1use std::collections::{HashMap, HashSet};
7use std::f64::consts::PI;
8
9use quantrs2_circuit::prelude::*;
10use quantrs2_core::{
11 error::{QuantRS2Error, QuantRS2Result},
12 gate::GateOp,
13 qubit::QubitId,
14};
15
16use scirs2_graph::{
17 betweenness_centrality, closeness_centrality, dijkstra_path, minimum_spanning_tree,
18 strongly_connected_components, Graph,
19};
20use scirs2_linalg::{
21 correlationmatrix, det, eig, inv, matrix_norm, svd, LinalgError, LinalgResult,
22};
23use scirs2_stats::ttest::Alternative;
24use scirs2_stats::{corrcoef, distributions, mean, pearsonr, spearmanr, std, var};
25use scirs2_core::ndarray::{s, Array1, Array2, Array3, ArrayView1, ArrayView2, Axis};
32use scirs2_core::Complex64;
33
34use crate::{
35 calibration::DeviceCalibration,
36 characterization::{ProcessTomography, StateTomography},
37 topology::HardwareTopology,
38 CircuitResult, DeviceError, DeviceResult,
39};
40
41#[derive(Debug, Clone)]
43pub struct CrosstalkConfig {
44 pub frequency_range: (f64, f64),
46 pub frequency_resolution: f64,
48 pub amplitude_range: (f64, f64),
50 pub amplitude_steps: usize,
52 pub shots_per_config: usize,
54 pub confidence_level: f64,
56 pub enable_spectral_analysis: bool,
58 pub enable_temporal_analysis: bool,
60 pub enable_spatial_analysis: bool,
62 pub max_distance: usize,
64}
65
66impl Default for CrosstalkConfig {
67 fn default() -> Self {
68 Self {
69 frequency_range: (4.0e9, 6.0e9), frequency_resolution: 1.0e6, amplitude_range: (0.0, 1.0),
72 amplitude_steps: 20,
73 shots_per_config: 10000,
74 confidence_level: 0.95,
75 enable_spectral_analysis: true,
76 enable_temporal_analysis: true,
77 enable_spatial_analysis: true,
78 max_distance: 5,
79 }
80 }
81}
82
83#[derive(Debug, Clone)]
85pub struct CrosstalkCharacterization {
86 pub device_id: String,
88 pub config: CrosstalkConfig,
90 pub crosstalk_matrix: Array2<f64>,
92 pub frequency_crosstalk: HashMap<(usize, usize), Array1<Complex64>>,
94 pub amplitude_crosstalk: HashMap<(usize, usize), Array1<f64>>,
96 pub spectral_signatures: SpectralCrosstalkAnalysis,
98 pub temporal_correlations: TemporalCrosstalkAnalysis,
100 pub spatial_patterns: SpatialCrosstalkAnalysis,
102 pub crosstalk_mechanisms: Vec<CrosstalkMechanism>,
104 pub mitigation_strategies: Vec<MitigationStrategy>,
106}
107
108#[derive(Debug, Clone)]
110pub struct SpectralCrosstalkAnalysis {
111 pub power_spectra: HashMap<(usize, usize), Array1<f64>>,
113 pub coherence_matrix: Array2<f64>,
115 pub dominant_frequencies: HashMap<(usize, usize), Vec<f64>>,
117 pub spectral_peaks: HashMap<(usize, usize), Vec<SpectralPeak>>,
119 pub transfer_functions: HashMap<(usize, usize), Array1<Complex64>>,
121}
122
123#[derive(Debug, Clone)]
125pub struct TemporalCrosstalkAnalysis {
126 pub cross_correlations: HashMap<(usize, usize), Array1<f64>>,
128 pub time_delays: HashMap<(usize, usize), f64>,
130 pub decay_constants: HashMap<(usize, usize), f64>,
132 pub temporal_clusters: Vec<TemporalCluster>,
134}
135
136#[derive(Debug, Clone)]
138pub struct SpatialCrosstalkAnalysis {
139 pub distance_decay: Array1<f64>,
141 pub directional_patterns: HashMap<String, Array2<f64>>,
143 pub crosstalk_hotspots: Vec<CrosstalkHotspot>,
145 pub propagation_analysis: PropagationAnalysis,
147}
148
149#[derive(Debug, Clone)]
151pub struct SpectralPeak {
152 pub frequency: f64,
153 pub amplitude: f64,
154 pub phase: f64,
155 pub width: f64,
156 pub significance: f64,
157}
158
159#[derive(Debug, Clone)]
161pub struct TemporalCluster {
162 pub start_time: f64,
163 pub duration: f64,
164 pub affected_qubits: Vec<usize>,
165 pub crosstalk_strength: f64,
166}
167
168#[derive(Debug, Clone)]
170pub struct CrosstalkHotspot {
171 pub center_qubit: usize,
172 pub affected_qubits: Vec<usize>,
173 pub radius: f64,
174 pub max_crosstalk: f64,
175 pub mechanism: Option<CrosstalkMechanism>,
176}
177
178#[derive(Debug, Clone)]
180pub struct PropagationAnalysis {
181 pub propagation_graph: Vec<(usize, usize, f64)>, pub critical_paths: Vec<Vec<usize>>,
185 pub propagation_times: HashMap<(usize, usize), f64>,
187 pub effective_topology: Array2<f64>,
189}
190
191#[derive(Debug, Clone)]
193pub struct CrosstalkMechanism {
194 pub mechanism_type: CrosstalkType,
195 pub affected_qubits: Vec<usize>,
196 pub strength: f64,
197 pub frequency_signature: Option<Array1<f64>>,
198 pub mitigation_difficulty: MitigationDifficulty,
199 pub description: String,
200}
201
202#[derive(Debug, Clone, PartialEq, Eq)]
204pub enum CrosstalkType {
205 CapacitiveCoupling,
207 InductiveCoupling,
209 ElectromagneticCoupling,
211 ControlLineCrosstalk,
213 ReadoutCrosstalk,
215 ZZInteraction,
217 HigherOrderCoupling,
219 Unknown,
221}
222
223#[derive(Debug, Clone, PartialEq, Eq)]
225pub enum MitigationDifficulty {
226 Easy,
227 Moderate,
228 Difficult,
229 VeryDifficult,
230}
231
232#[derive(Debug, Clone)]
234pub struct MitigationStrategy {
235 pub strategy_type: MitigationType,
236 pub target_qubits: Vec<usize>,
237 pub parameters: HashMap<String, f64>,
238 pub expected_improvement: f64,
239 pub implementation_complexity: f64,
240 pub description: String,
241}
242
243#[derive(Debug, Clone, PartialEq, Eq)]
245pub enum MitigationType {
246 FrequencyDetuning,
248 AmplitudeCompensation,
250 PhaseCorrection,
252 TemporalDecoupling,
254 SpatialIsolation,
256 ActiveCancellation,
258 EchoSequences,
260 CompositePulses,
262 CircuitRecompilation,
264}
265
266pub struct CrosstalkAnalyzer {
268 config: CrosstalkConfig,
269 device_topology: HardwareTopology,
270}
271
272impl CrosstalkAnalyzer {
273 pub const fn new(config: CrosstalkConfig, device_topology: HardwareTopology) -> Self {
275 Self {
276 config,
277 device_topology,
278 }
279 }
280
281 pub async fn characterize_crosstalk<E: CrosstalkExecutor>(
283 &self,
284 device_id: &str,
285 executor: &E,
286 ) -> DeviceResult<CrosstalkCharacterization> {
287 let crosstalk_matrix = self.measure_crosstalk_matrix(executor).await?;
289
290 let frequency_crosstalk = if self.config.enable_spectral_analysis {
292 self.characterize_frequency_crosstalk(executor).await?
293 } else {
294 HashMap::new()
295 };
296
297 let amplitude_crosstalk = self.characterize_amplitude_crosstalk(executor).await?;
299
300 let spectral_signatures = if self.config.enable_spectral_analysis {
302 self.perform_spectral_analysis(&frequency_crosstalk, executor)
303 .await?
304 } else {
305 SpectralCrosstalkAnalysis {
306 power_spectra: HashMap::new(),
307 coherence_matrix: Array2::zeros((0, 0)),
308 dominant_frequencies: HashMap::new(),
309 spectral_peaks: HashMap::new(),
310 transfer_functions: HashMap::new(),
311 }
312 };
313
314 let temporal_correlations = if self.config.enable_temporal_analysis {
316 self.analyze_temporal_correlations(executor).await?
317 } else {
318 TemporalCrosstalkAnalysis {
319 cross_correlations: HashMap::new(),
320 time_delays: HashMap::new(),
321 decay_constants: HashMap::new(),
322 temporal_clusters: Vec::new(),
323 }
324 };
325
326 let spatial_patterns = if self.config.enable_spatial_analysis {
328 self.analyze_spatial_patterns(&crosstalk_matrix)?
329 } else {
330 SpatialCrosstalkAnalysis {
331 distance_decay: Array1::zeros(0),
332 directional_patterns: HashMap::new(),
333 crosstalk_hotspots: Vec::new(),
334 propagation_analysis: PropagationAnalysis {
335 propagation_graph: Vec::new(),
336 critical_paths: Vec::new(),
337 propagation_times: HashMap::new(),
338 effective_topology: Array2::zeros((0, 0)),
339 },
340 }
341 };
342
343 let crosstalk_mechanisms = self.identify_mechanisms(
345 &crosstalk_matrix,
346 &frequency_crosstalk,
347 &spectral_signatures,
348 )?;
349
350 let mitigation_strategies = self.generate_mitigation_strategies(
352 &crosstalk_matrix,
353 &crosstalk_mechanisms,
354 &spatial_patterns,
355 )?;
356
357 Ok(CrosstalkCharacterization {
358 device_id: device_id.to_string(),
359 config: self.config.clone(),
360 crosstalk_matrix,
361 frequency_crosstalk,
362 amplitude_crosstalk,
363 spectral_signatures,
364 temporal_correlations,
365 spatial_patterns,
366 crosstalk_mechanisms,
367 mitigation_strategies,
368 })
369 }
370
371 async fn measure_crosstalk_matrix<E: CrosstalkExecutor>(
373 &self,
374 executor: &E,
375 ) -> DeviceResult<Array2<f64>> {
376 let num_qubits = self.device_topology.num_qubits;
377 let mut crosstalk_matrix = Array2::zeros((num_qubits, num_qubits));
378
379 for i in 0..num_qubits {
381 for j in 0..num_qubits {
382 if i != j {
383 let crosstalk_strength =
384 self.measure_pairwise_crosstalk(i, j, executor).await?;
385 crosstalk_matrix[[i, j]] = crosstalk_strength;
386 }
387 }
388 }
389
390 Ok(crosstalk_matrix)
391 }
392
393 async fn measure_pairwise_crosstalk<E: CrosstalkExecutor>(
395 &self,
396 source: usize,
397 target: usize,
398 executor: &E,
399 ) -> DeviceResult<f64> {
400 let prep_circuit = self.create_crosstalk_preparation_circuit(target)?;
402
403 let baseline_result = executor
405 .execute_crosstalk_circuit(&prep_circuit, vec![], self.config.shots_per_config)
406 .await?;
407
408 let source_operations = vec![CrosstalkOperation {
410 qubit: source,
411 operation_type: CrosstalkOperationType::ZRotation,
412 amplitude: 1.0,
413 frequency: 0.0,
414 phase: 0.0,
415 duration: 100.0, }];
417
418 let crosstalk_result = executor
419 .execute_crosstalk_circuit(
420 &prep_circuit,
421 source_operations,
422 self.config.shots_per_config,
423 )
424 .await?;
425
426 self.calculate_crosstalk_strength(&baseline_result, &crosstalk_result)
428 }
429
430 async fn characterize_frequency_crosstalk<E: CrosstalkExecutor>(
432 &self,
433 executor: &E,
434 ) -> DeviceResult<HashMap<(usize, usize), Array1<Complex64>>> {
435 let mut frequency_crosstalk = HashMap::new();
436 let num_qubits = self.device_topology.num_qubits;
437
438 let frequencies = self.generate_frequency_sweep();
440
441 for i in 0..num_qubits {
442 for j in 0..num_qubits {
443 if i != j {
444 let crosstalk_spectrum = self
445 .measure_frequency_response(i, j, &frequencies, executor)
446 .await?;
447 frequency_crosstalk.insert((i, j), crosstalk_spectrum);
448 }
449 }
450 }
451
452 Ok(frequency_crosstalk)
453 }
454
455 async fn measure_frequency_response(
457 &self,
458 source: usize,
459 target: usize,
460 frequencies: &[f64],
461 executor: &dyn CrosstalkExecutor,
462 ) -> DeviceResult<Array1<Complex64>> {
463 let mut response = Vec::new();
464
465 for &frequency in frequencies {
466 let source_operation = CrosstalkOperation {
468 qubit: source,
469 operation_type: CrosstalkOperationType::FrequencySweep,
470 amplitude: 0.5,
471 frequency,
472 phase: 0.0,
473 duration: 1000.0, };
475
476 let prep_circuit = self.create_ramsey_circuit(target, frequency)?;
478
479 let result = executor
480 .execute_crosstalk_circuit(
481 &prep_circuit,
482 vec![source_operation],
483 self.config.shots_per_config,
484 )
485 .await?;
486
487 let complex_response = self.extract_complex_response(&result, frequency)?;
489 response.push(complex_response);
490 }
491
492 Ok(Array1::from_vec(response))
493 }
494
495 async fn characterize_amplitude_crosstalk(
497 &self,
498 executor: &dyn CrosstalkExecutor,
499 ) -> DeviceResult<HashMap<(usize, usize), Array1<f64>>> {
500 let mut amplitude_crosstalk = HashMap::new();
501 let num_qubits = self.device_topology.num_qubits;
502
503 let amplitudes = self.generate_amplitude_sweep();
505
506 for i in 0..num_qubits {
507 for j in 0..num_qubits {
508 if i != j {
509 let mut crosstalk_vs_amplitude = Vec::new();
510
511 for &litude in &litudes {
512 let crosstalk = self
513 .measure_amplitude_crosstalk(i, j, amplitude, executor)
514 .await?;
515 crosstalk_vs_amplitude.push(crosstalk);
516 }
517
518 amplitude_crosstalk.insert((i, j), Array1::from_vec(crosstalk_vs_amplitude));
519 }
520 }
521 }
522
523 Ok(amplitude_crosstalk)
524 }
525
526 async fn measure_amplitude_crosstalk(
528 &self,
529 source: usize,
530 target: usize,
531 amplitude: f64,
532 executor: &dyn CrosstalkExecutor,
533 ) -> DeviceResult<f64> {
534 let prep_circuit = self.create_crosstalk_preparation_circuit(target)?;
535
536 let source_operation = CrosstalkOperation {
537 qubit: source,
538 operation_type: CrosstalkOperationType::AmplitudeSweep,
539 amplitude,
540 frequency: 0.0,
541 phase: 0.0,
542 duration: 100.0,
543 };
544
545 let result = executor
546 .execute_crosstalk_circuit(
547 &prep_circuit,
548 vec![source_operation],
549 self.config.shots_per_config,
550 )
551 .await?;
552
553 self.extract_crosstalk_magnitude(&result)
554 }
555
556 async fn perform_spectral_analysis(
558 &self,
559 frequency_crosstalk: &HashMap<(usize, usize), Array1<Complex64>>,
560 executor: &dyn CrosstalkExecutor,
561 ) -> DeviceResult<SpectralCrosstalkAnalysis> {
562 let mut power_spectra = HashMap::new();
563 let mut dominant_frequencies = HashMap::new();
564 let mut spectral_peaks = HashMap::new();
565 let mut transfer_functions = HashMap::new();
566
567 for (&(source, target), spectrum) in frequency_crosstalk {
569 let power_spectrum = spectrum.mapv(|c| c.norm_sqr());
571 power_spectra.insert((source, target), power_spectrum.clone());
572
573 let frequencies = self.generate_frequency_sweep();
575 let freq_array = Array1::from_vec(frequencies);
576
577 let peaks: Vec<usize> = (1..power_spectrum.len() - 1)
579 .filter(|&i| {
580 power_spectrum[i] > power_spectrum[i - 1]
581 && power_spectrum[i] > power_spectrum[i + 1]
582 })
583 .collect();
584 if !peaks.is_empty() {
585 let mut peak_list = Vec::new();
586 for &peak_idx in &peaks {
587 if peak_idx < spectrum.len() {
588 peak_list.push(SpectralPeak {
589 frequency: freq_array[peak_idx],
590 amplitude: spectrum[peak_idx].norm(),
591 phase: spectrum[peak_idx].arg(),
592 width: self.estimate_peak_width(&power_spectrum, peak_idx),
593 significance: self
594 .calculate_peak_significance(&power_spectrum, peak_idx),
595 });
596 }
597 }
598 spectral_peaks.insert((source, target), peak_list);
599
600 let dominant_freqs: Vec<f64> = peaks.iter()
602 .take(5) .map(|&idx| freq_array[idx])
604 .collect();
605 dominant_frequencies.insert((source, target), dominant_freqs);
606 }
607
608 transfer_functions.insert((source, target), spectrum.clone());
610 }
611
612 let coherence_matrix = self.calculate_coherence_matrix(frequency_crosstalk)?;
614
615 Ok(SpectralCrosstalkAnalysis {
616 power_spectra,
617 coherence_matrix,
618 dominant_frequencies,
619 spectral_peaks,
620 transfer_functions,
621 })
622 }
623
624 async fn analyze_temporal_correlations(
626 &self,
627 executor: &dyn CrosstalkExecutor,
628 ) -> DeviceResult<TemporalCrosstalkAnalysis> {
629 let num_qubits = self.device_topology.num_qubits;
630 let mut cross_correlations = HashMap::new();
631 let mut time_delays = HashMap::new();
632 let mut decay_constants = HashMap::new();
633
634 for i in 0..num_qubits {
636 for j in 0..num_qubits {
637 if i != j {
638 let (correlation, delay, decay) =
639 self.measure_temporal_response(i, j, executor).await?;
640
641 cross_correlations.insert((i, j), correlation);
642 time_delays.insert((i, j), delay);
643 decay_constants.insert((i, j), decay);
644 }
645 }
646 }
647
648 let temporal_clusters = self.identify_temporal_clusters(&cross_correlations)?;
650
651 Ok(TemporalCrosstalkAnalysis {
652 cross_correlations,
653 time_delays,
654 decay_constants,
655 temporal_clusters,
656 })
657 }
658
659 async fn measure_temporal_response(
661 &self,
662 source: usize,
663 target: usize,
664 executor: &dyn CrosstalkExecutor,
665 ) -> DeviceResult<(Array1<f64>, f64, f64)> {
666 let time_steps = 100;
667 let max_time = 10000.0; let dt = max_time / time_steps as f64;
669
670 let mut response_data = Vec::new();
671
672 for step in 0..time_steps {
674 let delay = step as f64 * dt;
675
676 let source_operation = CrosstalkOperation {
677 qubit: source,
678 operation_type: CrosstalkOperationType::DelayedPulse,
679 amplitude: 1.0,
680 frequency: 0.0,
681 phase: 0.0,
682 duration: 10.0, };
684
685 let prep_circuit = self.create_temporal_response_circuit(target, delay)?;
686
687 let result = executor
688 .execute_crosstalk_circuit(
689 &prep_circuit,
690 vec![source_operation],
691 1000, )
693 .await?;
694
695 let response = self.extract_response_magnitude(&result)?;
696 response_data.push(response);
697 }
698
699 let response_array = Array1::from_vec(response_data);
700
701 let stimulus = self.create_delta_stimulus(time_steps);
703 let correlation = if stimulus.len() == response_array.len() {
705 Array1::from_vec(vec![0.5; stimulus.len()]) } else {
707 Array1::from_vec(vec![0.0; stimulus.len().min(response_array.len())])
708 };
709
710 let max_idx = correlation
712 .iter()
713 .enumerate()
714 .max_by(|(_, a), (_, b)| a.partial_cmp(b).unwrap_or(std::cmp::Ordering::Equal))
715 .map_or(0, |(idx, _)| idx);
716
717 let time_delay = max_idx as f64 * dt;
718
719 let decay_constant = self.fit_exponential_decay(&response_array)?;
721
722 Ok((correlation, time_delay, decay_constant))
723 }
724
725 fn analyze_spatial_patterns(
727 &self,
728 crosstalk_matrix: &Array2<f64>,
729 ) -> DeviceResult<SpatialCrosstalkAnalysis> {
730 let num_qubits = self.device_topology.num_qubits;
731
732 let distance_decay = self.calculate_distance_decay(crosstalk_matrix)?;
734
735 let directional_patterns = self.identify_directional_patterns(crosstalk_matrix)?;
737
738 let crosstalk_hotspots = self.find_crosstalk_hotspots(crosstalk_matrix)?;
740
741 let propagation_analysis = self.analyze_crosstalk_propagation(crosstalk_matrix)?;
743
744 Ok(SpatialCrosstalkAnalysis {
745 distance_decay,
746 directional_patterns,
747 crosstalk_hotspots,
748 propagation_analysis,
749 })
750 }
751
752 fn identify_mechanisms(
754 &self,
755 crosstalk_matrix: &Array2<f64>,
756 frequency_crosstalk: &HashMap<(usize, usize), Array1<Complex64>>,
757 spectral_signatures: &SpectralCrosstalkAnalysis,
758 ) -> DeviceResult<Vec<CrosstalkMechanism>> {
759 let mut mechanisms = Vec::new();
760
761 for i in 0..crosstalk_matrix.nrows() {
763 for j in 0..crosstalk_matrix.ncols() {
764 if i != j && crosstalk_matrix[[i, j]] > 1e-6 {
765 if self.is_zz_interaction((i, j), crosstalk_matrix, frequency_crosstalk) {
769 mechanisms.push(CrosstalkMechanism {
770 mechanism_type: CrosstalkType::ZZInteraction,
771 affected_qubits: vec![i, j],
772 strength: crosstalk_matrix[[i, j]],
773 frequency_signature: None,
774 mitigation_difficulty: MitigationDifficulty::Moderate,
775 description: format!("Z-Z interaction between qubits {i} and {j}"),
776 });
777 }
778
779 if let Some(freq_data) = frequency_crosstalk.get(&(i, j)) {
781 if self.is_capacitive_coupling(freq_data) {
782 mechanisms.push(CrosstalkMechanism {
783 mechanism_type: CrosstalkType::CapacitiveCoupling,
784 affected_qubits: vec![i, j],
785 strength: crosstalk_matrix[[i, j]],
786 frequency_signature: Some(freq_data.mapv(|c| c.norm())),
787 mitigation_difficulty: MitigationDifficulty::Difficult,
788 description: format!(
789 "Capacitive coupling between qubits {i} and {j}"
790 ),
791 });
792 }
793 }
794
795 if let Some(peaks) = spectral_signatures.spectral_peaks.get(&(i, j)) {
797 if self.is_control_line_crosstalk(peaks) {
798 mechanisms.push(CrosstalkMechanism {
799 mechanism_type: CrosstalkType::ControlLineCrosstalk,
800 affected_qubits: vec![i, j],
801 strength: crosstalk_matrix[[i, j]],
802 frequency_signature: None,
803 mitigation_difficulty: MitigationDifficulty::Easy,
804 description: format!(
805 "Control line crosstalk between qubits {i} and {j}"
806 ),
807 });
808 }
809 }
810 }
811 }
812 }
813
814 Ok(mechanisms)
815 }
816
817 fn generate_mitigation_strategies(
819 &self,
820 crosstalk_matrix: &Array2<f64>,
821 mechanisms: &[CrosstalkMechanism],
822 spatial_patterns: &SpatialCrosstalkAnalysis,
823 ) -> DeviceResult<Vec<MitigationStrategy>> {
824 let mut strategies = Vec::new();
825
826 for mechanism in mechanisms {
827 match mechanism.mechanism_type {
828 CrosstalkType::ZZInteraction => {
829 strategies.push(MitigationStrategy {
831 strategy_type: MitigationType::EchoSequences,
832 target_qubits: mechanism.affected_qubits.clone(),
833 parameters: {
834 let mut params = HashMap::new();
835 params.insert("echo_period".to_string(), 100.0); params.insert("num_echoes".to_string(), 4.0);
837 params
838 },
839 expected_improvement: 0.8, implementation_complexity: 0.3,
841 description: "Echo sequences to suppress Z-Z interaction".to_string(),
842 });
843 }
844
845 CrosstalkType::CapacitiveCoupling => {
846 strategies.push(MitigationStrategy {
848 strategy_type: MitigationType::FrequencyDetuning,
849 target_qubits: mechanism.affected_qubits.clone(),
850 parameters: {
851 let mut params = HashMap::new();
852 params.insert("detuning_amount".to_string(), 10e6); params.insert("optimization_iterations".to_string(), 50.0);
854 params
855 },
856 expected_improvement: 0.6, implementation_complexity: 0.5,
858 description: "Frequency detuning to avoid resonant coupling".to_string(),
859 });
860 }
861
862 CrosstalkType::ControlLineCrosstalk => {
863 strategies.push(MitigationStrategy {
865 strategy_type: MitigationType::AmplitudeCompensation,
866 target_qubits: mechanism.affected_qubits.clone(),
867 parameters: {
868 let mut params = HashMap::new();
869 params.insert("compensation_factor".to_string(), -mechanism.strength);
870 params.insert("calibration_shots".to_string(), 10000.0);
871 params
872 },
873 expected_improvement: 0.9, implementation_complexity: 0.2,
875 description: "Amplitude compensation for control crosstalk".to_string(),
876 });
877 }
878
879 _ => {
880 strategies.push(MitigationStrategy {
882 strategy_type: MitigationType::TemporalDecoupling,
883 target_qubits: mechanism.affected_qubits.clone(),
884 parameters: {
885 let mut params = HashMap::new();
886 params.insert("minimum_separation".to_string(), 200.0); params
888 },
889 expected_improvement: 0.5, implementation_complexity: 0.1,
891 description: "Temporal decoupling to avoid simultaneous operations"
892 .to_string(),
893 });
894 }
895 }
896 }
897
898 for hotspot in &spatial_patterns.crosstalk_hotspots {
900 strategies.push(MitigationStrategy {
901 strategy_type: MitigationType::SpatialIsolation,
902 target_qubits: hotspot.affected_qubits.clone(),
903 parameters: {
904 let mut params = HashMap::new();
905 params.insert("isolation_radius".to_string(), hotspot.radius);
906 params.insert("max_crosstalk_threshold".to_string(), 0.01);
907 params
908 },
909 expected_improvement: 0.7,
910 implementation_complexity: 0.4,
911 description: format!(
912 "Spatial isolation around hotspot at qubit {}",
913 hotspot.center_qubit
914 ),
915 });
916 }
917
918 Ok(strategies)
919 }
920
921 fn create_crosstalk_preparation_circuit(&self, target: usize) -> DeviceResult<Circuit<8>> {
924 let mut circuit = Circuit::<8>::new();
925 let _ = circuit.h(QubitId(target as u32));
927 Ok(circuit)
928 }
929
930 fn create_ramsey_circuit(&self, target: usize, frequency: f64) -> DeviceResult<Circuit<8>> {
931 let mut circuit = Circuit::<8>::new();
932 let _ = circuit.h(QubitId(target as u32));
934 let _ = circuit.h(QubitId(target as u32));
936 Ok(circuit)
937 }
938
939 fn create_temporal_response_circuit(
940 &self,
941 target: usize,
942 delay: f64,
943 ) -> DeviceResult<Circuit<8>> {
944 let mut circuit = Circuit::<8>::new();
945 let _ = circuit.h(QubitId(target as u32));
947 Ok(circuit)
949 }
950
951 fn generate_frequency_sweep(&self) -> Vec<f64> {
952 let (start, end) = self.config.frequency_range;
953 let resolution = self.config.frequency_resolution;
954 let num_points = ((end - start) / resolution) as usize + 1;
955
956 (0..num_points)
957 .map(|i| (i as f64).mul_add(resolution, start))
958 .collect()
959 }
960
961 fn generate_amplitude_sweep(&self) -> Vec<f64> {
962 let (start, end) = self.config.amplitude_range;
963 let num_steps = self.config.amplitude_steps;
964
965 (0..num_steps)
966 .map(|i| start + (end - start) * i as f64 / (num_steps - 1) as f64)
967 .collect()
968 }
969
970 fn calculate_crosstalk_strength(
971 &self,
972 baseline: &CrosstalkResult,
973 crosstalk: &CrosstalkResult,
974 ) -> DeviceResult<f64> {
975 let baseline_expectation = self.calculate_expectation_value(baseline)?;
977 let crosstalk_expectation = self.calculate_expectation_value(crosstalk)?;
978
979 Ok((baseline_expectation - crosstalk_expectation).abs())
980 }
981
982 fn calculate_expectation_value(&self, result: &CrosstalkResult) -> DeviceResult<f64> {
983 let total_shots = result.counts.values().sum::<u64>() as f64;
984 if total_shots == 0.0 {
985 return Ok(0.0);
986 }
987
988 let expectation = result
989 .counts
990 .iter()
991 .map(|(state, count)| {
992 let state_value = if state == "0" { 1.0 } else { -1.0 };
993 state_value * (*count as f64 / total_shots)
994 })
995 .sum::<f64>();
996
997 Ok(expectation)
998 }
999
1000 fn extract_complex_response(
1001 &self,
1002 result: &CrosstalkResult,
1003 frequency: f64,
1004 ) -> DeviceResult<Complex64> {
1005 let expectation = self.calculate_expectation_value(result)?;
1007
1008 let amplitude = expectation.abs();
1011 let phase = 0.0; Ok(Complex64::from_polar(amplitude, phase))
1014 }
1015
1016 fn extract_crosstalk_magnitude(&self, result: &CrosstalkResult) -> DeviceResult<f64> {
1017 self.calculate_expectation_value(result)
1019 .map(|exp| exp.abs())
1020 }
1021
1022 fn extract_response_magnitude(&self, result: &CrosstalkResult) -> DeviceResult<f64> {
1023 self.calculate_expectation_value(result)
1025 .map(|exp| exp.abs())
1026 }
1027
1028 fn calculate_coherence_matrix(
1029 &self,
1030 frequency_crosstalk: &HashMap<(usize, usize), Array1<Complex64>>,
1031 ) -> DeviceResult<Array2<f64>> {
1032 let num_qubits = self.device_topology.num_qubits;
1033 let mut coherence_matrix = Array2::zeros((num_qubits, num_qubits));
1034
1035 for i in 0..num_qubits {
1037 for j in 0..num_qubits {
1038 if i != j {
1039 if let (Some(spec_i), Some(spec_j)) = (
1040 frequency_crosstalk.get(&(i, 0)),
1041 frequency_crosstalk.get(&(j, 0)),
1042 ) {
1043 let coherence = self.calculate_coherence(spec_i, spec_j)?;
1045 coherence_matrix[[i, j]] = coherence;
1046 }
1047 }
1048 }
1049 }
1050
1051 Ok(coherence_matrix)
1052 }
1053
1054 fn calculate_coherence(
1055 &self,
1056 signal1: &Array1<Complex64>,
1057 signal2: &Array1<Complex64>,
1058 ) -> DeviceResult<f64> {
1059 let cross_power = signal1
1063 .iter()
1064 .zip(signal2.iter())
1065 .map(|(s1, s2)| (s1 * s2.conj()).norm())
1066 .sum::<f64>();
1067
1068 let power1: f64 = signal1.iter().map(|s| s.norm_sqr()).sum();
1069 let power2: f64 = signal2.iter().map(|s| s.norm_sqr()).sum();
1070
1071 if power1 * power2 > 0.0 {
1072 Ok(cross_power / (power1 * power2).sqrt())
1073 } else {
1074 Ok(0.0)
1075 }
1076 }
1077
1078 fn estimate_peak_width(&self, spectrum: &Array1<f64>, peak_idx: usize) -> f64 {
1079 if peak_idx >= spectrum.len() {
1081 return 0.0;
1082 }
1083
1084 let peak_value = spectrum[peak_idx];
1085 let half_max = peak_value / 2.0;
1086
1087 let mut left_idx = peak_idx;
1089 let mut right_idx = peak_idx;
1090
1091 while left_idx > 0 && spectrum[left_idx] > half_max {
1092 left_idx -= 1;
1093 }
1094
1095 while right_idx < spectrum.len() - 1 && spectrum[right_idx] > half_max {
1096 right_idx += 1;
1097 }
1098
1099 (right_idx - left_idx) as f64 * self.config.frequency_resolution
1100 }
1101
1102 fn calculate_peak_significance(&self, spectrum: &Array1<f64>, peak_idx: usize) -> f64 {
1103 if peak_idx >= spectrum.len() {
1105 return 0.0;
1106 }
1107
1108 let peak_value = spectrum[peak_idx];
1109
1110 let window_size = 10;
1112 let start = peak_idx.saturating_sub(window_size);
1113 let end = (peak_idx + window_size).min(spectrum.len());
1114
1115 let surrounding_values: Vec<f64> = (start..end)
1116 .filter(|&i| (i as i32 - peak_idx as i32).abs() > 2)
1117 .map(|i| spectrum[i])
1118 .collect();
1119
1120 if surrounding_values.is_empty() {
1121 return 1.0;
1122 }
1123
1124 let noise_level = surrounding_values.iter().sum::<f64>() / surrounding_values.len() as f64;
1125 let noise_std = {
1126 let mean = noise_level;
1127 let variance = surrounding_values
1128 .iter()
1129 .map(|x| (x - mean).powi(2))
1130 .sum::<f64>()
1131 / surrounding_values.len() as f64;
1132 variance.sqrt()
1133 };
1134
1135 if noise_std > 0.0 {
1136 (peak_value - noise_level) / noise_std
1137 } else {
1138 peak_value / noise_level.max(1e-10)
1139 }
1140 }
1141
1142 fn create_delta_stimulus(&self, length: usize) -> Array1<f64> {
1143 let mut stimulus = Array1::zeros(length);
1144 if length > 0 {
1145 stimulus[0] = 1.0; }
1147 stimulus
1148 }
1149
1150 fn fit_exponential_decay(&self, data: &Array1<f64>) -> DeviceResult<f64> {
1151 if data.len() < 3 {
1155 return Ok(1000.0); }
1157
1158 let peak_idx = data
1160 .iter()
1161 .enumerate()
1162 .max_by(|(_, a), (_, b)| a.partial_cmp(b).unwrap_or(std::cmp::Ordering::Equal))
1163 .map_or(0, |(idx, _)| idx);
1164
1165 if peak_idx + 2 >= data.len() {
1166 return Ok(1000.0);
1167 }
1168
1169 let y1 = data[peak_idx];
1171 let y2 = data[peak_idx + 1];
1172
1173 if y1 > 0.0 && y2 > 0.0 && y1 > y2 {
1174 let dt = 100.0; let tau = -dt / (y2 / y1).ln();
1176 Ok(tau.max(10.0)) } else {
1178 Ok(1000.0)
1179 }
1180 }
1181
1182 fn identify_temporal_clusters(
1183 &self,
1184 correlations: &HashMap<(usize, usize), Array1<f64>>,
1185 ) -> DeviceResult<Vec<TemporalCluster>> {
1186 let mut clusters = Vec::new();
1188
1189 for (&(i, j), correlation) in correlations {
1191 let peaks = self.find_correlation_peaks(correlation)?;
1192
1193 for (peak_time, peak_strength) in peaks {
1194 clusters.push(TemporalCluster {
1195 start_time: peak_time - 50.0, duration: 100.0, affected_qubits: vec![i, j],
1198 crosstalk_strength: peak_strength,
1199 });
1200 }
1201 }
1202
1203 Ok(clusters)
1204 }
1205
1206 fn find_correlation_peaks(&self, correlation: &Array1<f64>) -> DeviceResult<Vec<(f64, f64)>> {
1207 let threshold = 0.1;
1209 let mut peaks = Vec::new();
1210
1211 for i in 1..correlation.len() - 1 {
1212 if correlation[i] > correlation[i - 1]
1213 && correlation[i] > correlation[i + 1]
1214 && correlation[i] > threshold
1215 {
1216 let time = i as f64 * 100.0; peaks.push((time, correlation[i]));
1218 }
1219 }
1220
1221 Ok(peaks)
1222 }
1223
1224 fn calculate_distance_decay(
1225 &self,
1226 crosstalk_matrix: &Array2<f64>,
1227 ) -> DeviceResult<Array1<f64>> {
1228 let max_distance = self.config.max_distance;
1230 let mut distance_decay = Array1::zeros(max_distance);
1231 let mut distance_counts = vec![0usize; max_distance];
1232
1233 for i in 0..crosstalk_matrix.nrows() {
1234 for j in 0..crosstalk_matrix.ncols() {
1235 if i != j {
1236 let distance = self.calculate_qubit_distance(i, j)?;
1237 if distance < max_distance && distance > 0 {
1238 distance_decay[distance] += crosstalk_matrix[[i, j]];
1239 distance_counts[distance] += 1;
1240 }
1241 }
1242 }
1243 }
1244
1245 for (distance, count) in distance_counts.iter().enumerate() {
1247 if *count > 0 {
1248 distance_decay[distance] /= *count as f64;
1249 }
1250 }
1251
1252 Ok(distance_decay)
1253 }
1254
1255 const fn calculate_qubit_distance(&self, qubit1: usize, qubit2: usize) -> DeviceResult<usize> {
1256 Ok((qubit1 as i32 - qubit2 as i32).unsigned_abs() as usize)
1261 }
1262
1263 fn identify_directional_patterns(
1264 &self,
1265 crosstalk_matrix: &Array2<f64>,
1266 ) -> DeviceResult<HashMap<String, Array2<f64>>> {
1267 let mut patterns = HashMap::new();
1268
1269 let mut asymmetry = crosstalk_matrix.clone();
1274 for i in 0..asymmetry.nrows() {
1275 for j in 0..asymmetry.ncols() {
1276 asymmetry[[i, j]] = crosstalk_matrix[[i, j]] - crosstalk_matrix[[j, i]];
1277 }
1278 }
1279 patterns.insert("asymmetry".to_string(), asymmetry);
1280
1281 Ok(patterns)
1282 }
1283
1284 fn find_crosstalk_hotspots(
1285 &self,
1286 crosstalk_matrix: &Array2<f64>,
1287 ) -> DeviceResult<Vec<CrosstalkHotspot>> {
1288 let mut hotspots = Vec::new();
1289 let threshold = 0.05; for i in 0..crosstalk_matrix.nrows() {
1292 let total_crosstalk: f64 = crosstalk_matrix.row(i).sum();
1294 let max_crosstalk = crosstalk_matrix
1295 .row(i)
1296 .fold(0.0_f64, |max, &val: &f64| max.max(val));
1297
1298 if max_crosstalk > threshold {
1299 let affected_qubits: Vec<usize> = crosstalk_matrix
1301 .row(i)
1302 .iter()
1303 .enumerate()
1304 .filter(|(_, &val)| val > threshold * 0.1)
1305 .map(|(j, _)| j)
1306 .collect();
1307
1308 hotspots.push(CrosstalkHotspot {
1309 center_qubit: i,
1310 affected_qubits,
1311 radius: 2.0, max_crosstalk,
1313 mechanism: None, });
1315 }
1316 }
1317
1318 Ok(hotspots)
1319 }
1320
1321 fn analyze_crosstalk_propagation(
1322 &self,
1323 crosstalk_matrix: &Array2<f64>,
1324 ) -> DeviceResult<PropagationAnalysis> {
1325 let mut propagation_graph = Vec::new();
1327 let threshold = 0.01;
1328
1329 for i in 0..crosstalk_matrix.nrows() {
1330 for j in 0..crosstalk_matrix.ncols() {
1331 if i != j && crosstalk_matrix[[i, j]] > threshold {
1332 propagation_graph.push((i, j, crosstalk_matrix[[i, j]]));
1333 }
1334 }
1335 }
1336
1337 let critical_paths = self.find_propagation_paths(&propagation_graph)?;
1339
1340 let mut propagation_times = HashMap::new();
1342 for &(source, target, strength) in &propagation_graph {
1343 let time = 100.0 / strength.max(0.001); propagation_times.insert((source, target), time);
1346 }
1347
1348 let effective_topology = crosstalk_matrix.clone();
1350
1351 Ok(PropagationAnalysis {
1352 propagation_graph,
1353 critical_paths,
1354 propagation_times,
1355 effective_topology,
1356 })
1357 }
1358
1359 fn find_propagation_paths(
1360 &self,
1361 graph: &[(usize, usize, f64)],
1362 ) -> DeviceResult<Vec<Vec<usize>>> {
1363 let mut paths = Vec::new();
1365
1366 let mut visited = HashSet::new();
1368
1369 for &(source, target, _) in graph {
1370 if visited.insert(source) {
1371 let path = vec![source, target]; paths.push(path);
1373 }
1374 }
1375
1376 Ok(paths)
1377 }
1378
1379 fn is_zz_interaction(
1382 &self,
1383 qubit_pair: (usize, usize),
1384 crosstalk_matrix: &Array2<f64>,
1385 frequency_crosstalk: &HashMap<(usize, usize), Array1<Complex64>>,
1386 ) -> bool {
1387 let (i, j) = qubit_pair;
1388
1389 let forward_crosstalk = crosstalk_matrix[[i, j]];
1395 let reverse_crosstalk = crosstalk_matrix[[j, i]];
1396 let symmetry = (forward_crosstalk - reverse_crosstalk).abs() / forward_crosstalk.max(1e-10);
1397
1398 let is_symmetric = symmetry < 0.2; let is_frequency_independent = if let Some(freq_data) = frequency_crosstalk.get(&(i, j)) {
1402 let amplitudes = freq_data.mapv(|c| c.norm());
1403 let variation = std(&litudes.view(), 1, None).unwrap_or(0.0);
1404 let mean_amp = mean(&litudes.view()).unwrap_or(1.0);
1405 variation / mean_amp < 0.1 } else {
1407 true };
1409
1410 is_symmetric && is_frequency_independent
1411 }
1412
1413 fn is_capacitive_coupling(&self, frequency_data: &Array1<Complex64>) -> bool {
1414 let amplitudes = frequency_data.mapv(|c| c.norm());
1416
1417 let variation = std(&litudes.view(), 1, None).unwrap_or(0.0);
1419 let mean_amp = mean(&litudes.view()).unwrap_or(1.0);
1420
1421 variation / mean_amp > 0.2 }
1423
1424 fn is_control_line_crosstalk(&self, peaks: &[SpectralPeak]) -> bool {
1425 peaks
1427 .iter()
1428 .any(|peak| peak.frequency > 1e9 && peak.significance > 3.0)
1429 }
1430}
1431
1432#[derive(Debug, Clone)]
1434pub struct CrosstalkOperation {
1435 pub qubit: usize,
1436 pub operation_type: CrosstalkOperationType,
1437 pub amplitude: f64,
1438 pub frequency: f64,
1439 pub phase: f64,
1440 pub duration: f64,
1441}
1442
1443#[derive(Debug, Clone, PartialEq, Eq)]
1445pub enum CrosstalkOperationType {
1446 ZRotation,
1447 FrequencySweep,
1448 AmplitudeSweep,
1449 DelayedPulse,
1450 ContinuousWave,
1451}
1452
1453#[derive(Debug, Clone)]
1455pub struct CrosstalkResult {
1456 pub counts: HashMap<String, u64>,
1457 pub shots: u64,
1458 pub metadata: HashMap<String, String>,
1459}
1460
1461#[async_trait::async_trait]
1463pub trait CrosstalkExecutor {
1464 async fn execute_crosstalk_circuit(
1465 &self,
1466 circuit: &Circuit<8>,
1467 operations: Vec<CrosstalkOperation>,
1468 shots: usize,
1469 ) -> DeviceResult<CrosstalkResult>;
1470}
1471
1472#[cfg(test)]
1473mod tests {
1474 use super::*;
1475 use crate::topology_analysis::create_standard_topology;
1476
1477 #[test]
1478 fn test_crosstalk_config_default() {
1479 let config = CrosstalkConfig::default();
1480 assert_eq!(config.shots_per_config, 10000);
1481 assert!(config.enable_spectral_analysis);
1482 }
1483
1484 #[test]
1485 fn test_frequency_sweep_generation() {
1486 let config = CrosstalkConfig {
1487 frequency_range: (4.0e9, 5.0e9),
1488 frequency_resolution: 1.0e8,
1489 ..Default::default()
1490 };
1491
1492 let topology =
1493 create_standard_topology("linear", 4).expect("Linear topology creation should succeed");
1494 let analyzer = CrosstalkAnalyzer::new(config, topology);
1495
1496 let frequencies = analyzer.generate_frequency_sweep();
1497 assert_eq!(frequencies.len(), 11); assert_eq!(frequencies[0], 4.0e9);
1499 assert_eq!(frequencies[10], 5.0e9);
1500 }
1501
1502 #[test]
1503 fn test_amplitude_sweep_generation() {
1504 let config = CrosstalkConfig {
1505 amplitude_range: (0.0, 1.0),
1506 amplitude_steps: 5,
1507 ..Default::default()
1508 };
1509
1510 let topology =
1511 create_standard_topology("linear", 4).expect("Linear topology creation should succeed");
1512 let analyzer = CrosstalkAnalyzer::new(config, topology);
1513
1514 let amplitudes = analyzer.generate_amplitude_sweep();
1515 assert_eq!(amplitudes.len(), 5);
1516 assert_eq!(amplitudes[0], 0.0);
1517 assert_eq!(amplitudes[4], 1.0);
1518 }
1519
1520 #[test]
1521 fn test_crosstalk_strength_calculation() {
1522 let topology =
1523 create_standard_topology("linear", 4).expect("Linear topology creation should succeed");
1524 let analyzer = CrosstalkAnalyzer::new(CrosstalkConfig::default(), topology);
1525
1526 let baseline = CrosstalkResult {
1527 counts: [("0".to_string(), 800), ("1".to_string(), 200)]
1528 .iter()
1529 .cloned()
1530 .collect(),
1531 shots: 1000,
1532 metadata: HashMap::new(),
1533 };
1534
1535 let crosstalk = CrosstalkResult {
1536 counts: [("0".to_string(), 600), ("1".to_string(), 400)]
1537 .iter()
1538 .cloned()
1539 .collect(),
1540 shots: 1000,
1541 metadata: HashMap::new(),
1542 };
1543
1544 let strength = analyzer
1545 .calculate_crosstalk_strength(&baseline, &crosstalk)
1546 .expect("Crosstalk strength calculation should succeed");
1547 assert!((strength - 0.4).abs() < 0.01); }
1549
1550 #[test]
1551 fn test_mechanism_identification() {
1552 let topology =
1553 create_standard_topology("linear", 4).expect("Linear topology creation should succeed");
1554 let analyzer = CrosstalkAnalyzer::new(CrosstalkConfig::default(), topology);
1555
1556 let mut crosstalk_matrix = Array2::zeros((4, 4));
1558 crosstalk_matrix[[0, 1]] = 0.1;
1559 crosstalk_matrix[[1, 0]] = 0.1; let frequency_crosstalk = HashMap::new();
1562 let spectral_signatures = SpectralCrosstalkAnalysis {
1563 power_spectra: HashMap::new(),
1564 coherence_matrix: Array2::zeros((4, 4)),
1565 dominant_frequencies: HashMap::new(),
1566 spectral_peaks: HashMap::new(),
1567 transfer_functions: HashMap::new(),
1568 };
1569
1570 let mechanisms = analyzer
1571 .identify_mechanisms(
1572 &crosstalk_matrix,
1573 &frequency_crosstalk,
1574 &spectral_signatures,
1575 )
1576 .expect("Mechanism identification should succeed");
1577
1578 assert!(!mechanisms.is_empty());
1579 assert_eq!(mechanisms[0].mechanism_type, CrosstalkType::ZZInteraction);
1580 }
1581}