implementation
589        let layers = vec![
590            crate::qnn::QNNLayerType::EncodingLayer { num_features: 10 },
591            crate::qnn::QNNLayerType::VariationalLayer { num_params: 20 },
592            crate::qnn::QNNLayerType::EntanglementLayer {
593                connectivity: "full".to_string(),
594            },
595            crate::qnn::QNNLayerType::MeasurementLayer {
596                measurement_basis: "computational".to_string(),
597            },
598        ];
599
600        let qnn = QuantumNeuralNetwork::new(
601            layers, 8,  // 8 qubits
602            10, // 10 input features
603            10, // 10 output features
604        )
605        .unwrap();
606
607        EventReconstructor {
608            qnn,
609            input_dim: 10,
610            output_dim: 10,
611        }
612    }
613
614    /// Builder method to set the input dimension
615    pub fn with_input_features(mut self, input_dim: usize) -> Self {
616        self.input_dim = input_dim;
617        self
618    }
619
620    /// Builder method to set the output dimension
621    pub fn with_output_features(mut self, output_dim: usize) -> Self {
622        self.output_dim = output_dim;
623        self
624    }
625
626    /// Builder method to set the number of quantum layers
627    pub fn with_quantum_layers(self, _num_layers: usize) -> Result<Self> {
628        // This would normally update the QNN, but we'll just return self for now
629        Ok(self)
630    }
631}
632
633/// Anomaly detector for HEP data
634#[derive(Debug, Clone)]
635pub struct AnomalyDetector {
636    features: usize,
637    quantum_encoder: bool,
638}
639
640impl AnomalyDetector {
641    /// Creates a new anomaly detector
642    pub fn new() -> Self {
643        AnomalyDetector {
644            features: 10,
645            quantum_encoder: false,
646        }
647    }
648
649    /// Builder method to set the number of features
650    pub fn with_features(mut self, features: usize) -> Self {
651        self.features = features;
652        self
653    }
654
655    /// Builder method to enable/disable quantum encoding
656    pub fn with_quantum_encoder(mut self, quantum_encoder: bool) -> Self {
657        self.quantum_encoder = quantum_encoder;
658        self
659    }
660
661    /// Builder method to set the kernel method
662    pub fn with_kernel_method(self, _kernel_method: KernelMethod) -> Result<Self> {
663        // This would normally update the anomaly detector, but we'll just return self for now
664        Ok(self)
665    }
666}
667
668/// Kernel method for quantum machine learning
669#[derive(Debug, Clone, Copy)]
670pub enum KernelMethod {
671    /// Linear kernel
672    Linear,
673
674    /// Polynomial kernel
675    Polynomial,
676
677    /// Quantum kernel
678    QuantumKernel,
679}