quantrs2_device/
crosstalk.rs

1//! Advanced cross-talk characterization and mitigation using SciRS2
2//!
3//! This module provides comprehensive cross-talk analysis and mitigation strategies
4//! for quantum hardware using SciRS2's advanced statistical and signal processing capabilities.
5
6use std::collections::{HashMap, HashSet};
7use std::f64::consts::PI;
8
9use quantrs2_circuit::prelude::*;
10use quantrs2_core::{
11    error::{QuantRS2Error, QuantRS2Result},
12    gate::GateOp,
13    qubit::QubitId,
14};
15
16use scirs2_graph::{
17    betweenness_centrality, closeness_centrality, dijkstra_path, minimum_spanning_tree,
18    strongly_connected_components, Graph,
19};
20use scirs2_linalg::{
21    correlationmatrix, det, eig, inv, matrix_norm, svd, LinalgError, LinalgResult,
22};
23use scirs2_stats::ttest::Alternative;
24use scirs2_stats::{corrcoef, distributions, mean, pearsonr, spearmanr, std, var};
25// TODO: Add scirs2_signal when it becomes available
26// use scirs2_signal::{
27//     find_peaks, periodogram, coherence, cross_correlation,
28//     SignalError, SignalResult,
29// };
30
31use scirs2_core::ndarray::{s, Array1, Array2, Array3, ArrayView1, ArrayView2, Axis};
32use scirs2_core::Complex64;
33
34use crate::{
35    calibration::DeviceCalibration,
36    characterization::{ProcessTomography, StateTomography},
37    topology::HardwareTopology,
38    CircuitResult, DeviceError, DeviceResult,
39};
40
41/// Comprehensive cross-talk characterization configuration
42#[derive(Debug, Clone)]
43pub struct CrosstalkConfig {
44    /// Frequency scanning range (Hz)
45    pub frequency_range: (f64, f64),
46    /// Frequency resolution (Hz)
47    pub frequency_resolution: f64,
48    /// Amplitude scanning range
49    pub amplitude_range: (f64, f64),
50    /// Number of amplitude steps
51    pub amplitude_steps: usize,
52    /// Measurement shots per configuration
53    pub shots_per_config: usize,
54    /// Statistical confidence level
55    pub confidence_level: f64,
56    /// Enable spectral analysis
57    pub enable_spectral_analysis: bool,
58    /// Enable temporal correlation analysis
59    pub enable_temporal_analysis: bool,
60    /// Enable spatial correlation analysis
61    pub enable_spatial_analysis: bool,
62    /// Maximum crosstalk distance to consider
63    pub max_distance: usize,
64}
65
66impl Default for CrosstalkConfig {
67    fn default() -> Self {
68        Self {
69            frequency_range: (4.0e9, 6.0e9), // 4-6 GHz typical for superconducting qubits
70            frequency_resolution: 1.0e6,     // 1 MHz resolution
71            amplitude_range: (0.0, 1.0),
72            amplitude_steps: 20,
73            shots_per_config: 10000,
74            confidence_level: 0.95,
75            enable_spectral_analysis: true,
76            enable_temporal_analysis: true,
77            enable_spatial_analysis: true,
78            max_distance: 5,
79        }
80    }
81}
82
83/// Comprehensive cross-talk characterization results
84#[derive(Debug, Clone)]
85pub struct CrosstalkCharacterization {
86    /// Device identifier
87    pub device_id: String,
88    /// Configuration used
89    pub config: CrosstalkConfig,
90    /// Cross-talk matrix (qubit-to-qubit crosstalk strength)
91    pub crosstalk_matrix: Array2<f64>,
92    /// Frequency-dependent crosstalk
93    pub frequency_crosstalk: HashMap<(usize, usize), Array1<Complex64>>,
94    /// Amplitude-dependent crosstalk
95    pub amplitude_crosstalk: HashMap<(usize, usize), Array1<f64>>,
96    /// Spectral crosstalk signatures
97    pub spectral_signatures: SpectralCrosstalkAnalysis,
98    /// Temporal correlation analysis
99    pub temporal_correlations: TemporalCrosstalkAnalysis,
100    /// Spatial correlation patterns
101    pub spatial_patterns: SpatialCrosstalkAnalysis,
102    /// Crosstalk mechanisms identified
103    pub crosstalk_mechanisms: Vec<CrosstalkMechanism>,
104    /// Mitigation strategies
105    pub mitigation_strategies: Vec<MitigationStrategy>,
106}
107
108/// Spectral analysis of crosstalk
109#[derive(Debug, Clone)]
110pub struct SpectralCrosstalkAnalysis {
111    /// Power spectral density of crosstalk signals
112    pub power_spectra: HashMap<(usize, usize), Array1<f64>>,
113    /// Coherence between qubits
114    pub coherence_matrix: Array2<f64>,
115    /// Dominant frequency components
116    pub dominant_frequencies: HashMap<(usize, usize), Vec<f64>>,
117    /// Spectral peaks and their significance
118    pub spectral_peaks: HashMap<(usize, usize), Vec<SpectralPeak>>,
119    /// Transfer function estimates
120    pub transfer_functions: HashMap<(usize, usize), Array1<Complex64>>,
121}
122
123/// Temporal correlation analysis
124#[derive(Debug, Clone)]
125pub struct TemporalCrosstalkAnalysis {
126    /// Cross-correlation functions
127    pub cross_correlations: HashMap<(usize, usize), Array1<f64>>,
128    /// Time delays between qubit responses
129    pub time_delays: HashMap<(usize, usize), f64>,
130    /// Correlation decay time constants
131    pub decay_constants: HashMap<(usize, usize), f64>,
132    /// Temporal clustering of crosstalk events
133    pub temporal_clusters: Vec<TemporalCluster>,
134}
135
136/// Spatial correlation patterns
137#[derive(Debug, Clone)]
138pub struct SpatialCrosstalkAnalysis {
139    /// Distance-dependent crosstalk decay
140    pub distance_decay: Array1<f64>,
141    /// Directional crosstalk patterns
142    pub directional_patterns: HashMap<String, Array2<f64>>,
143    /// Spatial hotspots of high crosstalk
144    pub crosstalk_hotspots: Vec<CrosstalkHotspot>,
145    /// Graph-theoretic analysis of crosstalk propagation
146    pub propagation_analysis: PropagationAnalysis,
147}
148
149/// Individual spectral peak
150#[derive(Debug, Clone)]
151pub struct SpectralPeak {
152    pub frequency: f64,
153    pub amplitude: f64,
154    pub phase: f64,
155    pub width: f64,
156    pub significance: f64,
157}
158
159/// Temporal cluster of crosstalk events
160#[derive(Debug, Clone)]
161pub struct TemporalCluster {
162    pub start_time: f64,
163    pub duration: f64,
164    pub affected_qubits: Vec<usize>,
165    pub crosstalk_strength: f64,
166}
167
168/// Spatial hotspot of crosstalk
169#[derive(Debug, Clone)]
170pub struct CrosstalkHotspot {
171    pub center_qubit: usize,
172    pub affected_qubits: Vec<usize>,
173    pub radius: f64,
174    pub max_crosstalk: f64,
175    pub mechanism: Option<CrosstalkMechanism>,
176}
177
178/// Crosstalk propagation analysis
179#[derive(Debug, Clone)]
180pub struct PropagationAnalysis {
181    /// Crosstalk propagation graph
182    pub propagation_graph: Vec<(usize, usize, f64)>, // (source, target, strength)
183    /// Critical paths for crosstalk propagation
184    pub critical_paths: Vec<Vec<usize>>,
185    /// Propagation time constants
186    pub propagation_times: HashMap<(usize, usize), f64>,
187    /// Effective network topology for crosstalk
188    pub effective_topology: Array2<f64>,
189}
190
191/// Identified crosstalk mechanism
192#[derive(Debug, Clone)]
193pub struct CrosstalkMechanism {
194    pub mechanism_type: CrosstalkType,
195    pub affected_qubits: Vec<usize>,
196    pub strength: f64,
197    pub frequency_signature: Option<Array1<f64>>,
198    pub mitigation_difficulty: MitigationDifficulty,
199    pub description: String,
200}
201
202/// Types of crosstalk mechanisms
203#[derive(Debug, Clone, PartialEq, Eq)]
204pub enum CrosstalkType {
205    /// Capacitive coupling between qubits
206    CapacitiveCoupling,
207    /// Inductive coupling through shared inductors
208    InductiveCoupling,
209    /// Electromagnetic field coupling
210    ElectromagneticCoupling,
211    /// Control line crosstalk
212    ControlLineCrosstalk,
213    /// Readout crosstalk
214    ReadoutCrosstalk,
215    /// Z-Z interaction (always-on coupling)
216    ZZInteraction,
217    /// Higher-order multi-qubit interactions
218    HigherOrderCoupling,
219    /// Unknown/unclassified mechanism
220    Unknown,
221}
222
223/// Difficulty level of mitigation
224#[derive(Debug, Clone, PartialEq, Eq)]
225pub enum MitigationDifficulty {
226    Easy,
227    Moderate,
228    Difficult,
229    VeryDifficult,
230}
231
232/// Mitigation strategy
233#[derive(Debug, Clone)]
234pub struct MitigationStrategy {
235    pub strategy_type: MitigationType,
236    pub target_qubits: Vec<usize>,
237    pub parameters: HashMap<String, f64>,
238    pub expected_improvement: f64,
239    pub implementation_complexity: f64,
240    pub description: String,
241}
242
243/// Types of mitigation strategies
244#[derive(Debug, Clone, PartialEq, Eq)]
245pub enum MitigationType {
246    /// Frequency detuning to avoid resonant crosstalk
247    FrequencyDetuning,
248    /// Amplitude scaling to compensate for crosstalk
249    AmplitudeCompensation,
250    /// Phase correction to cancel crosstalk
251    PhaseCorrection,
252    /// Temporal sequencing to avoid simultaneous operations
253    TemporalDecoupling,
254    /// Spatial isolation by avoiding certain qubit pairs
255    SpatialIsolation,
256    /// Active cancellation using auxiliary pulses
257    ActiveCancellation,
258    /// Echo sequences to suppress crosstalk
259    EchoSequences,
260    /// Composite pulse sequences
261    CompositePulses,
262    /// Circuit recompilation to avoid problematic regions
263    CircuitRecompilation,
264}
265
266/// Cross-talk characterization and mitigation engine
267pub struct CrosstalkAnalyzer {
268    config: CrosstalkConfig,
269    device_topology: HardwareTopology,
270}
271
272impl CrosstalkAnalyzer {
273    /// Create a new crosstalk analyzer
274    pub const fn new(config: CrosstalkConfig, device_topology: HardwareTopology) -> Self {
275        Self {
276            config,
277            device_topology,
278        }
279    }
280
281    /// Perform comprehensive crosstalk characterization
282    pub async fn characterize_crosstalk<E: CrosstalkExecutor>(
283        &self,
284        device_id: &str,
285        executor: &E,
286    ) -> DeviceResult<CrosstalkCharacterization> {
287        // Step 1: Basic crosstalk matrix measurement
288        let crosstalk_matrix = self.measure_crosstalk_matrix(executor).await?;
289
290        // Step 2: Frequency-dependent characterization
291        let frequency_crosstalk = if self.config.enable_spectral_analysis {
292            self.characterize_frequency_crosstalk(executor).await?
293        } else {
294            HashMap::new()
295        };
296
297        // Step 3: Amplitude-dependent characterization
298        let amplitude_crosstalk = self.characterize_amplitude_crosstalk(executor).await?;
299
300        // Step 4: Spectral analysis
301        let spectral_signatures = if self.config.enable_spectral_analysis {
302            self.perform_spectral_analysis(&frequency_crosstalk, executor)
303                .await?
304        } else {
305            SpectralCrosstalkAnalysis {
306                power_spectra: HashMap::new(),
307                coherence_matrix: Array2::zeros((0, 0)),
308                dominant_frequencies: HashMap::new(),
309                spectral_peaks: HashMap::new(),
310                transfer_functions: HashMap::new(),
311            }
312        };
313
314        // Step 5: Temporal correlation analysis
315        let temporal_correlations = if self.config.enable_temporal_analysis {
316            self.analyze_temporal_correlations(executor).await?
317        } else {
318            TemporalCrosstalkAnalysis {
319                cross_correlations: HashMap::new(),
320                time_delays: HashMap::new(),
321                decay_constants: HashMap::new(),
322                temporal_clusters: Vec::new(),
323            }
324        };
325
326        // Step 6: Spatial correlation analysis
327        let spatial_patterns = if self.config.enable_spatial_analysis {
328            self.analyze_spatial_patterns(&crosstalk_matrix)?
329        } else {
330            SpatialCrosstalkAnalysis {
331                distance_decay: Array1::zeros(0),
332                directional_patterns: HashMap::new(),
333                crosstalk_hotspots: Vec::new(),
334                propagation_analysis: PropagationAnalysis {
335                    propagation_graph: Vec::new(),
336                    critical_paths: Vec::new(),
337                    propagation_times: HashMap::new(),
338                    effective_topology: Array2::zeros((0, 0)),
339                },
340            }
341        };
342
343        // Step 7: Identify crosstalk mechanisms
344        let crosstalk_mechanisms = self.identify_mechanisms(
345            &crosstalk_matrix,
346            &frequency_crosstalk,
347            &spectral_signatures,
348        )?;
349
350        // Step 8: Generate mitigation strategies
351        let mitigation_strategies = self.generate_mitigation_strategies(
352            &crosstalk_matrix,
353            &crosstalk_mechanisms,
354            &spatial_patterns,
355        )?;
356
357        Ok(CrosstalkCharacterization {
358            device_id: device_id.to_string(),
359            config: self.config.clone(),
360            crosstalk_matrix,
361            frequency_crosstalk,
362            amplitude_crosstalk,
363            spectral_signatures,
364            temporal_correlations,
365            spatial_patterns,
366            crosstalk_mechanisms,
367            mitigation_strategies,
368        })
369    }
370
371    /// Measure basic crosstalk matrix
372    async fn measure_crosstalk_matrix<E: CrosstalkExecutor>(
373        &self,
374        executor: &E,
375    ) -> DeviceResult<Array2<f64>> {
376        let num_qubits = self.device_topology.num_qubits;
377        let mut crosstalk_matrix = Array2::zeros((num_qubits, num_qubits));
378
379        // Systematic measurement of all qubit pairs
380        for i in 0..num_qubits {
381            for j in 0..num_qubits {
382                if i != j {
383                    let crosstalk_strength =
384                        self.measure_pairwise_crosstalk(i, j, executor).await?;
385                    crosstalk_matrix[[i, j]] = crosstalk_strength;
386                }
387            }
388        }
389
390        Ok(crosstalk_matrix)
391    }
392
393    /// Measure crosstalk between a specific pair of qubits
394    async fn measure_pairwise_crosstalk<E: CrosstalkExecutor>(
395        &self,
396        source: usize,
397        target: usize,
398        executor: &E,
399    ) -> DeviceResult<f64> {
400        // Prepare target qubit in |+⟩ state (sensitive to Z rotations)
401        let prep_circuit = self.create_crosstalk_preparation_circuit(target)?;
402
403        // Baseline measurement without source manipulation
404        let baseline_result = executor
405            .execute_crosstalk_circuit(&prep_circuit, vec![], self.config.shots_per_config)
406            .await?;
407
408        // Measurement with source qubit manipulation
409        let source_operations = vec![CrosstalkOperation {
410            qubit: source,
411            operation_type: CrosstalkOperationType::ZRotation,
412            amplitude: 1.0,
413            frequency: 0.0,
414            phase: 0.0,
415            duration: 100.0, // ns
416        }];
417
418        let crosstalk_result = executor
419            .execute_crosstalk_circuit(
420                &prep_circuit,
421                source_operations,
422                self.config.shots_per_config,
423            )
424            .await?;
425
426        // Calculate crosstalk strength from the difference in measurement outcomes
427        self.calculate_crosstalk_strength(&baseline_result, &crosstalk_result)
428    }
429
430    /// Characterize frequency-dependent crosstalk
431    async fn characterize_frequency_crosstalk<E: CrosstalkExecutor>(
432        &self,
433        executor: &E,
434    ) -> DeviceResult<HashMap<(usize, usize), Array1<Complex64>>> {
435        let mut frequency_crosstalk = HashMap::new();
436        let num_qubits = self.device_topology.num_qubits;
437
438        // Generate frequency sweep
439        let frequencies = self.generate_frequency_sweep();
440
441        for i in 0..num_qubits {
442            for j in 0..num_qubits {
443                if i != j {
444                    let crosstalk_spectrum = self
445                        .measure_frequency_response(i, j, &frequencies, executor)
446                        .await?;
447                    frequency_crosstalk.insert((i, j), crosstalk_spectrum);
448                }
449            }
450        }
451
452        Ok(frequency_crosstalk)
453    }
454
455    /// Measure frequency response between two qubits
456    async fn measure_frequency_response(
457        &self,
458        source: usize,
459        target: usize,
460        frequencies: &[f64],
461        executor: &dyn CrosstalkExecutor,
462    ) -> DeviceResult<Array1<Complex64>> {
463        let mut response = Vec::new();
464
465        for &frequency in frequencies {
466            // Create frequency-specific source operation
467            let source_operation = CrosstalkOperation {
468                qubit: source,
469                operation_type: CrosstalkOperationType::FrequencySweep,
470                amplitude: 0.5,
471                frequency,
472                phase: 0.0,
473                duration: 1000.0, // ns - longer for frequency resolution
474            };
475
476            // Measure response on target qubit
477            let prep_circuit = self.create_ramsey_circuit(target, frequency)?;
478
479            let result = executor
480                .execute_crosstalk_circuit(
481                    &prep_circuit,
482                    vec![source_operation],
483                    self.config.shots_per_config,
484                )
485                .await?;
486
487            // Extract complex response (amplitude and phase)
488            let complex_response = self.extract_complex_response(&result, frequency)?;
489            response.push(complex_response);
490        }
491
492        Ok(Array1::from_vec(response))
493    }
494
495    /// Characterize amplitude-dependent crosstalk
496    async fn characterize_amplitude_crosstalk(
497        &self,
498        executor: &dyn CrosstalkExecutor,
499    ) -> DeviceResult<HashMap<(usize, usize), Array1<f64>>> {
500        let mut amplitude_crosstalk = HashMap::new();
501        let num_qubits = self.device_topology.num_qubits;
502
503        // Generate amplitude sweep
504        let amplitudes = self.generate_amplitude_sweep();
505
506        for i in 0..num_qubits {
507            for j in 0..num_qubits {
508                if i != j {
509                    let mut crosstalk_vs_amplitude = Vec::new();
510
511                    for &amplitude in &amplitudes {
512                        let crosstalk = self
513                            .measure_amplitude_crosstalk(i, j, amplitude, executor)
514                            .await?;
515                        crosstalk_vs_amplitude.push(crosstalk);
516                    }
517
518                    amplitude_crosstalk.insert((i, j), Array1::from_vec(crosstalk_vs_amplitude));
519                }
520            }
521        }
522
523        Ok(amplitude_crosstalk)
524    }
525
526    /// Measure crosstalk at specific amplitude
527    async fn measure_amplitude_crosstalk(
528        &self,
529        source: usize,
530        target: usize,
531        amplitude: f64,
532        executor: &dyn CrosstalkExecutor,
533    ) -> DeviceResult<f64> {
534        let prep_circuit = self.create_crosstalk_preparation_circuit(target)?;
535
536        let source_operation = CrosstalkOperation {
537            qubit: source,
538            operation_type: CrosstalkOperationType::AmplitudeSweep,
539            amplitude,
540            frequency: 0.0,
541            phase: 0.0,
542            duration: 100.0,
543        };
544
545        let result = executor
546            .execute_crosstalk_circuit(
547                &prep_circuit,
548                vec![source_operation],
549                self.config.shots_per_config,
550            )
551            .await?;
552
553        self.extract_crosstalk_magnitude(&result)
554    }
555
556    /// Perform spectral analysis using SciRS2
557    async fn perform_spectral_analysis(
558        &self,
559        frequency_crosstalk: &HashMap<(usize, usize), Array1<Complex64>>,
560        executor: &dyn CrosstalkExecutor,
561    ) -> DeviceResult<SpectralCrosstalkAnalysis> {
562        let mut power_spectra = HashMap::new();
563        let mut dominant_frequencies = HashMap::new();
564        let mut spectral_peaks = HashMap::new();
565        let mut transfer_functions = HashMap::new();
566
567        // Analyze each qubit pair
568        for (&(source, target), spectrum) in frequency_crosstalk {
569            // Calculate power spectral density
570            let power_spectrum = spectrum.mapv(|c| c.norm_sqr());
571            power_spectra.insert((source, target), power_spectrum.clone());
572
573            // Find spectral peaks using SciRS2
574            let frequencies = self.generate_frequency_sweep();
575            let freq_array = Array1::from_vec(frequencies);
576
577            // Simple peak finding fallback since find_peaks is not available
578            let peaks: Vec<usize> = (1..power_spectrum.len() - 1)
579                .filter(|&i| {
580                    power_spectrum[i] > power_spectrum[i - 1]
581                        && power_spectrum[i] > power_spectrum[i + 1]
582                })
583                .collect();
584            if !peaks.is_empty() {
585                let mut peak_list = Vec::new();
586                for &peak_idx in &peaks {
587                    if peak_idx < spectrum.len() {
588                        peak_list.push(SpectralPeak {
589                            frequency: freq_array[peak_idx],
590                            amplitude: spectrum[peak_idx].norm(),
591                            phase: spectrum[peak_idx].arg(),
592                            width: self.estimate_peak_width(&power_spectrum, peak_idx),
593                            significance: self
594                                .calculate_peak_significance(&power_spectrum, peak_idx),
595                        });
596                    }
597                }
598                spectral_peaks.insert((source, target), peak_list);
599
600                // Extract dominant frequencies
601                let dominant_freqs: Vec<f64> = peaks.iter()
602                    .take(5) // Top 5 peaks
603                    .map(|&idx| freq_array[idx])
604                    .collect();
605                dominant_frequencies.insert((source, target), dominant_freqs);
606            }
607
608            // Store transfer function
609            transfer_functions.insert((source, target), spectrum.clone());
610        }
611
612        // Calculate coherence matrix between all qubits
613        let coherence_matrix = self.calculate_coherence_matrix(frequency_crosstalk)?;
614
615        Ok(SpectralCrosstalkAnalysis {
616            power_spectra,
617            coherence_matrix,
618            dominant_frequencies,
619            spectral_peaks,
620            transfer_functions,
621        })
622    }
623
624    /// Analyze temporal correlations in crosstalk
625    async fn analyze_temporal_correlations(
626        &self,
627        executor: &dyn CrosstalkExecutor,
628    ) -> DeviceResult<TemporalCrosstalkAnalysis> {
629        let num_qubits = self.device_topology.num_qubits;
630        let mut cross_correlations = HashMap::new();
631        let mut time_delays = HashMap::new();
632        let mut decay_constants = HashMap::new();
633
634        // Measure temporal response for each qubit pair
635        for i in 0..num_qubits {
636            for j in 0..num_qubits {
637                if i != j {
638                    let (correlation, delay, decay) =
639                        self.measure_temporal_response(i, j, executor).await?;
640
641                    cross_correlations.insert((i, j), correlation);
642                    time_delays.insert((i, j), delay);
643                    decay_constants.insert((i, j), decay);
644                }
645            }
646        }
647
648        // Identify temporal clusters
649        let temporal_clusters = self.identify_temporal_clusters(&cross_correlations)?;
650
651        Ok(TemporalCrosstalkAnalysis {
652            cross_correlations,
653            time_delays,
654            decay_constants,
655            temporal_clusters,
656        })
657    }
658
659    /// Measure temporal response between two qubits
660    async fn measure_temporal_response(
661        &self,
662        source: usize,
663        target: usize,
664        executor: &dyn CrosstalkExecutor,
665    ) -> DeviceResult<(Array1<f64>, f64, f64)> {
666        let time_steps = 100;
667        let max_time = 10000.0; // ns
668        let dt = max_time / time_steps as f64;
669
670        let mut response_data = Vec::new();
671
672        // Apply delta function stimulus to source qubit and measure response
673        for step in 0..time_steps {
674            let delay = step as f64 * dt;
675
676            let source_operation = CrosstalkOperation {
677                qubit: source,
678                operation_type: CrosstalkOperationType::DelayedPulse,
679                amplitude: 1.0,
680                frequency: 0.0,
681                phase: 0.0,
682                duration: 10.0, // Short pulse
683            };
684
685            let prep_circuit = self.create_temporal_response_circuit(target, delay)?;
686
687            let result = executor
688                .execute_crosstalk_circuit(
689                    &prep_circuit,
690                    vec![source_operation],
691                    1000, // Fewer shots for temporal measurement
692                )
693                .await?;
694
695            let response = self.extract_response_magnitude(&result)?;
696            response_data.push(response);
697        }
698
699        let response_array = Array1::from_vec(response_data);
700
701        // Calculate cross-correlation with stimulus
702        let stimulus = self.create_delta_stimulus(time_steps);
703        // Simple fallback correlation calculation
704        let correlation = if stimulus.len() == response_array.len() {
705            Array1::from_vec(vec![0.5; stimulus.len()]) // Placeholder correlation
706        } else {
707            Array1::from_vec(vec![0.0; stimulus.len().min(response_array.len())])
708        };
709
710        // Find time delay (peak of cross-correlation)
711        let max_idx = correlation
712            .iter()
713            .enumerate()
714            .max_by(|(_, a), (_, b)| a.partial_cmp(b).unwrap_or(std::cmp::Ordering::Equal))
715            .map_or(0, |(idx, _)| idx);
716
717        let time_delay = max_idx as f64 * dt;
718
719        // Fit exponential decay to response
720        let decay_constant = self.fit_exponential_decay(&response_array)?;
721
722        Ok((correlation, time_delay, decay_constant))
723    }
724
725    /// Analyze spatial patterns in crosstalk
726    fn analyze_spatial_patterns(
727        &self,
728        crosstalk_matrix: &Array2<f64>,
729    ) -> DeviceResult<SpatialCrosstalkAnalysis> {
730        let num_qubits = self.device_topology.num_qubits;
731
732        // Calculate distance-dependent decay
733        let distance_decay = self.calculate_distance_decay(crosstalk_matrix)?;
734
735        // Identify directional patterns
736        let directional_patterns = self.identify_directional_patterns(crosstalk_matrix)?;
737
738        // Find crosstalk hotspots
739        let crosstalk_hotspots = self.find_crosstalk_hotspots(crosstalk_matrix)?;
740
741        // Analyze crosstalk propagation using graph theory
742        let propagation_analysis = self.analyze_crosstalk_propagation(crosstalk_matrix)?;
743
744        Ok(SpatialCrosstalkAnalysis {
745            distance_decay,
746            directional_patterns,
747            crosstalk_hotspots,
748            propagation_analysis,
749        })
750    }
751
752    /// Identify crosstalk mechanisms based on signatures
753    fn identify_mechanisms(
754        &self,
755        crosstalk_matrix: &Array2<f64>,
756        frequency_crosstalk: &HashMap<(usize, usize), Array1<Complex64>>,
757        spectral_signatures: &SpectralCrosstalkAnalysis,
758    ) -> DeviceResult<Vec<CrosstalkMechanism>> {
759        let mut mechanisms = Vec::new();
760
761        // Analyze each qubit pair for mechanism signatures
762        for i in 0..crosstalk_matrix.nrows() {
763            for j in 0..crosstalk_matrix.ncols() {
764                if i != j && crosstalk_matrix[[i, j]] > 1e-6 {
765                    // Check for different mechanism signatures
766
767                    // 1. Z-Z interaction (frequency-independent, distance-dependent)
768                    if self.is_zz_interaction((i, j), crosstalk_matrix, frequency_crosstalk) {
769                        mechanisms.push(CrosstalkMechanism {
770                            mechanism_type: CrosstalkType::ZZInteraction,
771                            affected_qubits: vec![i, j],
772                            strength: crosstalk_matrix[[i, j]],
773                            frequency_signature: None,
774                            mitigation_difficulty: MitigationDifficulty::Moderate,
775                            description: format!("Z-Z interaction between qubits {i} and {j}"),
776                        });
777                    }
778
779                    // 2. Capacitive coupling (frequency-dependent)
780                    if let Some(freq_data) = frequency_crosstalk.get(&(i, j)) {
781                        if self.is_capacitive_coupling(freq_data) {
782                            mechanisms.push(CrosstalkMechanism {
783                                mechanism_type: CrosstalkType::CapacitiveCoupling,
784                                affected_qubits: vec![i, j],
785                                strength: crosstalk_matrix[[i, j]],
786                                frequency_signature: Some(freq_data.mapv(|c| c.norm())),
787                                mitigation_difficulty: MitigationDifficulty::Difficult,
788                                description: format!(
789                                    "Capacitive coupling between qubits {i} and {j}"
790                                ),
791                            });
792                        }
793                    }
794
795                    // 3. Control line crosstalk (high-frequency signature)
796                    if let Some(peaks) = spectral_signatures.spectral_peaks.get(&(i, j)) {
797                        if self.is_control_line_crosstalk(peaks) {
798                            mechanisms.push(CrosstalkMechanism {
799                                mechanism_type: CrosstalkType::ControlLineCrosstalk,
800                                affected_qubits: vec![i, j],
801                                strength: crosstalk_matrix[[i, j]],
802                                frequency_signature: None,
803                                mitigation_difficulty: MitigationDifficulty::Easy,
804                                description: format!(
805                                    "Control line crosstalk between qubits {i} and {j}"
806                                ),
807                            });
808                        }
809                    }
810                }
811            }
812        }
813
814        Ok(mechanisms)
815    }
816
817    /// Generate mitigation strategies
818    fn generate_mitigation_strategies(
819        &self,
820        crosstalk_matrix: &Array2<f64>,
821        mechanisms: &[CrosstalkMechanism],
822        spatial_patterns: &SpatialCrosstalkAnalysis,
823    ) -> DeviceResult<Vec<MitigationStrategy>> {
824        let mut strategies = Vec::new();
825
826        for mechanism in mechanisms {
827            match mechanism.mechanism_type {
828                CrosstalkType::ZZInteraction => {
829                    // Use echo sequences for Z-Z interaction
830                    strategies.push(MitigationStrategy {
831                        strategy_type: MitigationType::EchoSequences,
832                        target_qubits: mechanism.affected_qubits.clone(),
833                        parameters: {
834                            let mut params = HashMap::new();
835                            params.insert("echo_period".to_string(), 100.0); // ns
836                            params.insert("num_echoes".to_string(), 4.0);
837                            params
838                        },
839                        expected_improvement: 0.8, // 80% reduction
840                        implementation_complexity: 0.3,
841                        description: "Echo sequences to suppress Z-Z interaction".to_string(),
842                    });
843                }
844
845                CrosstalkType::CapacitiveCoupling => {
846                    // Use frequency detuning for capacitive coupling
847                    strategies.push(MitigationStrategy {
848                        strategy_type: MitigationType::FrequencyDetuning,
849                        target_qubits: mechanism.affected_qubits.clone(),
850                        parameters: {
851                            let mut params = HashMap::new();
852                            params.insert("detuning_amount".to_string(), 10e6); // 10 MHz
853                            params.insert("optimization_iterations".to_string(), 50.0);
854                            params
855                        },
856                        expected_improvement: 0.6, // 60% reduction
857                        implementation_complexity: 0.5,
858                        description: "Frequency detuning to avoid resonant coupling".to_string(),
859                    });
860                }
861
862                CrosstalkType::ControlLineCrosstalk => {
863                    // Use amplitude compensation for control line crosstalk
864                    strategies.push(MitigationStrategy {
865                        strategy_type: MitigationType::AmplitudeCompensation,
866                        target_qubits: mechanism.affected_qubits.clone(),
867                        parameters: {
868                            let mut params = HashMap::new();
869                            params.insert("compensation_factor".to_string(), -mechanism.strength);
870                            params.insert("calibration_shots".to_string(), 10000.0);
871                            params
872                        },
873                        expected_improvement: 0.9, // 90% reduction
874                        implementation_complexity: 0.2,
875                        description: "Amplitude compensation for control crosstalk".to_string(),
876                    });
877                }
878
879                _ => {
880                    // Generic mitigation strategies
881                    strategies.push(MitigationStrategy {
882                        strategy_type: MitigationType::TemporalDecoupling,
883                        target_qubits: mechanism.affected_qubits.clone(),
884                        parameters: {
885                            let mut params = HashMap::new();
886                            params.insert("minimum_separation".to_string(), 200.0); // ns
887                            params
888                        },
889                        expected_improvement: 0.5, // 50% reduction
890                        implementation_complexity: 0.1,
891                        description: "Temporal decoupling to avoid simultaneous operations"
892                            .to_string(),
893                    });
894                }
895            }
896        }
897
898        // Add spatial isolation strategies for hotspots
899        for hotspot in &spatial_patterns.crosstalk_hotspots {
900            strategies.push(MitigationStrategy {
901                strategy_type: MitigationType::SpatialIsolation,
902                target_qubits: hotspot.affected_qubits.clone(),
903                parameters: {
904                    let mut params = HashMap::new();
905                    params.insert("isolation_radius".to_string(), hotspot.radius);
906                    params.insert("max_crosstalk_threshold".to_string(), 0.01);
907                    params
908                },
909                expected_improvement: 0.7,
910                implementation_complexity: 0.4,
911                description: format!(
912                    "Spatial isolation around hotspot at qubit {}",
913                    hotspot.center_qubit
914                ),
915            });
916        }
917
918        Ok(strategies)
919    }
920
921    // Helper methods
922
923    fn create_crosstalk_preparation_circuit(&self, target: usize) -> DeviceResult<Circuit<8>> {
924        let mut circuit = Circuit::<8>::new();
925        // Prepare target qubit in |+⟩ state (sensitive to Z errors)
926        let _ = circuit.h(QubitId(target as u32));
927        Ok(circuit)
928    }
929
930    fn create_ramsey_circuit(&self, target: usize, frequency: f64) -> DeviceResult<Circuit<8>> {
931        let mut circuit = Circuit::<8>::new();
932        // Ramsey sequence for frequency-sensitive measurement
933        let _ = circuit.h(QubitId(target as u32));
934        // Virtual Z rotation at frequency would be inserted here
935        let _ = circuit.h(QubitId(target as u32));
936        Ok(circuit)
937    }
938
939    fn create_temporal_response_circuit(
940        &self,
941        target: usize,
942        delay: f64,
943    ) -> DeviceResult<Circuit<8>> {
944        let mut circuit = Circuit::<8>::new();
945        // Prepare target for temporal response measurement
946        let _ = circuit.h(QubitId(target as u32));
947        // Delay would be implemented in the pulse sequence
948        Ok(circuit)
949    }
950
951    fn generate_frequency_sweep(&self) -> Vec<f64> {
952        let (start, end) = self.config.frequency_range;
953        let resolution = self.config.frequency_resolution;
954        let num_points = ((end - start) / resolution) as usize + 1;
955
956        (0..num_points)
957            .map(|i| (i as f64).mul_add(resolution, start))
958            .collect()
959    }
960
961    fn generate_amplitude_sweep(&self) -> Vec<f64> {
962        let (start, end) = self.config.amplitude_range;
963        let num_steps = self.config.amplitude_steps;
964
965        (0..num_steps)
966            .map(|i| start + (end - start) * i as f64 / (num_steps - 1) as f64)
967            .collect()
968    }
969
970    fn calculate_crosstalk_strength(
971        &self,
972        baseline: &CrosstalkResult,
973        crosstalk: &CrosstalkResult,
974    ) -> DeviceResult<f64> {
975        // Calculate difference in expectation values
976        let baseline_expectation = self.calculate_expectation_value(baseline)?;
977        let crosstalk_expectation = self.calculate_expectation_value(crosstalk)?;
978
979        Ok((baseline_expectation - crosstalk_expectation).abs())
980    }
981
982    fn calculate_expectation_value(&self, result: &CrosstalkResult) -> DeviceResult<f64> {
983        let total_shots = result.counts.values().sum::<u64>() as f64;
984        if total_shots == 0.0 {
985            return Ok(0.0);
986        }
987
988        let expectation = result
989            .counts
990            .iter()
991            .map(|(state, count)| {
992                let state_value = if state == "0" { 1.0 } else { -1.0 };
993                state_value * (*count as f64 / total_shots)
994            })
995            .sum::<f64>();
996
997        Ok(expectation)
998    }
999
1000    fn extract_complex_response(
1001        &self,
1002        result: &CrosstalkResult,
1003        frequency: f64,
1004    ) -> DeviceResult<Complex64> {
1005        // Extract complex response from Ramsey measurement
1006        let expectation = self.calculate_expectation_value(result)?;
1007
1008        // In a real implementation, this would extract both amplitude and phase
1009        // from the Ramsey fringe measurement
1010        let amplitude = expectation.abs();
1011        let phase = 0.0; // Would be extracted from actual measurement
1012
1013        Ok(Complex64::from_polar(amplitude, phase))
1014    }
1015
1016    fn extract_crosstalk_magnitude(&self, result: &CrosstalkResult) -> DeviceResult<f64> {
1017        // Extract magnitude of crosstalk effect
1018        self.calculate_expectation_value(result)
1019            .map(|exp| exp.abs())
1020    }
1021
1022    fn extract_response_magnitude(&self, result: &CrosstalkResult) -> DeviceResult<f64> {
1023        // Extract response magnitude for temporal analysis
1024        self.calculate_expectation_value(result)
1025            .map(|exp| exp.abs())
1026    }
1027
1028    fn calculate_coherence_matrix(
1029        &self,
1030        frequency_crosstalk: &HashMap<(usize, usize), Array1<Complex64>>,
1031    ) -> DeviceResult<Array2<f64>> {
1032        let num_qubits = self.device_topology.num_qubits;
1033        let mut coherence_matrix = Array2::zeros((num_qubits, num_qubits));
1034
1035        // Calculate coherence between each pair of qubits
1036        for i in 0..num_qubits {
1037            for j in 0..num_qubits {
1038                if i != j {
1039                    if let (Some(spec_i), Some(spec_j)) = (
1040                        frequency_crosstalk.get(&(i, 0)),
1041                        frequency_crosstalk.get(&(j, 0)),
1042                    ) {
1043                        // Calculate coherence between the two spectra
1044                        let coherence = self.calculate_coherence(spec_i, spec_j)?;
1045                        coherence_matrix[[i, j]] = coherence;
1046                    }
1047                }
1048            }
1049        }
1050
1051        Ok(coherence_matrix)
1052    }
1053
1054    fn calculate_coherence(
1055        &self,
1056        signal1: &Array1<Complex64>,
1057        signal2: &Array1<Complex64>,
1058    ) -> DeviceResult<f64> {
1059        // Simplified coherence calculation
1060        // In practice, would use proper cross-spectral density
1061
1062        let cross_power = signal1
1063            .iter()
1064            .zip(signal2.iter())
1065            .map(|(s1, s2)| (s1 * s2.conj()).norm())
1066            .sum::<f64>();
1067
1068        let power1: f64 = signal1.iter().map(|s| s.norm_sqr()).sum();
1069        let power2: f64 = signal2.iter().map(|s| s.norm_sqr()).sum();
1070
1071        if power1 * power2 > 0.0 {
1072            Ok(cross_power / (power1 * power2).sqrt())
1073        } else {
1074            Ok(0.0)
1075        }
1076    }
1077
1078    fn estimate_peak_width(&self, spectrum: &Array1<f64>, peak_idx: usize) -> f64 {
1079        // Estimate full width at half maximum (FWHM)
1080        if peak_idx >= spectrum.len() {
1081            return 0.0;
1082        }
1083
1084        let peak_value = spectrum[peak_idx];
1085        let half_max = peak_value / 2.0;
1086
1087        // Find left and right half-maximum points
1088        let mut left_idx = peak_idx;
1089        let mut right_idx = peak_idx;
1090
1091        while left_idx > 0 && spectrum[left_idx] > half_max {
1092            left_idx -= 1;
1093        }
1094
1095        while right_idx < spectrum.len() - 1 && spectrum[right_idx] > half_max {
1096            right_idx += 1;
1097        }
1098
1099        (right_idx - left_idx) as f64 * self.config.frequency_resolution
1100    }
1101
1102    fn calculate_peak_significance(&self, spectrum: &Array1<f64>, peak_idx: usize) -> f64 {
1103        // Calculate peak significance as SNR
1104        if peak_idx >= spectrum.len() {
1105            return 0.0;
1106        }
1107
1108        let peak_value = spectrum[peak_idx];
1109
1110        // Estimate noise level from surrounding region
1111        let window_size = 10;
1112        let start = peak_idx.saturating_sub(window_size);
1113        let end = (peak_idx + window_size).min(spectrum.len());
1114
1115        let surrounding_values: Vec<f64> = (start..end)
1116            .filter(|&i| (i as i32 - peak_idx as i32).abs() > 2)
1117            .map(|i| spectrum[i])
1118            .collect();
1119
1120        if surrounding_values.is_empty() {
1121            return 1.0;
1122        }
1123
1124        let noise_level = surrounding_values.iter().sum::<f64>() / surrounding_values.len() as f64;
1125        let noise_std = {
1126            let mean = noise_level;
1127            let variance = surrounding_values
1128                .iter()
1129                .map(|x| (x - mean).powi(2))
1130                .sum::<f64>()
1131                / surrounding_values.len() as f64;
1132            variance.sqrt()
1133        };
1134
1135        if noise_std > 0.0 {
1136            (peak_value - noise_level) / noise_std
1137        } else {
1138            peak_value / noise_level.max(1e-10)
1139        }
1140    }
1141
1142    fn create_delta_stimulus(&self, length: usize) -> Array1<f64> {
1143        let mut stimulus = Array1::zeros(length);
1144        if length > 0 {
1145            stimulus[0] = 1.0; // Delta function at t=0
1146        }
1147        stimulus
1148    }
1149
1150    fn fit_exponential_decay(&self, data: &Array1<f64>) -> DeviceResult<f64> {
1151        // Simplified exponential decay fitting
1152        // y = A * exp(-t/τ)
1153
1154        if data.len() < 3 {
1155            return Ok(1000.0); // Default 1μs decay time
1156        }
1157
1158        // Find peak and fit decay from there
1159        let peak_idx = data
1160            .iter()
1161            .enumerate()
1162            .max_by(|(_, a), (_, b)| a.partial_cmp(b).unwrap_or(std::cmp::Ordering::Equal))
1163            .map_or(0, |(idx, _)| idx);
1164
1165        if peak_idx + 2 >= data.len() {
1166            return Ok(1000.0);
1167        }
1168
1169        // Simple two-point exponential fit
1170        let y1 = data[peak_idx];
1171        let y2 = data[peak_idx + 1];
1172
1173        if y1 > 0.0 && y2 > 0.0 && y1 > y2 {
1174            let dt = 100.0; // Time step in ns
1175            let tau = -dt / (y2 / y1).ln();
1176            Ok(tau.max(10.0)) // Minimum 10ns decay time
1177        } else {
1178            Ok(1000.0)
1179        }
1180    }
1181
1182    fn identify_temporal_clusters(
1183        &self,
1184        correlations: &HashMap<(usize, usize), Array1<f64>>,
1185    ) -> DeviceResult<Vec<TemporalCluster>> {
1186        // Identify clusters of correlated crosstalk events
1187        let mut clusters = Vec::new();
1188
1189        // Simple clustering based on correlation peaks
1190        for (&(i, j), correlation) in correlations {
1191            let peaks = self.find_correlation_peaks(correlation)?;
1192
1193            for (peak_time, peak_strength) in peaks {
1194                clusters.push(TemporalCluster {
1195                    start_time: peak_time - 50.0, // 50ns before peak
1196                    duration: 100.0,              // 100ns cluster duration
1197                    affected_qubits: vec![i, j],
1198                    crosstalk_strength: peak_strength,
1199                });
1200            }
1201        }
1202
1203        Ok(clusters)
1204    }
1205
1206    fn find_correlation_peaks(&self, correlation: &Array1<f64>) -> DeviceResult<Vec<(f64, f64)>> {
1207        // Find peaks in correlation function
1208        let threshold = 0.1;
1209        let mut peaks = Vec::new();
1210
1211        for i in 1..correlation.len() - 1 {
1212            if correlation[i] > correlation[i - 1]
1213                && correlation[i] > correlation[i + 1]
1214                && correlation[i] > threshold
1215            {
1216                let time = i as f64 * 100.0; // 100ns time step
1217                peaks.push((time, correlation[i]));
1218            }
1219        }
1220
1221        Ok(peaks)
1222    }
1223
1224    fn calculate_distance_decay(
1225        &self,
1226        crosstalk_matrix: &Array2<f64>,
1227    ) -> DeviceResult<Array1<f64>> {
1228        // Calculate how crosstalk decays with distance
1229        let max_distance = self.config.max_distance;
1230        let mut distance_decay = Array1::zeros(max_distance);
1231        let mut distance_counts = vec![0usize; max_distance];
1232
1233        for i in 0..crosstalk_matrix.nrows() {
1234            for j in 0..crosstalk_matrix.ncols() {
1235                if i != j {
1236                    let distance = self.calculate_qubit_distance(i, j)?;
1237                    if distance < max_distance && distance > 0 {
1238                        distance_decay[distance] += crosstalk_matrix[[i, j]];
1239                        distance_counts[distance] += 1;
1240                    }
1241                }
1242            }
1243        }
1244
1245        // Average crosstalk at each distance
1246        for (distance, count) in distance_counts.iter().enumerate() {
1247            if *count > 0 {
1248                distance_decay[distance] /= *count as f64;
1249            }
1250        }
1251
1252        Ok(distance_decay)
1253    }
1254
1255    const fn calculate_qubit_distance(&self, qubit1: usize, qubit2: usize) -> DeviceResult<usize> {
1256        // Calculate Manhattan distance on the qubit grid
1257        // This is a simplified version - would use actual device layout
1258
1259        // For a linear topology
1260        Ok((qubit1 as i32 - qubit2 as i32).unsigned_abs() as usize)
1261    }
1262
1263    fn identify_directional_patterns(
1264        &self,
1265        crosstalk_matrix: &Array2<f64>,
1266    ) -> DeviceResult<HashMap<String, Array2<f64>>> {
1267        let mut patterns = HashMap::new();
1268
1269        // Identify horizontal, vertical, and diagonal crosstalk patterns
1270        // This is simplified - would analyze actual 2D layout
1271
1272        // Create asymmetry pattern
1273        let mut asymmetry = crosstalk_matrix.clone();
1274        for i in 0..asymmetry.nrows() {
1275            for j in 0..asymmetry.ncols() {
1276                asymmetry[[i, j]] = crosstalk_matrix[[i, j]] - crosstalk_matrix[[j, i]];
1277            }
1278        }
1279        patterns.insert("asymmetry".to_string(), asymmetry);
1280
1281        Ok(patterns)
1282    }
1283
1284    fn find_crosstalk_hotspots(
1285        &self,
1286        crosstalk_matrix: &Array2<f64>,
1287    ) -> DeviceResult<Vec<CrosstalkHotspot>> {
1288        let mut hotspots = Vec::new();
1289        let threshold = 0.05; // 5% crosstalk threshold
1290
1291        for i in 0..crosstalk_matrix.nrows() {
1292            // Calculate total crosstalk from this qubit
1293            let total_crosstalk: f64 = crosstalk_matrix.row(i).sum();
1294            let max_crosstalk = crosstalk_matrix
1295                .row(i)
1296                .fold(0.0_f64, |max, &val: &f64| max.max(val));
1297
1298            if max_crosstalk > threshold {
1299                // Find affected qubits
1300                let affected_qubits: Vec<usize> = crosstalk_matrix
1301                    .row(i)
1302                    .iter()
1303                    .enumerate()
1304                    .filter(|(_, &val)| val > threshold * 0.1)
1305                    .map(|(j, _)| j)
1306                    .collect();
1307
1308                hotspots.push(CrosstalkHotspot {
1309                    center_qubit: i,
1310                    affected_qubits,
1311                    radius: 2.0, // Simplified radius
1312                    max_crosstalk,
1313                    mechanism: None, // Would be determined by analysis
1314                });
1315            }
1316        }
1317
1318        Ok(hotspots)
1319    }
1320
1321    fn analyze_crosstalk_propagation(
1322        &self,
1323        crosstalk_matrix: &Array2<f64>,
1324    ) -> DeviceResult<PropagationAnalysis> {
1325        // Build propagation graph
1326        let mut propagation_graph = Vec::new();
1327        let threshold = 0.01;
1328
1329        for i in 0..crosstalk_matrix.nrows() {
1330            for j in 0..crosstalk_matrix.ncols() {
1331                if i != j && crosstalk_matrix[[i, j]] > threshold {
1332                    propagation_graph.push((i, j, crosstalk_matrix[[i, j]]));
1333                }
1334            }
1335        }
1336
1337        // Find critical paths using graph algorithms
1338        let critical_paths = self.find_propagation_paths(&propagation_graph)?;
1339
1340        // Calculate propagation times (simplified)
1341        let mut propagation_times = HashMap::new();
1342        for &(source, target, strength) in &propagation_graph {
1343            // Assume propagation time inversely related to strength
1344            let time = 100.0 / strength.max(0.001); // ns
1345            propagation_times.insert((source, target), time);
1346        }
1347
1348        // Create effective topology matrix
1349        let effective_topology = crosstalk_matrix.clone();
1350
1351        Ok(PropagationAnalysis {
1352            propagation_graph,
1353            critical_paths,
1354            propagation_times,
1355            effective_topology,
1356        })
1357    }
1358
1359    fn find_propagation_paths(
1360        &self,
1361        graph: &[(usize, usize, f64)],
1362    ) -> DeviceResult<Vec<Vec<usize>>> {
1363        // Find critical propagation paths using graph analysis
1364        let mut paths = Vec::new();
1365
1366        // Simple path finding - would use more sophisticated graph algorithms
1367        let mut visited = HashSet::new();
1368
1369        for &(source, target, _) in graph {
1370            if visited.insert(source) {
1371                let path = vec![source, target]; // Simplified 2-hop path
1372                paths.push(path);
1373            }
1374        }
1375
1376        Ok(paths)
1377    }
1378
1379    // Mechanism identification helpers
1380
1381    fn is_zz_interaction(
1382        &self,
1383        qubit_pair: (usize, usize),
1384        crosstalk_matrix: &Array2<f64>,
1385        frequency_crosstalk: &HashMap<(usize, usize), Array1<Complex64>>,
1386    ) -> bool {
1387        let (i, j) = qubit_pair;
1388
1389        // Z-Z interaction characteristics:
1390        // 1. Symmetric crosstalk
1391        // 2. Distance-dependent
1392        // 3. Frequency-independent
1393
1394        let forward_crosstalk = crosstalk_matrix[[i, j]];
1395        let reverse_crosstalk = crosstalk_matrix[[j, i]];
1396        let symmetry = (forward_crosstalk - reverse_crosstalk).abs() / forward_crosstalk.max(1e-10);
1397
1398        let is_symmetric = symmetry < 0.2; // 20% asymmetry tolerance
1399
1400        // Check frequency independence
1401        let is_frequency_independent = if let Some(freq_data) = frequency_crosstalk.get(&(i, j)) {
1402            let amplitudes = freq_data.mapv(|c| c.norm());
1403            let variation = std(&amplitudes.view(), 1, None).unwrap_or(0.0);
1404            let mean_amp = mean(&amplitudes.view()).unwrap_or(1.0);
1405            variation / mean_amp < 0.1 // Low frequency variation
1406        } else {
1407            true // Assume frequency-independent if no data
1408        };
1409
1410        is_symmetric && is_frequency_independent
1411    }
1412
1413    fn is_capacitive_coupling(&self, frequency_data: &Array1<Complex64>) -> bool {
1414        // Capacitive coupling has characteristic frequency dependence
1415        let amplitudes = frequency_data.mapv(|c| c.norm());
1416
1417        // Look for frequency-dependent behavior
1418        let variation = std(&amplitudes.view(), 1, None).unwrap_or(0.0);
1419        let mean_amp = mean(&amplitudes.view()).unwrap_or(1.0);
1420
1421        variation / mean_amp > 0.2 // High frequency variation indicates capacitive coupling
1422    }
1423
1424    fn is_control_line_crosstalk(&self, peaks: &[SpectralPeak]) -> bool {
1425        // Control line crosstalk typically has high-frequency components
1426        peaks
1427            .iter()
1428            .any(|peak| peak.frequency > 1e9 && peak.significance > 3.0)
1429    }
1430}
1431
1432/// Cross-talk operation for characterization
1433#[derive(Debug, Clone)]
1434pub struct CrosstalkOperation {
1435    pub qubit: usize,
1436    pub operation_type: CrosstalkOperationType,
1437    pub amplitude: f64,
1438    pub frequency: f64,
1439    pub phase: f64,
1440    pub duration: f64,
1441}
1442
1443/// Types of crosstalk operations
1444#[derive(Debug, Clone, PartialEq, Eq)]
1445pub enum CrosstalkOperationType {
1446    ZRotation,
1447    FrequencySweep,
1448    AmplitudeSweep,
1449    DelayedPulse,
1450    ContinuousWave,
1451}
1452
1453/// Result of crosstalk measurement
1454#[derive(Debug, Clone)]
1455pub struct CrosstalkResult {
1456    pub counts: HashMap<String, u64>,
1457    pub shots: u64,
1458    pub metadata: HashMap<String, String>,
1459}
1460
1461/// Trait for devices that can execute crosstalk characterization
1462#[async_trait::async_trait]
1463pub trait CrosstalkExecutor {
1464    async fn execute_crosstalk_circuit(
1465        &self,
1466        circuit: &Circuit<8>,
1467        operations: Vec<CrosstalkOperation>,
1468        shots: usize,
1469    ) -> DeviceResult<CrosstalkResult>;
1470}
1471
1472#[cfg(test)]
1473mod tests {
1474    use super::*;
1475    use crate::topology_analysis::create_standard_topology;
1476
1477    #[test]
1478    fn test_crosstalk_config_default() {
1479        let config = CrosstalkConfig::default();
1480        assert_eq!(config.shots_per_config, 10000);
1481        assert!(config.enable_spectral_analysis);
1482    }
1483
1484    #[test]
1485    fn test_frequency_sweep_generation() {
1486        let config = CrosstalkConfig {
1487            frequency_range: (4.0e9, 5.0e9),
1488            frequency_resolution: 1.0e8,
1489            ..Default::default()
1490        };
1491
1492        let topology =
1493            create_standard_topology("linear", 4).expect("Linear topology creation should succeed");
1494        let analyzer = CrosstalkAnalyzer::new(config, topology);
1495
1496        let frequencies = analyzer.generate_frequency_sweep();
1497        assert_eq!(frequencies.len(), 11); // 4.0 to 5.0 GHz in 0.1 GHz steps
1498        assert_eq!(frequencies[0], 4.0e9);
1499        assert_eq!(frequencies[10], 5.0e9);
1500    }
1501
1502    #[test]
1503    fn test_amplitude_sweep_generation() {
1504        let config = CrosstalkConfig {
1505            amplitude_range: (0.0, 1.0),
1506            amplitude_steps: 5,
1507            ..Default::default()
1508        };
1509
1510        let topology =
1511            create_standard_topology("linear", 4).expect("Linear topology creation should succeed");
1512        let analyzer = CrosstalkAnalyzer::new(config, topology);
1513
1514        let amplitudes = analyzer.generate_amplitude_sweep();
1515        assert_eq!(amplitudes.len(), 5);
1516        assert_eq!(amplitudes[0], 0.0);
1517        assert_eq!(amplitudes[4], 1.0);
1518    }
1519
1520    #[test]
1521    fn test_crosstalk_strength_calculation() {
1522        let topology =
1523            create_standard_topology("linear", 4).expect("Linear topology creation should succeed");
1524        let analyzer = CrosstalkAnalyzer::new(CrosstalkConfig::default(), topology);
1525
1526        let baseline = CrosstalkResult {
1527            counts: [("0".to_string(), 800), ("1".to_string(), 200)]
1528                .iter()
1529                .cloned()
1530                .collect(),
1531            shots: 1000,
1532            metadata: HashMap::new(),
1533        };
1534
1535        let crosstalk = CrosstalkResult {
1536            counts: [("0".to_string(), 600), ("1".to_string(), 400)]
1537                .iter()
1538                .cloned()
1539                .collect(),
1540            shots: 1000,
1541            metadata: HashMap::new(),
1542        };
1543
1544        let strength = analyzer
1545            .calculate_crosstalk_strength(&baseline, &crosstalk)
1546            .expect("Crosstalk strength calculation should succeed");
1547        assert!((strength - 0.4).abs() < 0.01); // Expected difference of 0.4
1548    }
1549
1550    #[test]
1551    fn test_mechanism_identification() {
1552        let topology =
1553            create_standard_topology("linear", 4).expect("Linear topology creation should succeed");
1554        let analyzer = CrosstalkAnalyzer::new(CrosstalkConfig::default(), topology);
1555
1556        // Create test crosstalk matrix
1557        let mut crosstalk_matrix = Array2::zeros((4, 4));
1558        crosstalk_matrix[[0, 1]] = 0.1;
1559        crosstalk_matrix[[1, 0]] = 0.1; // Symmetric for Z-Z interaction
1560
1561        let frequency_crosstalk = HashMap::new();
1562        let spectral_signatures = SpectralCrosstalkAnalysis {
1563            power_spectra: HashMap::new(),
1564            coherence_matrix: Array2::zeros((4, 4)),
1565            dominant_frequencies: HashMap::new(),
1566            spectral_peaks: HashMap::new(),
1567            transfer_functions: HashMap::new(),
1568        };
1569
1570        let mechanisms = analyzer
1571            .identify_mechanisms(
1572                &crosstalk_matrix,
1573                &frequency_crosstalk,
1574                &spectral_signatures,
1575            )
1576            .expect("Mechanism identification should succeed");
1577
1578        assert!(!mechanisms.is_empty());
1579        assert_eq!(mechanisms[0].mechanism_type, CrosstalkType::ZZInteraction);
1580    }
1581}