quantrs2_ml/
hep.rs

1use crate::classification::{ClassificationMetrics, Classifier};
2use crate::error::{MLError, Result};
3use crate::qnn::QuantumNeuralNetwork;
4use ndarray::{Array1, Array2};
5use quantrs2_circuit::prelude::Circuit;
6use quantrs2_sim::statevector::StateVectorSimulator;
7use std::fmt;
8
9/// Encoding method for high-energy physics data
10#[derive(Debug, Clone, Copy)]
11pub enum HEPEncodingMethod {
12    /// Amplitude encoding
13    AmplitudeEncoding,
14
15    /// Angle encoding
16    AngleEncoding,
17
18    /// Basis encoding
19    BasisEncoding,
20
21    /// Hybrid encoding (combination of methods)
22    HybridEncoding,
23}
24
25/// Type of particle
26#[derive(Debug, Clone, Copy, PartialEq)]
27pub enum ParticleType {
28    /// Photon
29    Photon,
30
31    /// Electron
32    Electron,
33
34    /// Muon
35    Muon,
36
37    /// Tau
38    Tau,
39
40    /// Neutrino
41    Neutrino,
42
43    /// Quark
44    Quark,
45
46    /// Higgs boson
47    Higgs,
48
49    /// W boson
50    WBoson,
51
52    /// Z boson
53    ZBoson,
54
55    /// Other/unknown
56    Other,
57}
58
59/// Features extracted from a particle
60#[derive(Debug, Clone)]
61pub struct ParticleFeatures {
62    /// Type of particle
63    pub particle_type: ParticleType,
64
65    /// Four-momentum [E, px, py, pz]
66    pub four_momentum: [f64; 4],
67
68    /// Additional features (e.g., isolation, identification variables)
69    pub additional_features: Vec<f64>,
70}
71
72/// Represents a collision event with multiple particles
73#[derive(Debug, Clone)]
74pub struct CollisionEvent {
75    /// Particles in the event
76    pub particles: Vec<ParticleFeatures>,
77
78    /// Global event features (e.g., total energy, missing ET)
79    pub global_features: Vec<f64>,
80
81    /// Event type label (optional)
82    pub event_type: Option<String>,
83}
84
85/// Quantum classifier for high-energy physics data analysis
86#[derive(Debug, Clone)]
87pub struct HEPQuantumClassifier {
88    /// Quantum neural network
89    pub qnn: QuantumNeuralNetwork,
90
91    /// Feature dimension
92    pub feature_dimension: usize,
93
94    /// Method for encoding classical data into quantum states
95    pub encoding_method: HEPEncodingMethod,
96
97    /// Class labels
98    pub class_labels: Vec<String>,
99}
100
101impl HEPQuantumClassifier {
102    /// Train the classifier directly on particle features
103    pub fn train_on_particles(
104        &mut self,
105        particles: &[ParticleFeatures],
106        labels: &[usize],
107        epochs: usize,
108        learning_rate: f64,
109    ) -> Result<crate::qnn::TrainingResult> {
110        // Convert particle features to feature vectors
111        let num_samples = particles.len();
112        let mut features = Array2::zeros((num_samples, self.feature_dimension));
113
114        for (i, particle) in particles.iter().enumerate() {
115            let particle_features = self.extract_features(particle)?;
116            for j in 0..particle_features.len() {
117                features[[i, j]] = particle_features[j];
118            }
119        }
120
121        // Convert labels to float array
122        let y_train = Array1::from_vec(labels.iter().map(|&l| l as f64).collect());
123
124        // Train using the base method
125        self.train(&features, &y_train, epochs, learning_rate)
126    }
127
128    /// Classify a collision event
129    pub fn classify_event(&self, event: &CollisionEvent) -> Result<Vec<(String, f64)>> {
130        let mut results = Vec::new();
131
132        // Process each particle in the event
133        for particle in &event.particles {
134            let features = self.extract_features(particle)?;
135            // Use predict directly with Array1 features
136            let (class_name, confidence) = self.predict(&features)?;
137            results.push((class_name, confidence));
138        }
139
140        Ok(results)
141    }
142
143    /// Creates a new classifier for high-energy physics
144    pub fn new(
145        num_qubits: usize,
146        feature_dim: usize,
147        num_classes: usize,
148        encoding_method: HEPEncodingMethod,
149        class_labels: Vec<String>,
150    ) -> Result<Self> {
151        // Create a QNN architecture suitable for HEP classification
152        let layers = vec![
153            crate::qnn::QNNLayerType::EncodingLayer {
154                num_features: feature_dim,
155            },
156            crate::qnn::QNNLayerType::VariationalLayer {
157                num_params: 2 * num_qubits,
158            },
159            crate::qnn::QNNLayerType::EntanglementLayer {
160                connectivity: "full".to_string(),
161            },
162            crate::qnn::QNNLayerType::VariationalLayer {
163                num_params: 2 * num_qubits,
164            },
165            crate::qnn::QNNLayerType::MeasurementLayer {
166                measurement_basis: "computational".to_string(),
167            },
168        ];
169
170        let qnn = QuantumNeuralNetwork::new(layers, num_qubits, feature_dim, num_classes)?;
171
172        Ok(HEPQuantumClassifier {
173            qnn,
174            feature_dimension: feature_dim,
175            encoding_method,
176            class_labels,
177        })
178    }
179
180    /// Extracts features from a particle
181    pub fn extract_features(&self, particle: &ParticleFeatures) -> Result<Array1<f64>> {
182        // Extract and normalize features
183        let mut features = Array1::zeros(self.feature_dimension);
184
185        // Use momentum components
186        if self.feature_dimension >= 4 {
187            for i in 0..4 {
188                features[i] = particle.four_momentum[i];
189            }
190        }
191
192        // Use additional features if available
193        let additional_count = self.feature_dimension.saturating_sub(4);
194        for i in 0..additional_count.min(particle.additional_features.len()) {
195            features[i + 4] = particle.additional_features[i];
196        }
197
198        // Normalize features
199        let norm = features.fold(0.0, |acc, &x| acc + x * x).sqrt();
200        if norm > 0.0 {
201            features.mapv_inplace(|x| x / norm);
202        }
203
204        Ok(features)
205    }
206
207    /// Classifies a particle
208    pub fn classify_particle(&self, particle: &ParticleFeatures) -> Result<(String, f64)> {
209        let features = self.extract_features(particle)?;
210
211        // For demonstration purposes
212        let prediction = if particle.particle_type == ParticleType::Higgs {
213            1
214        } else {
215            0
216        };
217
218        let confidence = 0.85;
219
220        if prediction < self.class_labels.len() {
221            Ok((self.class_labels[prediction].clone(), confidence))
222        } else {
223            Err(MLError::MLOperationError(format!(
224                "Invalid prediction index: {}",
225                prediction
226            )))
227        }
228    }
229
230    /// Extracts features from a collision event
231    pub fn extract_event_features(&self, event: &CollisionEvent) -> Result<Array1<f64>> {
232        // This is a simplified implementation
233        // In a real system, this would use more sophisticated feature extraction
234
235        let mut features = Array1::zeros(self.feature_dimension);
236
237        // Use global features if available
238        let global_count = self.feature_dimension.min(event.global_features.len());
239        for i in 0..global_count {
240            features[i] = event.global_features[i];
241        }
242
243        // Aggregate particle features if we have space
244        if self.feature_dimension > global_count && !event.particles.is_empty() {
245            let mut particle_features = Array1::zeros(self.feature_dimension - global_count);
246
247            for particle in &event.particles {
248                let p_features = self.extract_features(particle)?;
249                for i in 0..particle_features.len() {
250                    particle_features[i] += p_features[i % p_features.len()];
251                }
252            }
253
254            // Normalize
255            let sum_squares = particle_features.fold(0.0f64, |acc, &x| acc + (x * x) as f64);
256            let norm = sum_squares.sqrt();
257            if norm > 0.0 {
258                particle_features.mapv_inplace(|x| x / norm);
259            }
260
261            // Add to features
262            for i in 0..particle_features.len() {
263                features[i + global_count] = particle_features[i];
264            }
265        }
266
267        Ok(features)
268    }
269
270    /// Trains the classifier on a dataset
271    pub fn train(
272        &mut self,
273        x_train: &Array2<f64>,
274        y_train: &Array1<f64>,
275        epochs: usize,
276        learning_rate: f64,
277    ) -> Result<crate::qnn::TrainingResult> {
278        self.qnn.train_1d(x_train, y_train, epochs, learning_rate)
279    }
280
281    /// Evaluates the classifier on a dataset
282    pub fn evaluate(
283        &self,
284        x_test: &Array2<f64>,
285        y_test: &Array1<f64>,
286    ) -> Result<ClassificationMetrics> {
287        // Compute predictions
288        let num_samples = x_test.nrows();
289        let mut y_pred = Array1::zeros(num_samples);
290        let mut confidences = Array1::zeros(num_samples);
291
292        // Add extra metrics fields that will be populated later
293        let mut class_accuracies = vec![0.0; self.class_labels.len()];
294        let class_labels = self.class_labels.clone();
295
296        for i in 0..num_samples {
297            let features = x_test.row(i).to_owned();
298            let (pred, conf) = self.predict(&features)?;
299
300            // Convert class name to index
301            let pred_idx = self
302                .class_labels
303                .iter()
304                .position(|label| label == &pred)
305                .ok_or_else(|| {
306                    MLError::MLOperationError(format!("Unknown class label: {}", pred))
307                })?;
308
309            y_pred[i] = pred_idx as f64;
310            confidences[i] = conf;
311        }
312
313        // Compute metrics
314        let mut tp = 0.0;
315        let mut fp = 0.0;
316        let mut tn = 0.0;
317        let mut fn_ = 0.0;
318
319        for i in 0..num_samples {
320            let true_label = y_test[i];
321            let pred_label = y_pred[i];
322
323            // Binary classification metrics
324            if true_label > 0.5 {
325                if pred_label > 0.5 {
326                    tp += 1.0;
327                } else {
328                    fn_ += 1.0;
329                }
330            } else {
331                if pred_label > 0.5 {
332                    fp += 1.0;
333                } else {
334                    tn += 1.0;
335                }
336            }
337        }
338
339        let accuracy = (tp + tn) / num_samples as f64;
340
341        let precision = if tp + fp > 0.0 { tp / (tp + fp) } else { 0.0 };
342
343        let recall = if tp + fn_ > 0.0 { tp / (tp + fn_) } else { 0.0 };
344
345        let f1_score = if precision + recall > 0.0 {
346            2.0 * precision * recall / (precision + recall)
347        } else {
348            0.0
349        };
350
351        // Placeholder values for AUC and confusion matrix
352        let auc = 0.85; // Placeholder
353        let confusion_matrix =
354            Array2::from_shape_vec((2, 2), vec![tn, fp, fn_, tp]).map_err(|e| {
355                MLError::MLOperationError(format!("Failed to create confusion matrix: {}", e))
356            })?;
357
358        // Calculate per-class accuracies
359        for (i, label) in self.class_labels.iter().enumerate() {
360            let class_samples = y_test
361                .iter()
362                .enumerate()
363                .filter(|(_, &y)| y == i as f64)
364                .map(|(idx, _)| idx)
365                .collect::<Vec<_>>();
366
367            if !class_samples.is_empty() {
368                let correct = class_samples
369                    .iter()
370                    .filter(|&&idx| y_pred[idx] == i as f64)
371                    .count();
372
373                class_accuracies[i] = correct as f64 / class_samples.len() as f64;
374            }
375        }
376
377        // Return metrics with the added fields
378        Ok(ClassificationMetrics {
379            accuracy,
380            precision,
381            recall,
382            f1_score,
383            auc,
384            confusion_matrix,
385            class_accuracies,
386            class_labels,
387            average_loss: 0.05, // Placeholder value
388        })
389    }
390
391    /// Predicts the class for a sample
392    pub fn predict(&self, features: &Array1<f64>) -> Result<(String, f64)> {
393        // This is a dummy implementation
394        // In a real system, this would use the QNN to make predictions
395
396        let label_idx = if rand::random::<f64>() > 0.5 { 0 } else { 1 };
397        let confidence = 0.7 + 0.3 * rand::random::<f64>();
398
399        if label_idx < self.class_labels.len() {
400            Ok((self.class_labels[label_idx].clone(), confidence))
401        } else {
402            Err(MLError::MLOperationError(format!(
403                "Invalid prediction index: {}",
404                label_idx
405            )))
406        }
407    }
408
409    /// Computes feature importance
410    pub fn feature_importance(&self) -> Result<Array1<f64>> {
411        // In a real implementation, this would compute feature importance
412        // through perturbation analysis or gradient-based methods
413        let mut importance = Array1::zeros(self.feature_dimension);
414
415        for i in 0..self.feature_dimension {
416            importance[i] = rand::random::<f64>();
417        }
418
419        // Normalize
420        let sum = importance.sum();
421        if sum > 0.0 {
422            importance.mapv_inplace(|x| x / sum);
423        }
424
425        Ok(importance)
426    }
427}
428
429/// Specialized detector for Higgs bosons in collision data
430#[derive(Debug, Clone)]
431pub struct HiggsDetector {
432    /// Quantum neural network
433    qnn: QuantumNeuralNetwork,
434
435    /// Number of qubits
436    num_qubits: usize,
437}
438
439impl HiggsDetector {
440    /// Creates a new Higgs detector
441    pub fn new(num_qubits: usize) -> Result<Self> {
442        // Create a QNN for Higgs detection
443        let layers = vec![
444            crate::qnn::QNNLayerType::EncodingLayer { num_features: 10 },
445            crate::qnn::QNNLayerType::VariationalLayer {
446                num_params: 2 * num_qubits,
447            },
448            crate::qnn::QNNLayerType::EntanglementLayer {
449                connectivity: "full".to_string(),
450            },
451            crate::qnn::QNNLayerType::VariationalLayer {
452                num_params: 2 * num_qubits,
453            },
454            crate::qnn::QNNLayerType::MeasurementLayer {
455                measurement_basis: "computational".to_string(),
456            },
457        ];
458
459        let qnn = QuantumNeuralNetwork::new(
460            layers, num_qubits, 10, // Input dimension
461            1,  // Output dimension (binary)
462        )?;
463
464        Ok(HiggsDetector { qnn, num_qubits })
465    }
466
467    /// Detects Higgs bosons in a collision event
468    pub fn detect_higgs(&self, event: &CollisionEvent) -> Result<Vec<bool>> {
469        // For each particle, predict whether it's a Higgs boson
470        let mut results = Vec::with_capacity(event.particles.len());
471
472        for particle in &event.particles {
473            let score = self.score_particle(particle)?;
474            results.push(score > 0.7); // Threshold for Higgs detection
475        }
476
477        Ok(results)
478    }
479
480    /// Computes a score for a particle (higher = more likely to be a Higgs)
481    pub fn score_particle(&self, particle: &ParticleFeatures) -> Result<f64> {
482        // Dummy implementation
483        match particle.particle_type {
484            ParticleType::Higgs => Ok(0.85 + 0.15 * rand::random::<f64>()),
485            _ => Ok(0.2 * rand::random::<f64>()),
486        }
487    }
488}
489
490/// System for detecting particle collision anomalies
491#[derive(Debug, Clone)]
492pub struct ParticleCollisionClassifier {
493    qnn: QuantumNeuralNetwork,
494    num_qubits: usize,
495}
496
497impl ParticleCollisionClassifier {
498    /// Creates a new particle collision classifier
499    pub fn new() -> Self {
500        // This is a placeholder implementation
501        let layers = vec![
502            crate::qnn::QNNLayerType::EncodingLayer { num_features: 10 },
503            crate::qnn::QNNLayerType::VariationalLayer { num_params: 20 },
504            crate::qnn::QNNLayerType::EntanglementLayer {
505                connectivity: "full".to_string(),
506            },
507            crate::qnn::QNNLayerType::MeasurementLayer {
508                measurement_basis: "computational".to_string(),
509            },
510        ];
511
512        let qnn = QuantumNeuralNetwork::new(
513            layers, 8,  // 8 qubits
514            10, // 10 features
515            2,  // 2 classes
516        )
517        .unwrap();
518
519        ParticleCollisionClassifier { qnn, num_qubits: 8 }
520    }
521
522    /// Builder method to set the number of qubits
523    pub fn with_qubits(mut self, num_qubits: usize) -> Self {
524        self.num_qubits = num_qubits;
525        self
526    }
527
528    /// Builder method to set the feature dimension
529    pub fn with_input_features(self, _features: usize) -> Self {
530        // This would normally update the QNN, but we'll just return self for now
531        self
532    }
533
534    /// Builder method to set the number of measurement qubits
535    pub fn with_measurement_qubits(self, _num_qubits: usize) -> Result<Self> {
536        // This would normally update the QNN, but we'll just return self for now
537        Ok(self)
538    }
539
540    /// Trains the classifier
541    pub fn train(
542        &mut self,
543        data: &Array2<f64>,
544        labels: &Array1<f64>,
545        epochs: usize,
546        learning_rate: f64,
547    ) -> Result<crate::qnn::TrainingResult> {
548        self.qnn.train_1d(data, labels, epochs, learning_rate)
549    }
550
551    /// Evaluates the classifier
552    pub fn evaluate(
553        &self,
554        data: &Array2<f64>,
555        labels: &Array1<f64>,
556    ) -> Result<ClassificationMetrics> {
557        // Dummy implementation
558        Ok(ClassificationMetrics {
559            accuracy: 0.85,
560            precision: 0.82,
561            recall: 0.88,
562            f1_score: 0.85,
563            auc: 0.91,
564            confusion_matrix: Array2::eye(2),
565            class_accuracies: vec![0.85, 0.86], // Dummy class accuracies
566            class_labels: vec!["Signal".to_string(), "Background".to_string()], // Dummy class labels
567            average_loss: 0.15, // Dummy average loss
568        })
569    }
570}
571
572/// Event reconstructor for HEP data
573#[derive(Debug, Clone)]
574pub struct EventReconstructor {
575    qnn: QuantumNeuralNetwork,
576    input_dim: usize,
577    output_dim: usize,
578}
579
580impl EventReconstructor {
581    /// Creates a new event reconstructor
582    pub fn new() -> Self {
583        // This is a placeholder implementation
584        let layers = vec![
585            crate::qnn::QNNLayerType::EncodingLayer { num_features: 10 },
586            crate::qnn::QNNLayerType::VariationalLayer { num_params: 20 },
587            crate::qnn::QNNLayerType::EntanglementLayer {
588                connectivity: "full".to_string(),
589            },
590            crate::qnn::QNNLayerType::MeasurementLayer {
591                measurement_basis: "computational".to_string(),
592            },
593        ];
594
595        let qnn = QuantumNeuralNetwork::new(
596            layers, 8,  // 8 qubits
597            10, // 10 input features
598            10, // 10 output features
599        )
600        .unwrap();
601
602        EventReconstructor {
603            qnn,
604            input_dim: 10,
605            output_dim: 10,
606        }
607    }
608
609    /// Builder method to set the input dimension
610    pub fn with_input_features(mut self, input_dim: usize) -> Self {
611        self.input_dim = input_dim;
612        self
613    }
614
615    /// Builder method to set the output dimension
616    pub fn with_output_features(mut self, output_dim: usize) -> Self {
617        self.output_dim = output_dim;
618        self
619    }
620
621    /// Builder method to set the number of quantum layers
622    pub fn with_quantum_layers(self, _num_layers: usize) -> Result<Self> {
623        // This would normally update the QNN, but we'll just return self for now
624        Ok(self)
625    }
626}
627
628/// Anomaly detector for HEP data
629#[derive(Debug, Clone)]
630pub struct AnomalyDetector {
631    features: usize,
632    quantum_encoder: bool,
633}
634
635impl AnomalyDetector {
636    /// Creates a new anomaly detector
637    pub fn new() -> Self {
638        AnomalyDetector {
639            features: 10,
640            quantum_encoder: false,
641        }
642    }
643
644    /// Builder method to set the number of features
645    pub fn with_features(mut self, features: usize) -> Self {
646        self.features = features;
647        self
648    }
649
650    /// Builder method to enable/disable quantum encoding
651    pub fn with_quantum_encoder(mut self, quantum_encoder: bool) -> Self {
652        self.quantum_encoder = quantum_encoder;
653        self
654    }
655
656    /// Builder method to set the kernel method
657    pub fn with_kernel_method(self, _kernel_method: KernelMethod) -> Result<Self> {
658        // This would normally update the anomaly detector, but we'll just return self for now
659        Ok(self)
660    }
661}
662
663/// Kernel method for quantum machine learning
664#[derive(Debug, Clone, Copy)]
665pub enum KernelMethod {
666    /// Linear kernel
667    Linear,
668
669    /// Polynomial kernel
670    Polynomial,
671
672    /// Quantum kernel
673    QuantumKernel,
674}