quantrs2_ml/
qcnn.rs

1//! Quantum Convolutional Neural Networks (QCNN)
2//!
3//! This module implements quantum convolutional neural networks for
4//! quantum data processing and feature extraction.
5
6use crate::error::MLError;
7use num_complex::Complex64 as Complex;
8use quantrs2_circuit::prelude::*;
9use std::f64::consts::PI;
10
11// Simple matrix types for QCNN
12type DMatrix = Vec<Vec<f64>>;
13type DVector<T> = Vec<T>;
14
15/// Quantum convolutional filter
16#[derive(Debug, Clone)]
17pub struct QuantumConvFilter {
18    /// Number of qubits in the filter
19    pub num_qubits: usize,
20    /// Stride of the convolution
21    pub stride: usize,
22    /// Variational parameters
23    pub params: Vec<f64>,
24}
25
26impl QuantumConvFilter {
27    /// Create a new quantum convolutional filter
28    pub fn new(num_qubits: usize, stride: usize) -> Self {
29        // Parameters for rotation gates
30        let num_params = num_qubits * 3; // RX, RY, RZ per qubit
31        let params = vec![0.1; num_params];
32
33        Self {
34            num_qubits,
35            stride,
36            params,
37        }
38    }
39
40    /// Apply the filter to a subset of qubits
41    pub fn apply_filter<const N: usize>(
42        &self,
43        circuit: &mut Circuit<N>,
44        start_qubit: usize,
45    ) -> Result<(), MLError> {
46        let end_qubit = (start_qubit + self.num_qubits).min(N);
47
48        // Apply parameterized rotations
49        let mut param_idx = 0;
50        for i in start_qubit..end_qubit {
51            if param_idx < self.params.len() {
52                circuit.rx(i, self.params[param_idx])?;
53                param_idx += 1;
54            }
55            if param_idx < self.params.len() {
56                circuit.ry(i, self.params[param_idx])?;
57                param_idx += 1;
58            }
59            if param_idx < self.params.len() {
60                circuit.rz(i, self.params[param_idx])?;
61                param_idx += 1;
62            }
63        }
64
65        // Apply entangling gates
66        for i in start_qubit..(end_qubit - 1) {
67            circuit.cnot(i, i + 1)?;
68        }
69
70        Ok(())
71    }
72}
73
74/// Quantum pooling layer
75#[derive(Debug, Clone)]
76pub struct QuantumPooling {
77    /// Pooling size (number of qubits to pool)
78    pub pool_size: usize,
79    /// Pooling type
80    pub pool_type: PoolingType,
81}
82
83#[derive(Debug, Clone, Copy)]
84pub enum PoolingType {
85    /// Trace out qubits (dimensionality reduction)
86    TraceOut,
87    /// Measure and reset qubits
88    MeasureReset,
89    /// Quantum pooling
90    Quantum,
91}
92
93impl QuantumPooling {
94    /// Create a new quantum pooling layer
95    pub fn new(pool_size: usize, pool_type: PoolingType) -> Self {
96        Self {
97            pool_size,
98            pool_type,
99        }
100    }
101
102    /// Apply pooling to reduce the number of active qubits
103    pub fn apply_pooling<const N: usize>(
104        &self,
105        circuit: &mut Circuit<N>,
106        active_qubits: &mut Vec<usize>,
107    ) -> Result<(), MLError> {
108        match self.pool_type {
109            PoolingType::TraceOut => {
110                // Simply remove qubits from active set
111                let new_size = active_qubits.len() / self.pool_size;
112                active_qubits.truncate(new_size);
113            }
114            PoolingType::MeasureReset => {
115                // Measure and reset every nth qubit
116                let mut new_active = Vec::new();
117                for (i, &qubit) in active_qubits.iter().enumerate() {
118                    if i % self.pool_size == 0 {
119                        new_active.push(qubit);
120                    } else {
121                        // In a real implementation, we'd measure and reset
122                        // For now, we just exclude from active set
123                    }
124                }
125                *active_qubits = new_active;
126            }
127            PoolingType::Quantum => {
128                // Quantum pooling using unitary operations
129                let pool_size = self.pool_size;
130                let new_size = active_qubits.len() / pool_size;
131
132                // Apply quantum pooling gates (simplified)
133                for i in 0..new_size {
134                    let start_idx = i * pool_size;
135                    let end_idx = (start_idx + pool_size).min(active_qubits.len());
136
137                    if end_idx > start_idx + 1 {
138                        // Apply entangling gates between qubits in pool
139                        for j in start_idx..end_idx - 1 {
140                            circuit.cnot(active_qubits[j], active_qubits[j + 1]);
141                        }
142                    }
143                }
144
145                // Keep only the first qubit from each pool
146                active_qubits.truncate(new_size);
147            }
148        }
149        Ok(())
150    }
151}
152
153/// Quantum Convolutional Neural Network
154pub struct QCNN {
155    /// Number of qubits
156    pub num_qubits: usize,
157    /// Convolutional layers
158    pub conv_layers: Vec<(QuantumConvFilter, QuantumPooling)>,
159    /// Final fully connected layer parameters
160    pub fc_params: Vec<f64>,
161}
162
163impl QCNN {
164    /// Create a new QCNN
165    pub fn new(
166        num_qubits: usize,
167        conv_filters: Vec<(usize, usize)>, // (filter_size, stride)
168        pool_sizes: Vec<usize>,
169        fc_params: usize,
170    ) -> Result<Self, MLError> {
171        if conv_filters.len() != pool_sizes.len() {
172            return Err(MLError::ModelCreationError(
173                "Number of conv filters must match number of pooling layers".to_string(),
174            ));
175        }
176
177        let mut conv_layers = Vec::new();
178        for ((filter_size, stride), pool_size) in conv_filters.into_iter().zip(pool_sizes) {
179            let filter = QuantumConvFilter::new(filter_size, stride);
180            let pooling = QuantumPooling::new(pool_size, PoolingType::TraceOut);
181            conv_layers.push((filter, pooling));
182        }
183
184        let fc_params = vec![0.1; fc_params];
185
186        Ok(Self {
187            num_qubits,
188            conv_layers,
189            fc_params,
190        })
191    }
192
193    /// Forward pass through the QCNN
194    pub fn forward(&self, input_state: &DVector<Complex>) -> Result<DVector<Complex>, MLError> {
195        // For simulation, we'll use a fixed circuit size
196        const MAX_QUBITS: usize = 20;
197
198        if self.num_qubits > MAX_QUBITS {
199            return Err(MLError::InvalidParameter(format!(
200                "QCNN supports up to {} qubits",
201                MAX_QUBITS
202            )));
203        }
204
205        let mut circuit = Circuit::<MAX_QUBITS>::new();
206        let mut active_qubits: Vec<usize> = (0..self.num_qubits).collect();
207
208        // Initialize with input state (simplified)
209        // In practice, we'd use amplitude encoding
210
211        // Apply convolutional and pooling layers
212        for (conv_filter, pooling) in &self.conv_layers {
213            // Apply convolution with sliding window
214            let mut pos = 0;
215            while pos + conv_filter.num_qubits <= active_qubits.len() {
216                let start_qubit = active_qubits[pos];
217                conv_filter.apply_filter(&mut circuit, start_qubit)?;
218                pos += conv_filter.stride;
219            }
220
221            // Apply pooling
222            pooling.apply_pooling(&mut circuit, &mut active_qubits)?;
223        }
224
225        // Apply fully connected layer to remaining active qubits
226        for (i, &qubit) in active_qubits.iter().enumerate() {
227            if i < self.fc_params.len() {
228                circuit.ry(qubit, self.fc_params[i])?;
229            }
230        }
231
232        // For now, return a dummy output state
233        // In a real implementation, we would simulate the circuit
234        let output_size = 1 << active_qubits.len();
235        let mut output = vec![Complex::new(0.0, 0.0); output_size];
236
237        // Simple normalization
238        let norm = 1.0 / (output_size as f64).sqrt();
239        for i in 0..output_size {
240            output[i] = Complex::new(norm, 0.0);
241        }
242
243        Ok(output)
244    }
245
246    /// Get all trainable parameters
247    pub fn get_parameters(&self) -> Vec<f64> {
248        let mut params = Vec::new();
249
250        for (conv_filter, _) in &self.conv_layers {
251            params.extend(&conv_filter.params);
252        }
253        params.extend(&self.fc_params);
254
255        params
256    }
257
258    /// Set parameters from a flat vector
259    pub fn set_parameters(&mut self, params: &[f64]) -> Result<(), MLError> {
260        let mut idx = 0;
261
262        for (conv_filter, _) in &mut self.conv_layers {
263            let filter_params = conv_filter.params.len();
264            if idx + filter_params > params.len() {
265                return Err(MLError::InvalidParameter(
266                    "Not enough parameters provided".to_string(),
267                ));
268            }
269            conv_filter
270                .params
271                .copy_from_slice(&params[idx..idx + filter_params]);
272            idx += filter_params;
273        }
274
275        let fc_params_len = self.fc_params.len();
276        if idx + fc_params_len > params.len() {
277            return Err(MLError::InvalidParameter(
278                "Not enough parameters for FC layer".to_string(),
279            ));
280        }
281        self.fc_params
282            .copy_from_slice(&params[idx..idx + fc_params_len]);
283
284        Ok(())
285    }
286
287    /// Compute gradients using parameter shift rule
288    pub fn compute_gradients(
289        &mut self,
290        input_state: &DVector<Complex>,
291        target: &DVector<Complex>,
292        loss_fn: impl Fn(&DVector<Complex>, &DVector<Complex>) -> f64,
293    ) -> Result<Vec<f64>, MLError> {
294        let params = self.get_parameters();
295        let mut gradients = vec![0.0; params.len()];
296        let shift = PI / 2.0;
297
298        for i in 0..params.len() {
299            // Positive shift
300            let mut params_plus = params.clone();
301            params_plus[i] += shift;
302            self.set_parameters(&params_plus)?;
303            let output_plus = self.forward(input_state)?;
304            let loss_plus = loss_fn(&output_plus, target);
305
306            // Negative shift
307            let mut params_minus = params.clone();
308            params_minus[i] -= shift;
309            self.set_parameters(&params_minus)?;
310            let output_minus = self.forward(input_state)?;
311            let loss_minus = loss_fn(&output_minus, target);
312
313            // Parameter shift gradient
314            gradients[i] = (loss_plus - loss_minus) / (2.0 * shift);
315        }
316
317        // Restore original parameters
318        self.set_parameters(&params)?;
319
320        Ok(gradients)
321    }
322}
323
324/// Quantum image encoding for QCNN
325pub struct QuantumImageEncoder {
326    /// Image dimensions
327    pub width: usize,
328    pub height: usize,
329    /// Number of qubits for encoding
330    pub num_qubits: usize,
331}
332
333impl QuantumImageEncoder {
334    /// Create a new quantum image encoder
335    pub fn new(width: usize, height: usize, num_qubits: usize) -> Self {
336        Self {
337            width,
338            height,
339            num_qubits,
340        }
341    }
342
343    /// Encode a classical image into quantum state
344    pub fn encode(&self, image: &DMatrix) -> Result<DVector<Complex>, MLError> {
345        if image.len() != self.height || image[0].len() != self.width {
346            return Err(MLError::InvalidParameter(
347                "Image dimensions don't match encoder settings".to_string(),
348            ));
349        }
350
351        // Flatten and normalize image
352        let pixels: Vec<f64> = image.iter().flat_map(|row| row.iter()).copied().collect();
353        let norm = pixels.iter().map(|x| x * x).sum::<f64>().sqrt();
354
355        // Create quantum state with amplitude encoding
356        let state_size = 1 << self.num_qubits;
357        let mut state = vec![Complex::new(0.0, 0.0); state_size];
358
359        for (i, &pixel) in pixels.iter().enumerate() {
360            if i < state_size {
361                state[i] = Complex::new(pixel / norm, 0.0);
362            }
363        }
364
365        Ok(state)
366    }
367
368    /// Decode quantum state back to classical image representation
369    pub fn decode(&self, state: &DVector<Complex>) -> DMatrix {
370        let mut image = vec![vec![0.0; self.width]; self.height];
371        let mut idx = 0;
372
373        for i in 0..self.height {
374            for j in 0..self.width {
375                if idx < state.len() {
376                    image[i][j] = state[idx].norm();
377                    idx += 1;
378                }
379            }
380        }
381
382        image
383    }
384}
385
386#[cfg(test)]
387mod tests {
388    use super::*;
389
390    #[test]
391    fn test_qcnn_creation() {
392        let qcnn = QCNN::new(
393            8,                    // 8 qubits
394            vec![(4, 2), (2, 1)], // Two conv layers
395            vec![2, 2],           // Two pooling layers
396            4,                    // FC layer params
397        )
398        .unwrap();
399
400        assert_eq!(qcnn.num_qubits, 8);
401        assert_eq!(qcnn.conv_layers.len(), 2);
402    }
403
404    #[test]
405    fn test_quantum_filter() {
406        let filter = QuantumConvFilter::new(3, 1);
407        assert_eq!(filter.num_qubits, 3);
408        assert_eq!(filter.params.len(), 9); // 3 qubits * 3 gates
409    }
410
411    #[test]
412    fn test_filter_application() {
413        let filter = QuantumConvFilter::new(3, 1);
414        let mut circuit = Circuit::<8>::new();
415
416        // Apply filter starting at qubit 0
417        filter.apply_filter(&mut circuit, 0).unwrap();
418
419        // Should have applied gates
420        assert!(circuit.num_gates() > 0);
421    }
422
423    #[test]
424    fn test_pooling_trace_out() {
425        let pooling = QuantumPooling::new(2, PoolingType::TraceOut);
426        let mut circuit = Circuit::<8>::new();
427        let mut active_qubits = vec![0, 1, 2, 3, 4, 5, 6, 7];
428
429        pooling
430            .apply_pooling(&mut circuit, &mut active_qubits)
431            .unwrap();
432
433        // Should reduce active qubits by pool_size
434        assert_eq!(active_qubits.len(), 4);
435    }
436
437    #[test]
438    fn test_pooling_measure_reset() {
439        let pooling = QuantumPooling::new(2, PoolingType::MeasureReset);
440        let mut circuit = Circuit::<8>::new();
441        let mut active_qubits = vec![0, 1, 2, 3, 4, 5, 6, 7];
442
443        pooling
444            .apply_pooling(&mut circuit, &mut active_qubits)
445            .unwrap();
446
447        // Should keep every 2nd qubit
448        assert_eq!(active_qubits.len(), 4);
449        assert_eq!(active_qubits, vec![0, 2, 4, 6]);
450    }
451
452    #[test]
453    fn test_image_encoding() {
454        let encoder = QuantumImageEncoder::new(2, 2, 2);
455        let image = vec![vec![0.5, 0.5], vec![0.5, 0.5]];
456
457        let encoded = encoder.encode(&image).unwrap();
458        assert_eq!(encoded.len(), 4); // 2^2 = 4
459
460        // Check normalization
461        let norm: f64 = encoded.iter().map(|c| c.norm_sqr()).sum();
462        assert!((norm - 1.0).abs() < 1e-10);
463    }
464
465    #[test]
466    fn test_image_decode() {
467        let encoder = QuantumImageEncoder::new(2, 2, 2);
468        let state = vec![
469            Complex::new(0.5, 0.0),
470            Complex::new(0.5, 0.0),
471            Complex::new(0.5, 0.0),
472            Complex::new(0.5, 0.0),
473        ];
474
475        let decoded = encoder.decode(&state);
476        assert_eq!(decoded.len(), 2);
477        assert_eq!(decoded[0].len(), 2);
478    }
479
480    #[test]
481    fn test_qcnn_forward() {
482        let qcnn = QCNN::new(
483            4,            // 4 qubits
484            vec![(2, 1)], // One conv layer
485            vec![2],      // One pooling layer
486            2,            // FC layer params
487        )
488        .unwrap();
489
490        let input_state = vec![Complex::new(1.0, 0.0); 16]; // 2^4 = 16
491        let output = qcnn.forward(&input_state).unwrap();
492
493        // Output should be for reduced qubits after pooling
494        assert!(output.len() > 0);
495    }
496
497    #[test]
498    fn test_parameter_management() {
499        let mut qcnn = QCNN::new(
500            4,            // 4 qubits
501            vec![(2, 1)], // One conv layer
502            vec![2],      // One pooling layer
503            2,            // FC layer params
504        )
505        .unwrap();
506
507        let params = qcnn.get_parameters();
508        let num_params = params.len();
509
510        // Modify parameters
511        let new_params: Vec<f64> = (0..num_params).map(|i| i as f64 * 0.1).collect();
512        qcnn.set_parameters(&new_params).unwrap();
513
514        let retrieved_params = qcnn.get_parameters();
515        assert_eq!(retrieved_params, new_params);
516    }
517
518    #[test]
519    fn test_gradient_computation() {
520        let mut qcnn = QCNN::new(
521            4,            // 4 qubits
522            vec![(2, 1)], // One conv layer
523            vec![2],      // One pooling layer
524            2,            // FC layer params
525        )
526        .unwrap();
527
528        let input_state = vec![Complex::new(0.5, 0.0); 16];
529        let target_state = vec![Complex::new(0.707, 0.0); 2];
530
531        // Simple MSE loss
532        let loss_fn = |output: &DVector<Complex>, target: &DVector<Complex>| -> f64 {
533            output
534                .iter()
535                .zip(target.iter())
536                .map(|(o, t)| (o - t).norm_sqr())
537                .sum::<f64>()
538        };
539
540        let gradients = qcnn
541            .compute_gradients(&input_state, &target_state, loss_fn)
542            .unwrap();
543
544        // Should have gradients for all parameters
545        assert_eq!(gradients.len(), qcnn.get_parameters().len());
546    }
547
548    #[test]
549    fn test_invalid_layer_configuration() {
550        // Mismatched conv and pool layers
551        let result = QCNN::new(
552            8,
553            vec![(4, 2), (2, 1)], // Two conv layers
554            vec![2],              // Only one pooling layer
555            4,
556        );
557
558        assert!(result.is_err());
559    }
560
561    #[test]
562    fn test_stride_behavior() {
563        let filter = QuantumConvFilter::new(2, 2); // Filter size 2, stride 2
564        assert_eq!(filter.stride, 2);
565
566        let mut circuit = Circuit::<8>::new();
567
568        // Apply with stride - should skip positions
569        filter.apply_filter(&mut circuit, 0).unwrap();
570        filter.apply_filter(&mut circuit, 2).unwrap(); // Next position based on stride
571    }
572
573    #[test]
574    fn test_large_image_encoding() {
575        let encoder = QuantumImageEncoder::new(4, 4, 4); // 4x4 image, 4 qubits
576        let image = vec![vec![0.25; 4]; 4];
577
578        let encoded = encoder.encode(&image).unwrap();
579        assert_eq!(encoded.len(), 16); // 2^4 = 16
580
581        // Verify partial encoding (16 pixels into 16 amplitudes)
582        let decoded = encoder.decode(&encoded);
583        assert_eq!(decoded.len(), 4);
584        assert_eq!(decoded[0].len(), 4);
585    }
586}