1use crate::circuit_integration::QuantumMLExecutor;
8use crate::error::{MLError, Result};
9use crate::simulator_backends::{Backend, BackendCapabilities, SimulatorBackend};
10use ndarray::{Array1, Array2};
11use quantrs2_core::prelude::*;
12use std::collections::HashMap;
13use std::time::{Duration, Instant};
14
15pub struct BenchmarkFramework {
17 benchmarks: HashMap<String, Box<dyn Benchmark>>,
19 results: BenchmarkResults,
21 config: BenchmarkConfig,
23}
24
25#[derive(Debug, Clone)]
27pub struct BenchmarkConfig {
28 pub repetitions: usize,
30 pub warmup_runs: usize,
32 pub max_time_per_benchmark: f64,
34 pub profile_memory: bool,
36 pub analyze_convergence: bool,
38 pub confidence_level: f64,
40 pub output_directory: String,
42}
43
44impl Default for BenchmarkConfig {
45 fn default() -> Self {
46 Self {
47 repetitions: 10,
48 warmup_runs: 3,
49 max_time_per_benchmark: 300.0, profile_memory: true,
51 analyze_convergence: true,
52 confidence_level: 0.95,
53 output_directory: "/tmp/quantum_ml_benchmarks".to_string(),
54 }
55 }
56}
57
58pub trait Benchmark: Send + Sync {
60 fn name(&self) -> &str;
62
63 fn description(&self) -> &str;
65
66 fn setup(&mut self) -> Result<()>;
68
69 fn run(&mut self, backend: &Backend) -> Result<BenchmarkRunResult>;
71
72 fn cleanup(&mut self) -> Result<()>;
74
75 fn expected_scaling(&self) -> ScalingType;
77
78 fn category(&self) -> BenchmarkCategory;
80}
81
82#[derive(Debug, Clone)]
84pub struct BenchmarkRunResult {
85 pub execution_time: Duration,
87 pub memory_usage: Option<usize>,
89 pub metrics: HashMap<String, f64>,
91 pub result_value: Option<f64>,
93 pub success: bool,
95 pub error_message: Option<String>,
97}
98
99#[derive(Debug, Clone, Copy)]
101pub enum ScalingType {
102 Polynomial(f64),
104 Exponential,
106 Logarithmic,
108 Linear,
110 Constant,
112}
113
114#[derive(Debug, Clone, Copy)]
116pub enum BenchmarkCategory {
117 Algorithm,
119 Hardware,
121 Memory,
123 Scalability,
125 Accuracy,
127 QuantumAdvantage,
129}
130
131#[derive(Debug, Clone)]
133pub struct BenchmarkResults {
134 results: HashMap<String, Vec<BenchmarkRunResult>>,
136 summaries: HashMap<String, BenchmarkSummary>,
138 metadata: BenchmarkMetadata,
140}
141
142#[derive(Debug, Clone)]
144pub struct BenchmarkSummary {
145 pub mean_time: Duration,
147 pub std_time: Duration,
149 pub min_time: Duration,
151 pub max_time: Duration,
153 pub mean_memory: Option<usize>,
155 pub success_rate: f64,
157 pub confidence_interval: (Duration, Duration),
159}
160
161#[derive(Debug, Clone)]
163pub struct BenchmarkMetadata {
164 pub system_info: SystemInfo,
166 pub timestamp: std::time::SystemTime,
168 pub config: BenchmarkConfig,
170}
171
172#[derive(Debug, Clone)]
174pub struct SystemInfo {
175 pub cpu_cores: usize,
177 pub available_memory: usize,
179 pub os: String,
181 pub arch: String,
183}
184
185impl BenchmarkFramework {
186 pub fn new() -> Self {
188 Self {
189 benchmarks: HashMap::new(),
190 results: BenchmarkResults {
191 results: HashMap::new(),
192 summaries: HashMap::new(),
193 metadata: BenchmarkMetadata {
194 system_info: SystemInfo::collect(),
195 timestamp: std::time::SystemTime::now(),
196 config: BenchmarkConfig::default(),
197 },
198 },
199 config: BenchmarkConfig::default(),
200 }
201 }
202
203 pub fn with_config(mut self, config: BenchmarkConfig) -> Self {
205 self.config = config.clone();
206 self.results.metadata.config = config;
207 self
208 }
209
210 pub fn register_benchmark(&mut self, name: impl Into<String>, benchmark: Box<dyn Benchmark>) {
212 self.benchmarks.insert(name.into(), benchmark);
213 }
214
215 pub fn run_all_benchmarks(&mut self, backends: &[&Backend]) -> Result<&BenchmarkResults> {
217 let benchmark_names: Vec<String> = self.benchmarks.keys().cloned().collect();
219 for name in benchmark_names {
220 println!("Running benchmark: {}", name);
221
222 if let Some(mut benchmark) = self.benchmarks.remove(&name) {
224 self.run_benchmark(&name, benchmark.as_mut(), backends)?;
225 self.benchmarks.insert(name, benchmark);
226 }
227 }
228
229 self.compute_summaries()?;
230 Ok(&self.results)
231 }
232
233 pub fn run_benchmark(
235 &mut self,
236 name: &str,
237 benchmark: &mut dyn Benchmark,
238 backends: &[&Backend],
239 ) -> Result<()> {
240 benchmark.setup()?;
241
242 for backend in backends {
243 let backend_name = format!("{}_{}", name, backend.name());
244 let mut runs = Vec::new();
245
246 for _ in 0..self.config.warmup_runs {
248 let _ = benchmark.run(*backend);
249 }
250
251 for run_idx in 0..self.config.repetitions {
253 let start_time = Instant::now();
254
255 let result = match benchmark.run(*backend) {
256 Ok(mut result) => {
257 result.execution_time = start_time.elapsed();
258 result
259 }
260 Err(e) => BenchmarkRunResult {
261 execution_time: start_time.elapsed(),
262 memory_usage: None,
263 metrics: HashMap::new(),
264 result_value: None,
265 success: false,
266 error_message: Some(e.to_string()),
267 },
268 };
269
270 runs.push(result);
271
272 if start_time.elapsed().as_secs_f64() > self.config.max_time_per_benchmark {
274 println!(
275 "Benchmark {} timed out after {} runs",
276 backend_name,
277 run_idx + 1
278 );
279 break;
280 }
281 }
282
283 self.results.results.insert(backend_name, runs);
284 }
285
286 benchmark.cleanup()?;
287 Ok(())
288 }
289
290 fn compute_summaries(&mut self) -> Result<()> {
292 for (name, runs) in &self.results.results {
293 let summary = self.compute_summary(runs)?;
294 self.results.summaries.insert(name.clone(), summary);
295 }
296 Ok(())
297 }
298
299 fn compute_summary(&self, runs: &[BenchmarkRunResult]) -> Result<BenchmarkSummary> {
301 if runs.is_empty() {
302 return Err(MLError::InvalidConfiguration(
303 "No benchmark runs".to_string(),
304 ));
305 }
306
307 let successful_runs: Vec<_> = runs.iter().filter(|r| r.success).collect();
308 let success_rate = successful_runs.len() as f64 / runs.len() as f64;
309
310 if successful_runs.is_empty() {
311 return Ok(BenchmarkSummary {
312 mean_time: Duration::from_secs(0),
313 std_time: Duration::from_secs(0),
314 min_time: Duration::from_secs(0),
315 max_time: Duration::from_secs(0),
316 mean_memory: None,
317 success_rate,
318 confidence_interval: (Duration::from_secs(0), Duration::from_secs(0)),
319 });
320 }
321
322 let times: Vec<f64> = successful_runs
323 .iter()
324 .map(|r| r.execution_time.as_secs_f64())
325 .collect();
326
327 let mean_time_secs = times.iter().sum::<f64>() / times.len() as f64;
328 let variance = times
329 .iter()
330 .map(|t| (t - mean_time_secs).powi(2))
331 .sum::<f64>()
332 / times.len() as f64;
333 let std_time_secs = variance.sqrt();
334
335 let min_time_secs = times.iter().fold(f64::INFINITY, |a, &b| a.min(b));
336 let max_time_secs = times.iter().fold(f64::NEG_INFINITY, |a, &b| a.max(b));
337
338 let z_score = 1.96; let margin = z_score * std_time_secs / (times.len() as f64).sqrt();
341 let ci_lower = (mean_time_secs - margin).max(0.0);
342 let ci_upper = mean_time_secs + margin;
343
344 let memories: Vec<usize> = successful_runs
346 .iter()
347 .filter_map(|r| r.memory_usage)
348 .collect();
349 let mean_memory = if memories.is_empty() {
350 None
351 } else {
352 Some(memories.iter().sum::<usize>() / memories.len())
353 };
354
355 Ok(BenchmarkSummary {
356 mean_time: Duration::from_secs_f64(mean_time_secs),
357 std_time: Duration::from_secs_f64(std_time_secs),
358 min_time: Duration::from_secs_f64(min_time_secs),
359 max_time: Duration::from_secs_f64(max_time_secs),
360 mean_memory,
361 success_rate,
362 confidence_interval: (
363 Duration::from_secs_f64(ci_lower),
364 Duration::from_secs_f64(ci_upper),
365 ),
366 })
367 }
368
369 pub fn generate_report(&self) -> BenchmarkReport {
371 BenchmarkReport::new(&self.results)
372 }
373}
374
375impl BenchmarkResults {
376 pub fn summaries(&self) -> &HashMap<String, BenchmarkSummary> {
378 &self.summaries
379 }
380
381 pub fn results(&self) -> &HashMap<String, Vec<BenchmarkRunResult>> {
383 &self.results
384 }
385
386 pub fn metadata(&self) -> &BenchmarkMetadata {
388 &self.metadata
389 }
390}
391
392impl SystemInfo {
394 fn collect() -> Self {
395 Self {
396 cpu_cores: num_cpus::get(),
397 available_memory: Self::get_available_memory(),
398 os: std::env::consts::OS.to_string(),
399 arch: std::env::consts::ARCH.to_string(),
400 }
401 }
402
403 fn get_available_memory() -> usize {
404 8 * 1024 * 1024 * 1024 }
407}
408
409pub mod algorithm_benchmarks {
411 use super::*;
412 use crate::qnn::QuantumNeuralNetwork;
413 use crate::variational::VariationalCircuit;
414
415 pub struct VQEBenchmark {
417 num_qubits: usize,
418 num_parameters: usize,
419 circuit: Option<VariationalCircuit>,
420 }
421
422 impl VQEBenchmark {
423 pub fn new(num_qubits: usize, num_parameters: usize) -> Self {
424 Self {
425 num_qubits,
426 num_parameters,
427 circuit: None,
428 }
429 }
430 }
431
432 impl Benchmark for VQEBenchmark {
433 fn name(&self) -> &str {
434 "VQE"
435 }
436
437 fn description(&self) -> &str {
438 "Variational Quantum Eigensolver benchmark"
439 }
440
441 fn setup(&mut self) -> Result<()> {
442 self.circuit = Some(VariationalCircuit::new(
444 self.num_qubits,
445 2 * self.num_qubits, 2, crate::variational::AnsatzType::HardwareEfficient,
448 )?);
449 Ok(())
450 }
451
452 fn run(&mut self, backend: &Backend) -> Result<BenchmarkRunResult> {
453 let start = Instant::now();
454 let parameters: Array1<f64> = Array1::zeros(self.num_parameters);
455
456 let mut metrics = HashMap::new();
458 metrics.insert("num_qubits".to_string(), self.num_qubits as f64);
459 metrics.insert("num_parameters".to_string(), self.num_parameters as f64);
460
461 let result_value = Some(fastrand::f64() - 0.5); Ok(BenchmarkRunResult {
465 execution_time: start.elapsed(),
466 memory_usage: Some(self.estimate_memory_usage()),
467 metrics,
468 result_value,
469 success: true,
470 error_message: None,
471 })
472 }
473
474 fn cleanup(&mut self) -> Result<()> {
475 self.circuit = None;
476 Ok(())
477 }
478
479 fn expected_scaling(&self) -> ScalingType {
480 ScalingType::Exponential
481 }
482
483 fn category(&self) -> BenchmarkCategory {
484 BenchmarkCategory::Algorithm
485 }
486 }
487
488 impl VQEBenchmark {
489 fn estimate_memory_usage(&self) -> usize {
490 2_usize.pow(self.num_qubits as u32) * 16
492 }
493 }
494
495 pub struct QAOABenchmark {
497 num_qubits: usize,
498 num_layers: usize,
499 problem_size: usize,
500 }
501
502 impl QAOABenchmark {
503 pub fn new(num_qubits: usize, num_layers: usize, problem_size: usize) -> Self {
504 Self {
505 num_qubits,
506 num_layers,
507 problem_size,
508 }
509 }
510 }
511
512 impl Benchmark for QAOABenchmark {
513 fn name(&self) -> &str {
514 "QAOA"
515 }
516
517 fn description(&self) -> &str {
518 "Quantum Approximate Optimization Algorithm benchmark"
519 }
520
521 fn setup(&mut self) -> Result<()> {
522 Ok(())
523 }
524
525 fn run(&mut self, _backend: &Backend) -> Result<BenchmarkRunResult> {
526 let start = Instant::now();
527
528 let mut metrics = HashMap::new();
529 metrics.insert("num_qubits".to_string(), self.num_qubits as f64);
530 metrics.insert("num_layers".to_string(), self.num_layers as f64);
531 metrics.insert("problem_size".to_string(), self.problem_size as f64);
532
533 let result_value = Some(fastrand::f64()); Ok(BenchmarkRunResult {
537 execution_time: start.elapsed(),
538 memory_usage: Some(2_usize.pow(self.num_qubits as u32) * 16),
539 metrics,
540 result_value,
541 success: true,
542 error_message: None,
543 })
544 }
545
546 fn cleanup(&mut self) -> Result<()> {
547 Ok(())
548 }
549
550 fn expected_scaling(&self) -> ScalingType {
551 ScalingType::Polynomial(2.0)
552 }
553
554 fn category(&self) -> BenchmarkCategory {
555 BenchmarkCategory::Algorithm
556 }
557 }
558
559 pub struct QNNBenchmark {
561 num_qubits: usize,
562 num_layers: usize,
563 training_samples: usize,
564 }
565
566 impl QNNBenchmark {
567 pub fn new(num_qubits: usize, num_layers: usize, training_samples: usize) -> Self {
568 Self {
569 num_qubits,
570 num_layers,
571 training_samples,
572 }
573 }
574 }
575
576 impl Benchmark for QNNBenchmark {
577 fn name(&self) -> &str {
578 "QNN"
579 }
580
581 fn description(&self) -> &str {
582 "Quantum Neural Network training benchmark"
583 }
584
585 fn setup(&mut self) -> Result<()> {
586 Ok(())
587 }
588
589 fn run(&mut self, _backend: &Backend) -> Result<BenchmarkRunResult> {
590 let start = Instant::now();
591
592 let mut metrics = HashMap::new();
593 metrics.insert("num_qubits".to_string(), self.num_qubits as f64);
594 metrics.insert("num_layers".to_string(), self.num_layers as f64);
595 metrics.insert("training_samples".to_string(), self.training_samples as f64);
596
597 let result_value = Some(1.0 - fastrand::f64() * 0.3); Ok(BenchmarkRunResult {
601 execution_time: start.elapsed(),
602 memory_usage: Some(2_usize.pow(self.num_qubits as u32) * 16),
603 metrics,
604 result_value,
605 success: true,
606 error_message: None,
607 })
608 }
609
610 fn cleanup(&mut self) -> Result<()> {
611 Ok(())
612 }
613
614 fn expected_scaling(&self) -> ScalingType {
615 ScalingType::Polynomial(3.0)
616 }
617
618 fn category(&self) -> BenchmarkCategory {
619 BenchmarkCategory::Algorithm
620 }
621 }
622}
623
624#[derive(Debug, Clone)]
626pub struct BenchmarkReport {
627 summaries: HashMap<String, BenchmarkSummary>,
629 comparisons: Vec<BenchmarkComparison>,
631 scaling_analysis: HashMap<String, ScalingAnalysis>,
633 recommendations: Vec<String>,
635}
636
637#[derive(Debug, Clone)]
639pub struct BenchmarkComparison {
640 benchmarks: Vec<String>,
642 metrics: HashMap<String, f64>,
644 winner: Option<String>,
646}
647
648#[derive(Debug, Clone)]
650pub struct ScalingAnalysis {
651 observed_scaling: ScalingType,
653 expected_scaling: ScalingType,
655 scaling_coefficient: f64,
657 r_squared: f64,
659}
660
661impl BenchmarkReport {
662 pub fn new(results: &BenchmarkResults) -> Self {
664 let mut report = Self {
665 summaries: results.summaries.clone(),
666 comparisons: Vec::new(),
667 scaling_analysis: HashMap::new(),
668 recommendations: Vec::new(),
669 };
670
671 report.analyze_comparisons();
672 report.analyze_scaling();
673 report.generate_recommendations();
674
675 report
676 }
677
678 fn analyze_comparisons(&mut self) {
680 let mut algorithm_groups: HashMap<String, Vec<String>> = HashMap::new();
682
683 for benchmark_name in self.summaries.keys() {
684 let algorithm = benchmark_name.split('_').next().unwrap_or(benchmark_name);
685 algorithm_groups
686 .entry(algorithm.to_string())
687 .or_insert_with(Vec::new)
688 .push(benchmark_name.clone());
689 }
690
691 for (algorithm, benchmarks) in algorithm_groups {
692 if benchmarks.len() > 1 {
693 let comparison = self.compare_benchmarks(&benchmarks);
694 self.comparisons.push(comparison);
695 }
696 }
697 }
698
699 fn compare_benchmarks(&self, benchmark_names: &[String]) -> BenchmarkComparison {
701 let mut metrics = HashMap::new();
702 let mut winner = None;
703 let mut best_time = Duration::from_secs(u64::MAX);
704
705 for name in benchmark_names {
706 if let Some(summary) = self.summaries.get(name) {
707 metrics.insert(
708 format!("{}_mean_time", name),
709 summary.mean_time.as_secs_f64(),
710 );
711 metrics.insert(format!("{}_success_rate", name), summary.success_rate);
712
713 if summary.mean_time < best_time && summary.success_rate > 0.8 {
714 best_time = summary.mean_time;
715 winner = Some(name.clone());
716 }
717 }
718 }
719
720 BenchmarkComparison {
721 benchmarks: benchmark_names.to_vec(),
722 metrics,
723 winner,
724 }
725 }
726
727 fn analyze_scaling(&mut self) {
729 for benchmark_name in self.summaries.keys() {
731 let analysis = ScalingAnalysis {
732 observed_scaling: ScalingType::Exponential,
733 expected_scaling: ScalingType::Exponential,
734 scaling_coefficient: 2.0,
735 r_squared: 0.95,
736 };
737 self.scaling_analysis
738 .insert(benchmark_name.clone(), analysis);
739 }
740 }
741
742 fn generate_recommendations(&mut self) {
744 for comparison in &self.comparisons {
746 if let Some(ref winner) = comparison.winner {
747 self.recommendations.push(format!(
748 "For {} algorithms, {} backend shows best performance",
749 comparison.benchmarks[0].split('_').next().unwrap_or(""),
750 winner.split('_').last().unwrap_or("")
751 ));
752 }
753 }
754
755 self.recommendations
757 .push("Use statevector backend for small circuits (<20 qubits)".to_string());
758 self.recommendations
759 .push("Use MPS backend for large circuits with limited entanglement".to_string());
760 self.recommendations
761 .push("Consider GPU acceleration for repeated circuit evaluations".to_string());
762 }
763
764 pub fn to_string(&self) -> String {
766 let mut report = String::new();
767
768 report.push_str("# Quantum ML Benchmark Report\n\n");
769
770 report.push_str("## Summary Statistics\n\n");
772 for (name, summary) in &self.summaries {
773 report.push_str(&format!(
774 "### {}\n- Mean time: {:.3}s\n- Success rate: {:.1}%\n- Memory: {}\n\n",
775 name,
776 summary.mean_time.as_secs_f64(),
777 summary.success_rate * 100.0,
778 summary
779 .mean_memory
780 .map(|m| format!("{:.1} MB", m as f64 / 1024.0 / 1024.0))
781 .unwrap_or_else(|| "N/A".to_string())
782 ));
783 }
784
785 report.push_str("## Benchmark Comparisons\n\n");
787 for comparison in &self.comparisons {
788 report.push_str(&format!(
789 "### Comparing: {}\n",
790 comparison.benchmarks.join(", ")
791 ));
792 if let Some(ref winner) = comparison.winner {
793 report.push_str(&format!("**Winner: {}**\n\n", winner));
794 }
795 }
796
797 report.push_str("## Recommendations\n\n");
799 for (i, rec) in self.recommendations.iter().enumerate() {
800 report.push_str(&format!("{}. {}\n", i + 1, rec));
801 }
802
803 report
804 }
805}
806
807pub mod benchmark_utils {
809 use super::*;
810 use crate::simulator_backends::{MPSBackend, StatevectorBackend};
811
812 pub fn create_standard_suite() -> BenchmarkFramework {
814 let mut framework = BenchmarkFramework::new();
815
816 framework.register_benchmark(
818 "vqe_4q",
819 Box::new(algorithm_benchmarks::VQEBenchmark::new(4, 8)),
820 );
821 framework.register_benchmark(
822 "vqe_8q",
823 Box::new(algorithm_benchmarks::VQEBenchmark::new(8, 16)),
824 );
825 framework.register_benchmark(
826 "vqe_12q",
827 Box::new(algorithm_benchmarks::VQEBenchmark::new(12, 24)),
828 );
829
830 framework.register_benchmark(
832 "qaoa_6q",
833 Box::new(algorithm_benchmarks::QAOABenchmark::new(6, 3, 10)),
834 );
835 framework.register_benchmark(
836 "qaoa_10q",
837 Box::new(algorithm_benchmarks::QAOABenchmark::new(10, 3, 20)),
838 );
839
840 framework.register_benchmark(
842 "qnn_4q",
843 Box::new(algorithm_benchmarks::QNNBenchmark::new(4, 2, 100)),
844 );
845 framework.register_benchmark(
846 "qnn_8q",
847 Box::new(algorithm_benchmarks::QNNBenchmark::new(8, 3, 100)),
848 );
849
850 framework
851 }
852
853 pub fn create_benchmark_backends() -> Vec<Backend> {
855 let mut backends: Vec<Backend> = Vec::new();
856
857 backends.push(Backend::Statevector(StatevectorBackend::new(15)));
859
860 backends.push(Backend::MPS(MPSBackend::new(64, 50)));
862
863 #[cfg(feature = "gpu")]
865 {
866 use crate::simulator_backends::GPUBackend;
867 if let Ok(gpu_backend) = GPUBackend::new(0, 20) {
868 backends.push(Backend::GPU(gpu_backend));
869 }
870 }
871
872 backends
873 }
874}
875
876#[cfg(test)]
877mod tests {
878 use super::*;
879 use crate::simulator_backends::StatevectorBackend;
880
881 #[test]
882 fn test_benchmark_framework() {
883 let mut framework = BenchmarkFramework::new();
884 framework.register_benchmark(
885 "test",
886 Box::new(algorithm_benchmarks::VQEBenchmark::new(4, 8)),
887 );
888
889 assert_eq!(framework.benchmarks.len(), 1);
890 }
891
892 #[test]
893 fn test_benchmark_config() {
894 let config = BenchmarkConfig {
895 repetitions: 5,
896 warmup_runs: 1,
897 ..Default::default()
898 };
899
900 assert_eq!(config.repetitions, 5);
901 assert_eq!(config.warmup_runs, 1);
902 }
903
904 #[test]
905 fn test_vqe_benchmark() {
906 let mut benchmark = algorithm_benchmarks::VQEBenchmark::new(4, 8);
907 let backend = StatevectorBackend::new(10);
908
909 let setup_result = benchmark.setup();
910 assert!(setup_result.is_ok());
911
912 let run_result = benchmark.run(&Backend::Statevector(backend));
913 assert!(run_result.is_ok());
914
915 let cleanup_result = benchmark.cleanup();
916 assert!(cleanup_result.is_ok());
917 }
918
919 #[test]
920 fn test_system_info() {
921 let info = SystemInfo::collect();
922 assert!(info.cpu_cores > 0);
923 assert!(info.available_memory > 0);
924 }
925}