quantrs2_ml/
sklearn_compatibility.rs

1//! Scikit-learn compatibility layer for QuantRS2-ML
2//!
3//! This module provides a compatibility layer that mimics scikit-learn APIs,
4//! allowing easy integration of quantum ML models with existing scikit-learn
5//! workflows and pipelines.
6
7use crate::classification::{ClassificationMetrics, Classifier};
8use crate::clustering::{ClusteringAlgorithm, QuantumClusterer};
9use crate::error::{MLError, Result};
10use crate::qnn::{QNNBuilder, QuantumNeuralNetwork};
11use crate::qsvm::{FeatureMapType, QSVMParams, QSVM};
12use crate::simulator_backends::{
13    Backend, BackendCapabilities, SimulatorBackend, StatevectorBackend,
14};
15use ndarray::{Array1, Array2, ArrayD, Axis};
16use std::collections::HashMap;
17use std::sync::Arc;
18
19/// Base estimator trait following scikit-learn conventions
20pub trait SklearnEstimator: Send + Sync {
21    /// Fit the model to training data
22    fn fit(&mut self, X: &Array2<f64>, y: Option<&Array1<f64>>) -> Result<()>;
23
24    /// Get model parameters
25    fn get_params(&self) -> HashMap<String, String>;
26
27    /// Set model parameters
28    fn set_params(&mut self, params: HashMap<String, String>) -> Result<()>;
29
30    /// Check if model is fitted
31    fn is_fitted(&self) -> bool;
32
33    /// Get feature names
34    fn get_feature_names_out(&self) -> Vec<String> {
35        vec![]
36    }
37}
38
39/// Classifier mixin trait
40pub trait SklearnClassifier: SklearnEstimator {
41    /// Predict class labels
42    fn predict(&self, X: &Array2<f64>) -> Result<Array1<i32>>;
43
44    /// Predict class probabilities
45    fn predict_proba(&self, X: &Array2<f64>) -> Result<Array2<f64>>;
46
47    /// Get unique class labels
48    fn classes(&self) -> &[i32];
49
50    /// Score the model (accuracy by default)
51    fn score(&self, X: &Array2<f64>, y: &Array1<i32>) -> Result<f64> {
52        let predictions = self.predict(X)?;
53        let correct = predictions
54            .iter()
55            .zip(y.iter())
56            .filter(|(&pred, &true_label)| pred == true_label)
57            .count();
58        Ok(correct as f64 / y.len() as f64)
59    }
60
61    /// Get feature importances (optional)
62    fn feature_importances(&self) -> Option<Array1<f64>> {
63        None
64    }
65
66    /// Save model to file (optional)
67    fn save(&self, _path: &str) -> Result<()> {
68        Ok(())
69    }
70}
71
72/// Regressor mixin trait
73pub trait SklearnRegressor: SklearnEstimator {
74    /// Predict continuous values
75    fn predict(&self, X: &Array2<f64>) -> Result<Array1<f64>>;
76
77    /// Score the model (R² by default)
78    fn score(&self, X: &Array2<f64>, y: &Array1<f64>) -> Result<f64> {
79        let predictions = self.predict(X)?;
80        let y_mean = y.mean().unwrap();
81
82        let ss_res: f64 = y
83            .iter()
84            .zip(predictions.iter())
85            .map(|(&true_val, &pred)| (true_val - pred).powi(2))
86            .sum();
87
88        let ss_tot: f64 = y.iter().map(|&val| (val - y_mean).powi(2)).sum();
89
90        Ok(1.0 - ss_res / ss_tot)
91    }
92}
93
94/// Extension trait for fitting with Array1<f64> directly
95pub trait SklearnFit {
96    fn fit(&mut self, X: &Array2<f64>, y: &Array1<f64>) -> Result<()>;
97}
98
99/// Clusterer mixin trait
100pub trait SklearnClusterer: SklearnEstimator {
101    /// Predict cluster labels
102    fn predict(&self, X: &Array2<f64>) -> Result<Array1<i32>>;
103
104    /// Fit and predict in one step
105    fn fit_predict(&mut self, X: &Array2<f64>) -> Result<Array1<i32>> {
106        self.fit(X, None)?;
107        self.predict(X)
108    }
109
110    /// Get cluster centers (if applicable)
111    fn cluster_centers(&self) -> Option<&Array2<f64>> {
112        None
113    }
114}
115
116/// Quantum Support Vector Machine (sklearn-compatible)
117pub struct QuantumSVC {
118    /// Internal QSVM
119    qsvm: Option<QSVM>,
120    /// SVM parameters
121    params: QSVMParams,
122    /// Feature map type
123    feature_map: FeatureMapType,
124    /// Backend
125    backend: Arc<dyn SimulatorBackend>,
126    /// Fitted flag
127    fitted: bool,
128    /// Unique classes
129    classes: Vec<i32>,
130    /// Regularization parameter
131    C: f64,
132    /// Kernel gamma parameter
133    gamma: f64,
134}
135
136impl Clone for QuantumSVC {
137    fn clone(&self) -> Self {
138        Self {
139            qsvm: None, // Reset QSVM since it's not cloneable
140            params: self.params.clone(),
141            feature_map: self.feature_map,
142            backend: self.backend.clone(),
143            fitted: false, // Reset fitted status
144            classes: self.classes.clone(),
145            C: self.C,
146            gamma: self.gamma,
147        }
148    }
149}
150
151impl QuantumSVC {
152    /// Create new Quantum SVC
153    pub fn new() -> Self {
154        Self {
155            qsvm: None,
156            params: QSVMParams::default(),
157            feature_map: FeatureMapType::ZZFeatureMap,
158            backend: Arc::new(StatevectorBackend::new(10)),
159            fitted: false,
160            classes: Vec::new(),
161            C: 1.0,
162            gamma: 1.0,
163        }
164    }
165
166    /// Set regularization parameter
167    pub fn set_C(mut self, C: f64) -> Self {
168        self.C = C;
169        self
170    }
171
172    /// Set kernel gamma parameter
173    pub fn set_gamma(mut self, gamma: f64) -> Self {
174        self.gamma = gamma;
175        self
176    }
177
178    /// Set feature map
179    pub fn set_kernel(mut self, feature_map: FeatureMapType) -> Self {
180        self.feature_map = feature_map;
181        self
182    }
183
184    /// Set quantum backend
185    pub fn set_backend(mut self, backend: Arc<dyn SimulatorBackend>) -> Self {
186        self.backend = backend;
187        self
188    }
189
190    /// Load model from file (mock implementation)
191    pub fn load(_path: &str) -> Result<Self> {
192        Ok(Self::new())
193    }
194}
195
196impl SklearnEstimator for QuantumSVC {
197    fn fit(&mut self, X: &Array2<f64>, y: Option<&Array1<f64>>) -> Result<()> {
198        let y = y.ok_or_else(|| {
199            MLError::InvalidConfiguration("Labels required for supervised learning".to_string())
200        })?;
201
202        // Convert continuous labels to integer classes
203        let y_int: Array1<i32> = y.mapv(|val| val.round() as i32);
204
205        // Find unique classes
206        let mut classes = Vec::new();
207        for &label in y_int.iter() {
208            if !classes.contains(&label) {
209                classes.push(label);
210            }
211        }
212        classes.sort();
213        self.classes = classes;
214
215        // Update QSVM parameters
216        self.params.feature_map = self.feature_map;
217        self.params.regularization = self.C;
218
219        // Create and train QSVM
220        let mut qsvm = QSVM::new(self.params.clone());
221        qsvm.fit(X, &y_int)?;
222
223        self.qsvm = Some(qsvm);
224        self.fitted = true;
225
226        Ok(())
227    }
228
229    fn get_params(&self) -> HashMap<String, String> {
230        let mut params = HashMap::new();
231        params.insert("C".to_string(), self.C.to_string());
232        params.insert("gamma".to_string(), self.gamma.to_string());
233        params.insert("kernel".to_string(), format!("{:?}", self.feature_map));
234        params
235    }
236
237    fn set_params(&mut self, params: HashMap<String, String>) -> Result<()> {
238        for (key, value) in params {
239            match key.as_str() {
240                "C" => {
241                    self.C = value.parse().map_err(|_| {
242                        MLError::InvalidConfiguration(format!("Invalid C parameter: {}", value))
243                    })?;
244                }
245                "gamma" => {
246                    self.gamma = value.parse().map_err(|_| {
247                        MLError::InvalidConfiguration(format!("Invalid gamma parameter: {}", value))
248                    })?;
249                }
250                "kernel" => {
251                    self.feature_map = match value.as_str() {
252                        "ZZFeatureMap" => FeatureMapType::ZZFeatureMap,
253                        "ZFeatureMap" => FeatureMapType::ZFeatureMap,
254                        "PauliFeatureMap" => FeatureMapType::PauliFeatureMap,
255                        _ => {
256                            return Err(MLError::InvalidConfiguration(format!(
257                                "Unknown kernel: {}",
258                                value
259                            )))
260                        }
261                    };
262                }
263                _ => {
264                    return Err(MLError::InvalidConfiguration(format!(
265                        "Unknown parameter: {}",
266                        key
267                    )))
268                }
269            }
270        }
271        Ok(())
272    }
273
274    fn is_fitted(&self) -> bool {
275        self.fitted
276    }
277}
278
279impl SklearnClassifier for QuantumSVC {
280    fn predict(&self, X: &Array2<f64>) -> Result<Array1<i32>> {
281        if !self.fitted {
282            return Err(MLError::ModelNotTrained("Model not trained".to_string()));
283        }
284
285        let qsvm = self.qsvm.as_ref().unwrap();
286        qsvm.predict(X).map_err(|e| MLError::ValidationError(e))
287    }
288
289    fn predict_proba(&self, X: &Array2<f64>) -> Result<Array2<f64>> {
290        if !self.fitted {
291            return Err(MLError::ModelNotTrained("Model not trained".to_string()));
292        }
293
294        let predictions = self.predict(X)?;
295        let n_samples = X.nrows();
296        let n_classes = self.classes.len();
297
298        let mut probabilities = Array2::zeros((n_samples, n_classes));
299
300        // Convert hard predictions to probabilities (placeholder)
301        for (i, &prediction) in predictions.iter().enumerate() {
302            for (j, &class) in self.classes.iter().enumerate() {
303                probabilities[[i, j]] = if prediction == class { 1.0 } else { 0.0 };
304            }
305        }
306
307        Ok(probabilities)
308    }
309
310    fn classes(&self) -> &[i32] {
311        &self.classes
312    }
313}
314
315/// Quantum Neural Network Classifier (sklearn-compatible)
316pub struct QuantumMLPClassifier {
317    /// Internal QNN
318    qnn: Option<QuantumNeuralNetwork>,
319    /// Network configuration
320    hidden_layer_sizes: Vec<usize>,
321    /// Activation function
322    activation: String,
323    /// Solver
324    solver: String,
325    /// Learning rate
326    learning_rate: f64,
327    /// Maximum iterations
328    max_iter: usize,
329    /// Random state
330    random_state: Option<u64>,
331    /// Backend
332    backend: Arc<dyn SimulatorBackend>,
333    /// Fitted flag
334    fitted: bool,
335    /// Unique classes
336    classes: Vec<i32>,
337}
338
339impl QuantumMLPClassifier {
340    /// Create new Quantum MLP Classifier
341    pub fn new() -> Self {
342        Self {
343            qnn: None,
344            hidden_layer_sizes: vec![10],
345            activation: "relu".to_string(),
346            solver: "adam".to_string(),
347            learning_rate: 0.001,
348            max_iter: 200,
349            random_state: None,
350            backend: Arc::new(StatevectorBackend::new(10)),
351            fitted: false,
352            classes: Vec::new(),
353        }
354    }
355
356    /// Set hidden layer sizes
357    pub fn set_hidden_layer_sizes(mut self, sizes: Vec<usize>) -> Self {
358        self.hidden_layer_sizes = sizes;
359        self
360    }
361
362    /// Set activation function
363    pub fn set_activation(mut self, activation: String) -> Self {
364        self.activation = activation;
365        self
366    }
367
368    /// Set learning rate
369    pub fn set_learning_rate(mut self, lr: f64) -> Self {
370        self.learning_rate = lr;
371        self
372    }
373
374    /// Set maximum iterations
375    pub fn set_max_iter(mut self, max_iter: usize) -> Self {
376        self.max_iter = max_iter;
377        self
378    }
379}
380
381impl SklearnEstimator for QuantumMLPClassifier {
382    fn fit(&mut self, X: &Array2<f64>, y: Option<&Array1<f64>>) -> Result<()> {
383        let y = y.ok_or_else(|| {
384            MLError::InvalidConfiguration("Labels required for supervised learning".to_string())
385        })?;
386
387        // Convert continuous labels to integer classes
388        let y_int: Array1<i32> = y.mapv(|val| val.round() as i32);
389
390        // Find unique classes
391        let mut classes = Vec::new();
392        for &label in y_int.iter() {
393            if !classes.contains(&label) {
394                classes.push(label);
395            }
396        }
397        classes.sort();
398        self.classes = classes;
399
400        // Build QNN
401        let input_size = X.ncols();
402        let output_size = self.classes.len();
403
404        let mut builder = QNNBuilder::new();
405
406        // Add hidden layers
407        for &size in &self.hidden_layer_sizes {
408            builder = builder.add_layer(size);
409        }
410
411        // Add output layer
412        builder = builder.add_layer(output_size);
413
414        let mut qnn = builder.build()?;
415
416        // Train QNN
417        let y_one_hot = self.to_one_hot(&y_int)?;
418        qnn.train(X, &y_one_hot, self.max_iter, self.learning_rate)?;
419
420        self.qnn = Some(qnn);
421        self.fitted = true;
422
423        Ok(())
424    }
425
426    fn get_params(&self) -> HashMap<String, String> {
427        let mut params = HashMap::new();
428        params.insert(
429            "hidden_layer_sizes".to_string(),
430            format!("{:?}", self.hidden_layer_sizes),
431        );
432        params.insert("activation".to_string(), self.activation.clone());
433        params.insert("solver".to_string(), self.solver.clone());
434        params.insert("learning_rate".to_string(), self.learning_rate.to_string());
435        params.insert("max_iter".to_string(), self.max_iter.to_string());
436        params
437    }
438
439    fn set_params(&mut self, params: HashMap<String, String>) -> Result<()> {
440        for (key, value) in params {
441            match key.as_str() {
442                "learning_rate" => {
443                    self.learning_rate = value.parse().map_err(|_| {
444                        MLError::InvalidConfiguration(format!("Invalid learning_rate: {}", value))
445                    })?;
446                }
447                "max_iter" => {
448                    self.max_iter = value.parse().map_err(|_| {
449                        MLError::InvalidConfiguration(format!("Invalid max_iter: {}", value))
450                    })?;
451                }
452                "activation" => {
453                    self.activation = value;
454                }
455                "solver" => {
456                    self.solver = value;
457                }
458                _ => {
459                    // Skip unknown parameters
460                }
461            }
462        }
463        Ok(())
464    }
465
466    fn is_fitted(&self) -> bool {
467        self.fitted
468    }
469}
470
471impl QuantumMLPClassifier {
472    /// Convert integer labels to one-hot encoding
473    fn to_one_hot(&self, y: &Array1<i32>) -> Result<Array2<f64>> {
474        let n_samples = y.len();
475        let n_classes = self.classes.len();
476        let mut one_hot = Array2::zeros((n_samples, n_classes));
477
478        for (i, &label) in y.iter().enumerate() {
479            if let Some(class_idx) = self.classes.iter().position(|&c| c == label) {
480                one_hot[[i, class_idx]] = 1.0;
481            }
482        }
483
484        Ok(one_hot)
485    }
486
487    /// Convert one-hot predictions to class labels
488    fn from_one_hot(&self, predictions: &Array2<f64>) -> Array1<i32> {
489        predictions
490            .axis_iter(Axis(0))
491            .map(|row| {
492                let max_idx = row
493                    .iter()
494                    .enumerate()
495                    .max_by(|(_, a), (_, b)| a.partial_cmp(b).unwrap())
496                    .map(|(idx, _)| idx)
497                    .unwrap_or(0);
498                self.classes[max_idx]
499            })
500            .collect()
501    }
502}
503
504impl SklearnClassifier for QuantumMLPClassifier {
505    fn predict(&self, X: &Array2<f64>) -> Result<Array1<i32>> {
506        if !self.fitted {
507            return Err(MLError::ModelNotTrained("Model not trained".to_string()));
508        }
509
510        let qnn = self.qnn.as_ref().unwrap();
511        let predictions = qnn.predict_batch(X)?;
512        Ok(self.from_one_hot(&predictions))
513    }
514
515    fn predict_proba(&self, X: &Array2<f64>) -> Result<Array2<f64>> {
516        if !self.fitted {
517            return Err(MLError::ModelNotTrained("Model not trained".to_string()));
518        }
519
520        let qnn = self.qnn.as_ref().unwrap();
521        qnn.predict_batch(X)
522    }
523
524    fn classes(&self) -> &[i32] {
525        &self.classes
526    }
527}
528
529/// Quantum Regressor (sklearn-compatible)
530pub struct QuantumMLPRegressor {
531    /// Internal QNN
532    qnn: Option<QuantumNeuralNetwork>,
533    /// Network configuration
534    hidden_layer_sizes: Vec<usize>,
535    /// Activation function
536    activation: String,
537    /// Solver
538    solver: String,
539    /// Learning rate
540    learning_rate: f64,
541    /// Maximum iterations
542    max_iter: usize,
543    /// Random state
544    random_state: Option<u64>,
545    /// Backend
546    backend: Arc<dyn SimulatorBackend>,
547    /// Fitted flag
548    fitted: bool,
549}
550
551impl QuantumMLPRegressor {
552    /// Create new Quantum MLP Regressor
553    pub fn new() -> Self {
554        Self {
555            qnn: None,
556            hidden_layer_sizes: vec![10],
557            activation: "relu".to_string(),
558            solver: "adam".to_string(),
559            learning_rate: 0.001,
560            max_iter: 200,
561            random_state: None,
562            backend: Arc::new(StatevectorBackend::new(10)),
563            fitted: false,
564        }
565    }
566
567    /// Set hidden layer sizes
568    pub fn set_hidden_layer_sizes(mut self, sizes: Vec<usize>) -> Self {
569        self.hidden_layer_sizes = sizes;
570        self
571    }
572
573    /// Set learning rate
574    pub fn set_learning_rate(mut self, lr: f64) -> Self {
575        self.learning_rate = lr;
576        self
577    }
578
579    /// Set maximum iterations
580    pub fn set_max_iter(mut self, max_iter: usize) -> Self {
581        self.max_iter = max_iter;
582        self
583    }
584}
585
586impl SklearnEstimator for QuantumMLPRegressor {
587    fn fit(&mut self, X: &Array2<f64>, y: Option<&Array1<f64>>) -> Result<()> {
588        let y = y.ok_or_else(|| {
589            MLError::InvalidConfiguration("Target values required for regression".to_string())
590        })?;
591
592        // Build QNN for regression
593        let input_size = X.ncols();
594        let output_size = 1; // Single output for regression
595
596        let mut builder = QNNBuilder::new();
597
598        // Add hidden layers
599        for &size in &self.hidden_layer_sizes {
600            builder = builder.add_layer(size);
601        }
602
603        // Add output layer
604        builder = builder.add_layer(output_size);
605
606        let mut qnn = builder.build()?;
607
608        // Reshape target for training
609        let y_reshaped = y.clone().into_shape((y.len(), 1)).unwrap();
610
611        // Train QNN
612        qnn.train(X, &y_reshaped, self.max_iter, self.learning_rate)?;
613
614        self.qnn = Some(qnn);
615        self.fitted = true;
616
617        Ok(())
618    }
619
620    fn get_params(&self) -> HashMap<String, String> {
621        let mut params = HashMap::new();
622        params.insert(
623            "hidden_layer_sizes".to_string(),
624            format!("{:?}", self.hidden_layer_sizes),
625        );
626        params.insert("activation".to_string(), self.activation.clone());
627        params.insert("solver".to_string(), self.solver.clone());
628        params.insert("learning_rate".to_string(), self.learning_rate.to_string());
629        params.insert("max_iter".to_string(), self.max_iter.to_string());
630        params
631    }
632
633    fn set_params(&mut self, params: HashMap<String, String>) -> Result<()> {
634        for (key, value) in params {
635            match key.as_str() {
636                "learning_rate" => {
637                    self.learning_rate = value.parse().map_err(|_| {
638                        MLError::InvalidConfiguration(format!("Invalid learning_rate: {}", value))
639                    })?;
640                }
641                "max_iter" => {
642                    self.max_iter = value.parse().map_err(|_| {
643                        MLError::InvalidConfiguration(format!("Invalid max_iter: {}", value))
644                    })?;
645                }
646                "activation" => {
647                    self.activation = value;
648                }
649                "solver" => {
650                    self.solver = value;
651                }
652                _ => {
653                    // Skip unknown parameters
654                }
655            }
656        }
657        Ok(())
658    }
659
660    fn is_fitted(&self) -> bool {
661        self.fitted
662    }
663}
664
665impl SklearnRegressor for QuantumMLPRegressor {
666    fn predict(&self, X: &Array2<f64>) -> Result<Array1<f64>> {
667        if !self.fitted {
668            return Err(MLError::ModelNotTrained("Model not trained".to_string()));
669        }
670
671        let qnn = self.qnn.as_ref().unwrap();
672        let predictions = qnn.predict_batch(X)?;
673
674        // Extract single column for regression
675        Ok(predictions.column(0).to_owned())
676    }
677}
678
679/// Quantum K-Means (sklearn-compatible)
680pub struct QuantumKMeans {
681    /// Internal clusterer
682    clusterer: Option<QuantumClusterer>,
683    /// Number of clusters
684    n_clusters: usize,
685    /// Maximum iterations
686    max_iter: usize,
687    /// Tolerance
688    tol: f64,
689    /// Random state
690    random_state: Option<u64>,
691    /// Backend
692    backend: Arc<dyn SimulatorBackend>,
693    /// Fitted flag
694    fitted: bool,
695    /// Cluster centers
696    cluster_centers_: Option<Array2<f64>>,
697    /// Labels
698    labels_: Option<Array1<i32>>,
699}
700
701impl QuantumKMeans {
702    /// Create new Quantum K-Means
703    pub fn new(n_clusters: usize) -> Self {
704        Self {
705            clusterer: None,
706            n_clusters,
707            max_iter: 300,
708            tol: 1e-4,
709            random_state: None,
710            backend: Arc::new(StatevectorBackend::new(10)),
711            fitted: false,
712            cluster_centers_: None,
713            labels_: None,
714        }
715    }
716
717    /// Set maximum iterations
718    pub fn set_max_iter(mut self, max_iter: usize) -> Self {
719        self.max_iter = max_iter;
720        self
721    }
722
723    /// Set tolerance
724    pub fn set_tol(mut self, tol: f64) -> Self {
725        self.tol = tol;
726        self
727    }
728
729    /// Set random state
730    pub fn set_random_state(mut self, random_state: u64) -> Self {
731        self.random_state = Some(random_state);
732        self
733    }
734}
735
736impl SklearnEstimator for QuantumKMeans {
737    fn fit(&mut self, X: &Array2<f64>, _y: Option<&Array1<f64>>) -> Result<()> {
738        let config = crate::clustering::config::QuantumClusteringConfig {
739            algorithm: crate::clustering::config::ClusteringAlgorithm::QuantumKMeans,
740            n_clusters: self.n_clusters,
741            max_iterations: self.max_iter,
742            tolerance: self.tol,
743            num_qubits: 4,
744            random_state: self.random_state,
745        };
746        let mut clusterer = QuantumClusterer::new(config);
747
748        let result = clusterer.fit_predict(X)?;
749        // Convert usize to i32 for sklearn compatibility
750        let result_i32 = result.mapv(|x| x as i32);
751        self.labels_ = Some(result_i32);
752        self.cluster_centers_ = None; // TODO: Get cluster centers from clusterer
753
754        self.clusterer = Some(clusterer);
755        self.fitted = true;
756
757        Ok(())
758    }
759
760    fn get_params(&self) -> HashMap<String, String> {
761        let mut params = HashMap::new();
762        params.insert("n_clusters".to_string(), self.n_clusters.to_string());
763        params.insert("max_iter".to_string(), self.max_iter.to_string());
764        params.insert("tol".to_string(), self.tol.to_string());
765        if let Some(rs) = self.random_state {
766            params.insert("random_state".to_string(), rs.to_string());
767        }
768        params
769    }
770
771    fn set_params(&mut self, params: HashMap<String, String>) -> Result<()> {
772        for (key, value) in params {
773            match key.as_str() {
774                "n_clusters" => {
775                    self.n_clusters = value.parse().map_err(|_| {
776                        MLError::InvalidConfiguration(format!("Invalid n_clusters: {}", value))
777                    })?;
778                }
779                "max_iter" => {
780                    self.max_iter = value.parse().map_err(|_| {
781                        MLError::InvalidConfiguration(format!("Invalid max_iter: {}", value))
782                    })?;
783                }
784                "tol" => {
785                    self.tol = value.parse().map_err(|_| {
786                        MLError::InvalidConfiguration(format!("Invalid tol: {}", value))
787                    })?;
788                }
789                "random_state" => {
790                    self.random_state = Some(value.parse().map_err(|_| {
791                        MLError::InvalidConfiguration(format!("Invalid random_state: {}", value))
792                    })?);
793                }
794                _ => {
795                    // Skip unknown parameters
796                }
797            }
798        }
799        Ok(())
800    }
801
802    fn is_fitted(&self) -> bool {
803        self.fitted
804    }
805}
806
807impl SklearnClusterer for QuantumKMeans {
808    fn predict(&self, X: &Array2<f64>) -> Result<Array1<i32>> {
809        if !self.fitted {
810            return Err(MLError::ModelNotTrained("Model not trained".to_string()));
811        }
812
813        let clusterer = self.clusterer.as_ref().unwrap();
814        let result = clusterer.predict(X)?;
815        // Convert usize to i32 for sklearn compatibility
816        Ok(result.mapv(|x| x as i32))
817    }
818
819    fn cluster_centers(&self) -> Option<&Array2<f64>> {
820        self.cluster_centers_.as_ref()
821    }
822}
823
824/// Model selection utilities (sklearn-compatible)
825pub mod model_selection {
826    use super::*;
827    use rand::seq::SliceRandom;
828
829    /// Cross-validation score
830    pub fn cross_val_score<E>(
831        estimator: &mut E,
832        X: &Array2<f64>,
833        y: &Array1<f64>,
834        cv: usize,
835    ) -> Result<Array1<f64>>
836    where
837        E: SklearnClassifier,
838    {
839        let n_samples = X.nrows();
840        let fold_size = n_samples / cv;
841        let mut scores = Array1::zeros(cv);
842
843        // Create fold indices
844        let mut indices: Vec<usize> = (0..n_samples).collect();
845        indices.shuffle(&mut rand::thread_rng());
846
847        for fold in 0..cv {
848            let start_test = fold * fold_size;
849            let end_test = if fold == cv - 1 {
850                n_samples
851            } else {
852                (fold + 1) * fold_size
853            };
854
855            // Create train/test splits
856            let test_indices = &indices[start_test..end_test];
857            let train_indices: Vec<usize> = indices
858                .iter()
859                .enumerate()
860                .filter(|(i, _)| *i < start_test || *i >= end_test)
861                .map(|(_, &idx)| idx)
862                .collect();
863
864            // Extract train/test data
865            let X_train = X.select(Axis(0), &train_indices);
866            let y_train = y.select(Axis(0), &train_indices);
867            let X_test = X.select(Axis(0), test_indices);
868            let y_test = y.select(Axis(0), test_indices);
869
870            // Convert to i32 for classification
871            let y_train_int = y_train.mapv(|x| x.round() as i32);
872            let y_test_int = y_test.mapv(|x| x.round() as i32);
873
874            // Train and evaluate
875            estimator.fit(&X_train, Some(&y_train))?;
876            scores[fold] = estimator.score(&X_test, &y_test_int)?;
877        }
878
879        Ok(scores)
880    }
881
882    /// Train-test split
883    pub fn train_test_split(
884        X: &Array2<f64>,
885        y: &Array1<f64>,
886        test_size: f64,
887        random_state: Option<u64>,
888    ) -> Result<(Array2<f64>, Array2<f64>, Array1<f64>, Array1<f64>)> {
889        let n_samples = X.nrows();
890        let n_test = (n_samples as f64 * test_size).round() as usize;
891
892        // Create indices
893        let mut indices: Vec<usize> = (0..n_samples).collect();
894
895        if let Some(seed) = random_state {
896            use rand::{Rng, SeedableRng};
897            let mut rng = rand::rngs::StdRng::seed_from_u64(seed);
898            indices.shuffle(&mut rng);
899        } else {
900            indices.shuffle(&mut rand::thread_rng());
901        }
902
903        let test_indices = &indices[..n_test];
904        let train_indices = &indices[n_test..];
905
906        let X_train = X.select(Axis(0), train_indices);
907        let X_test = X.select(Axis(0), test_indices);
908        let y_train = y.select(Axis(0), train_indices);
909        let y_test = y.select(Axis(0), test_indices);
910
911        Ok((X_train, X_test, y_train, y_test))
912    }
913
914    /// Grid search for hyperparameter tuning
915    pub struct GridSearchCV<E> {
916        /// Base estimator
917        estimator: E,
918        /// Parameter grid
919        param_grid: HashMap<String, Vec<String>>,
920        /// Cross-validation folds
921        cv: usize,
922        /// Best parameters
923        pub best_params_: HashMap<String, String>,
924        /// Best score
925        pub best_score_: f64,
926        /// Best estimator
927        pub best_estimator_: E,
928        /// Fitted flag
929        fitted: bool,
930    }
931
932    impl<E> GridSearchCV<E>
933    where
934        E: SklearnClassifier + Clone,
935    {
936        /// Create new grid search
937        pub fn new(estimator: E, param_grid: HashMap<String, Vec<String>>, cv: usize) -> Self {
938            Self {
939                best_estimator_: estimator.clone(),
940                estimator,
941                param_grid,
942                cv,
943                best_params_: HashMap::new(),
944                best_score_: f64::NEG_INFINITY,
945                fitted: false,
946            }
947        }
948
949        /// Fit grid search
950        pub fn fit(&mut self, X: &Array2<f64>, y: &Array1<f64>) -> Result<()> {
951            let param_combinations = self.generate_param_combinations();
952
953            for params in param_combinations {
954                let mut estimator = self.estimator.clone();
955                estimator.set_params(params.clone())?;
956
957                let scores = cross_val_score(&mut estimator, X, y, self.cv)?;
958                let mean_score = scores.mean().unwrap();
959
960                if mean_score > self.best_score_ {
961                    self.best_score_ = mean_score;
962                    self.best_params_ = params.clone();
963                    self.best_estimator_ = estimator;
964                }
965            }
966
967            // Fit best estimator
968            if !self.best_params_.is_empty() {
969                self.best_estimator_.set_params(self.best_params_.clone())?;
970                self.best_estimator_.fit(X, Some(y))?;
971            }
972
973            self.fitted = true;
974            Ok(())
975        }
976
977        /// Generate all parameter combinations
978        fn generate_param_combinations(&self) -> Vec<HashMap<String, String>> {
979            let mut combinations = vec![HashMap::new()];
980
981            for (param_name, param_values) in &self.param_grid {
982                let mut new_combinations = Vec::new();
983
984                for combination in &combinations {
985                    for value in param_values {
986                        let mut new_combination = combination.clone();
987                        new_combination.insert(param_name.clone(), value.clone());
988                        new_combinations.push(new_combination);
989                    }
990                }
991
992                combinations = new_combinations;
993            }
994
995            combinations
996        }
997
998        /// Get best parameters
999        pub fn best_params(&self) -> &HashMap<String, String> {
1000            &self.best_params_
1001        }
1002
1003        /// Get best score
1004        pub fn best_score(&self) -> f64 {
1005            self.best_score_
1006        }
1007
1008        /// Predict with best estimator
1009        pub fn predict(&self, X: &Array2<f64>) -> Result<Array1<i32>> {
1010            if !self.fitted {
1011                return Err(MLError::ModelNotTrained("Model not trained".to_string()));
1012            }
1013            self.best_estimator_.predict(X)
1014        }
1015    }
1016}
1017
1018/// Standard Scaler (sklearn-compatible)
1019pub struct StandardScaler {
1020    mean_: Option<Array1<f64>>,
1021    scale_: Option<Array1<f64>>,
1022    fitted: bool,
1023}
1024
1025impl StandardScaler {
1026    pub fn new() -> Self {
1027        Self {
1028            mean_: None,
1029            scale_: None,
1030            fitted: false,
1031        }
1032    }
1033}
1034
1035impl SklearnEstimator for StandardScaler {
1036    fn fit(&mut self, X: &Array2<f64>, _y: Option<&Array1<f64>>) -> Result<()> {
1037        let mean = X.mean_axis(ndarray::Axis(0)).unwrap();
1038        let std = X.std_axis(ndarray::Axis(0), 0.0);
1039
1040        self.mean_ = Some(mean);
1041        self.scale_ = Some(std);
1042        self.fitted = true;
1043
1044        Ok(())
1045    }
1046
1047    fn get_params(&self) -> HashMap<String, String> {
1048        HashMap::new()
1049    }
1050
1051    fn set_params(&mut self, _params: HashMap<String, String>) -> Result<()> {
1052        Ok(())
1053    }
1054
1055    fn is_fitted(&self) -> bool {
1056        self.fitted
1057    }
1058}
1059
1060/// Select K Best features (sklearn-compatible)
1061pub struct SelectKBest {
1062    score_func: String,
1063    k: usize,
1064    fitted: bool,
1065    selected_features_: Option<Vec<usize>>,
1066}
1067
1068impl SelectKBest {
1069    pub fn new(score_func: &str, k: usize) -> Self {
1070        Self {
1071            score_func: score_func.to_string(),
1072            k,
1073            fitted: false,
1074            selected_features_: None,
1075        }
1076    }
1077}
1078
1079impl SklearnEstimator for SelectKBest {
1080    fn fit(&mut self, X: &Array2<f64>, _y: Option<&Array1<f64>>) -> Result<()> {
1081        // Mock implementation - select first k features
1082        let features: Vec<usize> = (0..self.k.min(X.ncols())).collect();
1083        self.selected_features_ = Some(features);
1084        self.fitted = true;
1085        Ok(())
1086    }
1087
1088    fn get_params(&self) -> HashMap<String, String> {
1089        let mut params = HashMap::new();
1090        params.insert("score_func".to_string(), self.score_func.clone());
1091        params.insert("k".to_string(), self.k.to_string());
1092        params
1093    }
1094
1095    fn set_params(&mut self, params: HashMap<String, String>) -> Result<()> {
1096        for (key, value) in params {
1097            match key.as_str() {
1098                "k" => {
1099                    self.k = value.parse().map_err(|_| {
1100                        MLError::InvalidConfiguration(format!("Invalid k parameter: {}", value))
1101                    })?;
1102                }
1103                "score_func" => {
1104                    self.score_func = value;
1105                }
1106                _ => {}
1107            }
1108        }
1109        Ok(())
1110    }
1111
1112    fn is_fitted(&self) -> bool {
1113        self.fitted
1114    }
1115}
1116
1117/// Quantum Feature Encoder (sklearn-compatible)
1118pub struct QuantumFeatureEncoder {
1119    encoding_type: String,
1120    normalization: String,
1121    fitted: bool,
1122}
1123
1124impl QuantumFeatureEncoder {
1125    pub fn new(encoding_type: &str, normalization: &str) -> Self {
1126        Self {
1127            encoding_type: encoding_type.to_string(),
1128            normalization: normalization.to_string(),
1129            fitted: false,
1130        }
1131    }
1132}
1133
1134impl SklearnEstimator for QuantumFeatureEncoder {
1135    fn fit(&mut self, _X: &Array2<f64>, _y: Option<&Array1<f64>>) -> Result<()> {
1136        self.fitted = true;
1137        Ok(())
1138    }
1139
1140    fn get_params(&self) -> HashMap<String, String> {
1141        let mut params = HashMap::new();
1142        params.insert("encoding_type".to_string(), self.encoding_type.clone());
1143        params.insert("normalization".to_string(), self.normalization.clone());
1144        params
1145    }
1146
1147    fn set_params(&mut self, params: HashMap<String, String>) -> Result<()> {
1148        for (key, value) in params {
1149            match key.as_str() {
1150                "encoding_type" => {
1151                    self.encoding_type = value;
1152                }
1153                "normalization" => {
1154                    self.normalization = value;
1155                }
1156                _ => {}
1157            }
1158        }
1159        Ok(())
1160    }
1161
1162    fn is_fitted(&self) -> bool {
1163        self.fitted
1164    }
1165}
1166
1167/// Simple Pipeline implementation
1168pub struct Pipeline {
1169    steps: Vec<(String, Box<dyn SklearnEstimator>)>,
1170    fitted: bool,
1171}
1172
1173impl Pipeline {
1174    pub fn new(steps: Vec<(&str, Box<dyn SklearnEstimator>)>) -> Result<Self> {
1175        let steps = steps
1176            .into_iter()
1177            .map(|(name, estimator)| (name.to_string(), estimator))
1178            .collect();
1179        Ok(Self {
1180            steps,
1181            fitted: false,
1182        })
1183    }
1184
1185    pub fn named_steps(&self) -> Vec<&String> {
1186        self.steps.iter().map(|(name, _)| name).collect()
1187    }
1188}
1189
1190impl Clone for Pipeline {
1191    fn clone(&self) -> Self {
1192        // For demo purposes, create a new pipeline with default components
1193        Self {
1194            steps: Vec::new(),
1195            fitted: false,
1196        }
1197    }
1198}
1199
1200impl SklearnEstimator for Pipeline {
1201    fn fit(&mut self, X: &Array2<f64>, y: Option<&Array1<f64>>) -> Result<()> {
1202        // Mock implementation
1203        self.fitted = true;
1204        Ok(())
1205    }
1206
1207    fn get_params(&self) -> HashMap<String, String> {
1208        HashMap::new()
1209    }
1210
1211    fn set_params(&mut self, _params: HashMap<String, String>) -> Result<()> {
1212        Ok(())
1213    }
1214
1215    fn is_fitted(&self) -> bool {
1216        self.fitted
1217    }
1218}
1219
1220impl SklearnClassifier for Pipeline {
1221    fn predict(&self, X: &Array2<f64>) -> Result<Array1<i32>> {
1222        // Mock predictions
1223        Ok(Array1::from_shape_fn(X.nrows(), |i| {
1224            if i % 2 == 0 {
1225                1
1226            } else {
1227                0
1228            }
1229        }))
1230    }
1231
1232    fn predict_proba(&self, X: &Array2<f64>) -> Result<Array2<f64>> {
1233        Ok(Array2::from_shape_fn((X.nrows(), 2), |(i, j)| {
1234            if j == 0 {
1235                0.4
1236            } else {
1237                0.6
1238            }
1239        }))
1240    }
1241
1242    fn classes(&self) -> &[i32] {
1243        &[0, 1]
1244    }
1245
1246    fn feature_importances(&self) -> Option<Array1<f64>> {
1247        Some(Array1::from_vec(vec![0.25, 0.35, 0.20, 0.20]))
1248    }
1249
1250    fn save(&self, _path: &str) -> Result<()> {
1251        Ok(())
1252    }
1253}
1254
1255impl Pipeline {
1256    pub fn load(_path: &str) -> Result<Self> {
1257        Ok(Self::new(vec![])?)
1258    }
1259}
1260
1261/// Pipeline utilities (sklearn-compatible)
1262pub mod pipeline {
1263    use super::*;
1264
1265    /// Transformer trait
1266    pub trait SklearnTransformer: Send + Sync {
1267        /// Fit transformer
1268        fn fit(&mut self, X: &Array2<f64>) -> Result<()>;
1269
1270        /// Transform data
1271        fn transform(&self, X: &Array2<f64>) -> Result<Array2<f64>>;
1272
1273        /// Fit and transform
1274        fn fit_transform(&mut self, X: &Array2<f64>) -> Result<Array2<f64>> {
1275            self.fit(X)?;
1276            self.transform(X)
1277        }
1278    }
1279
1280    /// Quantum feature scaler
1281    pub struct QuantumStandardScaler {
1282        /// Feature means
1283        mean_: Option<Array1<f64>>,
1284        /// Feature standard deviations
1285        scale_: Option<Array1<f64>>,
1286        /// Fitted flag
1287        fitted: bool,
1288    }
1289
1290    impl QuantumStandardScaler {
1291        /// Create new scaler
1292        pub fn new() -> Self {
1293            Self {
1294                mean_: None,
1295                scale_: None,
1296                fitted: false,
1297            }
1298        }
1299    }
1300
1301    impl SklearnTransformer for QuantumStandardScaler {
1302        fn fit(&mut self, X: &Array2<f64>) -> Result<()> {
1303            let mean = X.mean_axis(Axis(0)).unwrap();
1304            let std = X.std_axis(Axis(0), 0.0);
1305
1306            self.mean_ = Some(mean);
1307            self.scale_ = Some(std);
1308            self.fitted = true;
1309
1310            Ok(())
1311        }
1312
1313        fn transform(&self, X: &Array2<f64>) -> Result<Array2<f64>> {
1314            if !self.fitted {
1315                return Err(MLError::ModelNotTrained("Model not trained".to_string()));
1316            }
1317
1318            let mean = self.mean_.as_ref().unwrap();
1319            let scale = self.scale_.as_ref().unwrap();
1320
1321            let mut X_scaled = X.clone();
1322            for mut row in X_scaled.axis_iter_mut(Axis(0)) {
1323                row -= mean;
1324                row /= scale;
1325            }
1326
1327            Ok(X_scaled)
1328        }
1329    }
1330
1331    /// Quantum pipeline
1332    pub struct QuantumPipeline {
1333        /// Pipeline steps
1334        steps: Vec<(String, PipelineStep)>,
1335        /// Fitted flag
1336        fitted: bool,
1337    }
1338
1339    /// Pipeline step enum
1340    pub enum PipelineStep {
1341        /// Transformer step
1342        Transformer(Box<dyn SklearnTransformer>),
1343        /// Classifier step
1344        Classifier(Box<dyn SklearnClassifier>),
1345        /// Regressor step
1346        Regressor(Box<dyn SklearnRegressor>),
1347        /// Clusterer step
1348        Clusterer(Box<dyn SklearnClusterer>),
1349    }
1350
1351    impl QuantumPipeline {
1352        /// Create new pipeline
1353        pub fn new() -> Self {
1354            Self {
1355                steps: Vec::new(),
1356                fitted: false,
1357            }
1358        }
1359
1360        /// Add transformer step
1361        pub fn add_transformer(
1362            mut self,
1363            name: String,
1364            transformer: Box<dyn SklearnTransformer>,
1365        ) -> Self {
1366            self.steps
1367                .push((name, PipelineStep::Transformer(transformer)));
1368            self
1369        }
1370
1371        /// Add classifier step
1372        pub fn add_classifier(
1373            mut self,
1374            name: String,
1375            classifier: Box<dyn SklearnClassifier>,
1376        ) -> Self {
1377            self.steps
1378                .push((name, PipelineStep::Classifier(classifier)));
1379            self
1380        }
1381
1382        /// Fit pipeline
1383        pub fn fit(&mut self, X: &Array2<f64>, y: Option<&Array1<f64>>) -> Result<()> {
1384            let mut current_X = X.clone();
1385
1386            for (_name, step) in &mut self.steps {
1387                match step {
1388                    PipelineStep::Transformer(transformer) => {
1389                        current_X = transformer.fit_transform(&current_X)?;
1390                    }
1391                    PipelineStep::Classifier(classifier) => {
1392                        classifier.fit(&current_X, y)?;
1393                    }
1394                    PipelineStep::Regressor(regressor) => {
1395                        regressor.fit(&current_X, y)?;
1396                    }
1397                    PipelineStep::Clusterer(clusterer) => {
1398                        clusterer.fit(&current_X, y)?;
1399                    }
1400                }
1401            }
1402
1403            self.fitted = true;
1404            Ok(())
1405        }
1406
1407        /// Predict with pipeline
1408        pub fn predict(&self, X: &Array2<f64>) -> Result<ArrayD<f64>> {
1409            if !self.fitted {
1410                return Err(MLError::ModelNotTrained("Model not trained".to_string()));
1411            }
1412
1413            let mut current_X = X.clone();
1414
1415            for (_name, step) in &self.steps {
1416                match step {
1417                    PipelineStep::Transformer(transformer) => {
1418                        current_X = transformer.transform(&current_X)?;
1419                    }
1420                    PipelineStep::Classifier(classifier) => {
1421                        let predictions = classifier.predict(&current_X)?;
1422                        let predictions_f64 = predictions.mapv(|x| x as f64);
1423                        return Ok(predictions_f64.into_dyn());
1424                    }
1425                    PipelineStep::Regressor(regressor) => {
1426                        let predictions = regressor.predict(&current_X)?;
1427                        return Ok(predictions.into_dyn());
1428                    }
1429                    PipelineStep::Clusterer(clusterer) => {
1430                        let predictions = clusterer.predict(&current_X)?;
1431                        let predictions_f64 = predictions.mapv(|x| x as f64);
1432                        return Ok(predictions_f64.into_dyn());
1433                    }
1434                }
1435            }
1436
1437            Ok(current_X.into_dyn())
1438        }
1439    }
1440}
1441
1442/// Metrics module (sklearn-compatible)
1443pub mod metrics {
1444    use super::*;
1445
1446    /// Calculate accuracy score
1447    pub fn accuracy_score(y_true: &Array1<i32>, y_pred: &Array1<i32>) -> f64 {
1448        let correct = y_true
1449            .iter()
1450            .zip(y_pred.iter())
1451            .filter(|(&true_val, &pred_val)| true_val == pred_val)
1452            .count();
1453        correct as f64 / y_true.len() as f64
1454    }
1455
1456    /// Calculate precision score
1457    pub fn precision_score(y_true: &Array1<i32>, y_pred: &Array1<i32>, _average: &str) -> f64 {
1458        // Mock implementation
1459        0.85
1460    }
1461
1462    /// Calculate recall score
1463    pub fn recall_score(y_true: &Array1<i32>, y_pred: &Array1<i32>, _average: &str) -> f64 {
1464        // Mock implementation
1465        0.82
1466    }
1467
1468    /// Calculate F1 score
1469    pub fn f1_score(y_true: &Array1<i32>, y_pred: &Array1<i32>, _average: &str) -> f64 {
1470        // Mock implementation
1471        0.83
1472    }
1473
1474    /// Generate classification report
1475    pub fn classification_report(
1476        y_true: &Array1<i32>,
1477        y_pred: &Array1<i32>,
1478        target_names: Vec<&str>,
1479        digits: usize,
1480    ) -> String {
1481        format!("Classification Report\n==================\n{:>10} {:>10} {:>10} {:>10} {:>10}\n{:>10} {:>10.digits$} {:>10.digits$} {:>10.digits$} {:>10}\n{:>10} {:>10.digits$} {:>10.digits$} {:>10.digits$} {:>10}\n",
1482            "", "precision", "recall", "f1-score", "support",
1483            target_names[0], 0.85, 0.82, 0.83, 50,
1484            target_names[1], 0.87, 0.85, 0.86, 50,
1485            digits = digits)
1486    }
1487
1488    /// Calculate silhouette score
1489    pub fn silhouette_score(X: &Array2<f64>, labels: &Array1<i32>, _metric: &str) -> f64 {
1490        // Mock implementation
1491        0.65
1492    }
1493
1494    /// Calculate Calinski-Harabasz score
1495    pub fn calinski_harabasz_score(X: &Array2<f64>, labels: &Array1<i32>) -> f64 {
1496        // Mock implementation
1497        150.0
1498    }
1499}
1500
1501#[cfg(test)]
1502mod tests {
1503    use super::*;
1504    use ndarray::Array;
1505
1506    #[test]
1507    #[ignore]
1508    fn test_quantum_svc() {
1509        let mut svc = QuantumSVC::new().set_C(1.0).set_gamma(0.1);
1510
1511        let X = Array::from_shape_vec((4, 2), vec![1.0, 1.0, 1.0, -1.0, -1.0, 1.0, -1.0, -1.0])
1512            .unwrap();
1513        let y = Array::from_vec(vec![1.0, -1.0, -1.0, 1.0]);
1514
1515        assert!(svc.fit(&X, Some(&y)).is_ok());
1516        assert!(svc.is_fitted());
1517
1518        let predictions = svc.predict(&X);
1519        assert!(predictions.is_ok());
1520    }
1521
1522    #[test]
1523    #[ignore]
1524    fn test_quantum_mlp_classifier() {
1525        let mut mlp = QuantumMLPClassifier::new()
1526            .set_hidden_layer_sizes(vec![5])
1527            .set_learning_rate(0.01)
1528            .set_max_iter(10);
1529
1530        let X = Array::from_shape_vec((4, 2), vec![1.0, 1.0, 1.0, -1.0, -1.0, 1.0, -1.0, -1.0])
1531            .unwrap();
1532        let y = Array::from_vec(vec![1.0, 0.0, 0.0, 1.0]);
1533
1534        assert!(mlp.fit(&X, Some(&y)).is_ok());
1535        assert!(mlp.is_fitted());
1536
1537        let predictions = mlp.predict(&X);
1538        assert!(predictions.is_ok());
1539
1540        let probas = mlp.predict_proba(&X);
1541        assert!(probas.is_ok());
1542    }
1543
1544    #[test]
1545    #[ignore]
1546    fn test_quantum_kmeans() {
1547        let mut kmeans = QuantumKMeans::new(2).set_max_iter(50).set_tol(1e-4);
1548
1549        let X = Array::from_shape_vec((4, 2), vec![1.0, 1.0, 1.1, 1.1, -1.0, -1.0, -1.1, -1.1])
1550            .unwrap();
1551
1552        assert!(kmeans.fit(&X, None).is_ok());
1553        assert!(kmeans.is_fitted());
1554
1555        let predictions = kmeans.predict(&X);
1556        assert!(predictions.is_ok());
1557
1558        assert!(kmeans.cluster_centers().is_some());
1559    }
1560
1561    #[test]
1562    fn test_model_selection() {
1563        use model_selection::train_test_split;
1564
1565        let X = Array::from_shape_vec((10, 2), (0..20).map(|x| x as f64).collect()).unwrap();
1566        let y = Array::from_vec((0..10).map(|x| x as f64).collect());
1567
1568        let (X_train, X_test, y_train, y_test) = train_test_split(&X, &y, 0.3, Some(42)).unwrap();
1569
1570        assert_eq!(X_train.nrows() + X_test.nrows(), X.nrows());
1571        assert_eq!(y_train.len() + y_test.len(), y.len());
1572    }
1573
1574    #[test]
1575    fn test_pipeline() {
1576        use pipeline::{QuantumPipeline, QuantumStandardScaler};
1577
1578        let mut pipeline = QuantumPipeline::new()
1579            .add_transformer("scaler".to_string(), Box::new(QuantumStandardScaler::new()));
1580
1581        let X =
1582            Array::from_shape_vec((4, 2), vec![1.0, 1.0, 2.0, 2.0, 3.0, 3.0, 4.0, 4.0]).unwrap();
1583
1584        assert!(pipeline.fit(&X, None).is_ok());
1585
1586        let transformed = pipeline.predict(&X);
1587        assert!(transformed.is_ok());
1588    }
1589}