quantrs2_device/
characterization.rs

1//! Hardware noise characterization protocols with SciRS2 analysis
2//!
3//! This module implements experimental protocols for characterizing quantum hardware,
4//! including process tomography, state tomography, randomized benchmarking, and advanced
5//! SciRS2-powered noise analysis for comprehensive hardware understanding.
6
7use quantrs2_circuit::prelude::*;
8use quantrs2_core::{
9    error::{QuantRS2Error, QuantRS2Result},
10    gate::{
11        single::{Hadamard, PauliX, PauliY, PauliZ, RotationY},
12        GateOp,
13    },
14    qubit::QubitId,
15};
16use scirs2_core::ndarray::{Array1, Array2, Array3, ArrayView1, ArrayView2};
17use scirs2_core::Complex64;
18use std::collections::HashMap;
19use std::time::{Duration, Instant, SystemTime, UNIX_EPOCH};
20
21// SciRS2 imports for advanced analysis
22#[cfg(feature = "scirs2")]
23use scirs2_linalg::{det, eig, inv, matrix_norm, qr, svd, trace, LinalgResult};
24#[cfg(feature = "scirs2")]
25use scirs2_optimize::{minimize, OptimizeResult};
26#[cfg(feature = "scirs2")]
27use scirs2_stats::{
28    distributions::{beta, chi2, gamma, norm},
29    ks_2samp, mean, pearsonr, spearmanr, std,
30    ttest::Alternative,
31    ttest_1samp, ttest_ind, var, TTestResult,
32};
33
34#[cfg(not(feature = "scirs2"))]
35use crate::ml_optimization::fallback_scirs2::{mean, minimize, pearsonr, std, var, OptimizeResult};
36
37use crate::{
38    calibration::{CalibrationManager, DeviceCalibration},
39    noise_modeling_scirs2::{SciRS2NoiseConfig, SciRS2NoiseModeler, StatisticalNoiseAnalysis},
40    topology::HardwareTopology,
41    CircuitResult, DeviceError, DeviceResult,
42};
43
44/// Process tomography for characterizing quantum operations
45pub struct ProcessTomography {
46    /// Number of qubits
47    num_qubits: usize,
48    /// Measurement basis
49    measurement_basis: Vec<String>,
50    /// Preparation basis
51    preparation_basis: Vec<String>,
52}
53
54impl ProcessTomography {
55    /// Create a new process tomography instance
56    pub fn new(num_qubits: usize) -> Self {
57        let bases = vec![
58            "I".to_string(),
59            "X".to_string(),
60            "Y".to_string(),
61            "Z".to_string(),
62        ];
63        Self {
64            num_qubits,
65            measurement_basis: bases.clone(),
66            preparation_basis: bases,
67        }
68    }
69
70    /// Generate preparation circuits for process tomography
71    pub fn preparation_circuits(&self) -> Vec<Vec<Box<dyn GateOp>>> {
72        let mut circuits = Vec::new();
73        let basis_size = self.preparation_basis.len();
74        let total_configs = basis_size.pow(self.num_qubits as u32);
75
76        for config in 0..total_configs {
77            let mut circuit = Vec::new();
78            let mut temp = config;
79
80            for qubit in 0..self.num_qubits {
81                let basis_idx = temp % basis_size;
82                temp /= basis_size;
83
84                match self.preparation_basis[basis_idx].as_str() {
85                    "I" => {} // Identity - no gate
86                    "X" => {
87                        // |+> state: H gate
88                        circuit.push(Box::new(Hadamard {
89                            target: QubitId::new(qubit as u32),
90                        }) as Box<dyn GateOp>);
91                    }
92                    "Y" => {
93                        // |+i> state: H, S†
94                        circuit.push(Box::new(Hadamard {
95                            target: QubitId::new(qubit as u32),
96                        }) as Box<dyn GateOp>);
97                        circuit.push(Box::new(RotationY {
98                            target: QubitId::new(qubit as u32),
99                            theta: std::f64::consts::PI / 2.0,
100                        }) as Box<dyn GateOp>);
101                    }
102                    "Z" | _ => {
103                        // |0> state - already prepared (or unrecognized basis)
104                    }
105                }
106            }
107
108            circuits.push(circuit);
109        }
110
111        circuits
112    }
113
114    /// Generate measurement circuits for process tomography
115    pub fn measurement_circuits(&self) -> Vec<Vec<Box<dyn GateOp>>> {
116        let mut circuits = Vec::new();
117        let basis_size = self.measurement_basis.len();
118        let total_configs = basis_size.pow(self.num_qubits as u32);
119
120        for config in 0..total_configs {
121            let mut circuit = Vec::new();
122            let mut temp = config;
123
124            for qubit in 0..self.num_qubits {
125                let basis_idx = temp % basis_size;
126                temp /= basis_size;
127
128                match self.measurement_basis[basis_idx].as_str() {
129                    "X" => {
130                        // X-basis: H before measurement
131                        circuit.push(Box::new(Hadamard {
132                            target: QubitId::new(qubit as u32),
133                        }) as Box<dyn GateOp>);
134                    }
135                    "Y" => {
136                        // Y-basis: S†H before measurement
137                        circuit.push(Box::new(RotationY {
138                            target: QubitId::new(qubit as u32),
139                            theta: -std::f64::consts::PI / 2.0,
140                        }) as Box<dyn GateOp>);
141                        circuit.push(Box::new(Hadamard {
142                            target: QubitId::new(qubit as u32),
143                        }) as Box<dyn GateOp>);
144                    }
145                    "I" | "Z" | _ => {} // Z-basis measurement (default) or unrecognized
146                }
147            }
148
149            circuits.push(circuit);
150        }
151
152        circuits
153    }
154
155    /// Reconstruct process matrix from measurement data
156    pub fn reconstruct_process_matrix(
157        &self,
158        measurement_data: &HashMap<(usize, usize), Vec<f64>>,
159    ) -> QuantRS2Result<Array2<Complex64>> {
160        let dim = 2_usize.pow(self.num_qubits as u32);
161        let super_dim = dim * dim;
162
163        // Build linear system for process reconstruction
164        let mut a_matrix = Array2::<f64>::zeros((super_dim * super_dim, super_dim * super_dim));
165        let mut b_vector = Array1::<f64>::zeros(super_dim * super_dim);
166
167        // Fill in measurement constraints
168        let prep_circuits = self.preparation_circuits();
169        let meas_circuits = self.measurement_circuits();
170
171        let mut constraint_idx = 0;
172        for (prep_idx, _prep) in prep_circuits.iter().enumerate() {
173            for (meas_idx, _meas) in meas_circuits.iter().enumerate() {
174                if let Some(probs) = measurement_data.get(&(prep_idx, meas_idx)) {
175                    // Add constraint for this preparation/measurement combination
176                    for (outcome_idx, &prob) in probs.iter().enumerate() {
177                        if constraint_idx < super_dim * super_dim {
178                            b_vector[constraint_idx] = prob;
179                            // TODO: Fill A matrix based on prep/meas basis
180                            constraint_idx += 1;
181                        }
182                    }
183                }
184            }
185        }
186
187        // Solve linear system (placeholder - would use actual linear algebra)
188        let chi_matrix = Array2::<Complex64>::zeros((super_dim, super_dim));
189
190        Ok(chi_matrix)
191    }
192}
193
194/// State tomography for reconstructing quantum states
195pub struct StateTomography {
196    /// Number of qubits
197    num_qubits: usize,
198    /// Measurement basis
199    measurement_basis: Vec<String>,
200}
201
202impl StateTomography {
203    /// Create a new state tomography instance
204    pub fn new(num_qubits: usize) -> Self {
205        Self {
206            num_qubits,
207            measurement_basis: vec!["X".to_string(), "Y".to_string(), "Z".to_string()],
208        }
209    }
210
211    /// Generate measurement circuits for state tomography
212    pub fn measurement_circuits(&self) -> Vec<Vec<Box<dyn GateOp>>> {
213        let mut circuits = Vec::new();
214        let basis_size = self.measurement_basis.len();
215        let total_configs = basis_size.pow(self.num_qubits as u32);
216
217        for config in 0..total_configs {
218            let mut circuit = Vec::new();
219            let mut temp = config;
220
221            for qubit in 0..self.num_qubits {
222                let basis_idx = temp % basis_size;
223                temp /= basis_size;
224
225                match self.measurement_basis[basis_idx].as_str() {
226                    "X" => {
227                        circuit.push(Box::new(Hadamard {
228                            target: QubitId::new(qubit as u32),
229                        }) as Box<dyn GateOp>);
230                    }
231                    "Y" => {
232                        circuit.push(Box::new(RotationY {
233                            target: QubitId::new(qubit as u32),
234                            theta: -std::f64::consts::PI / 2.0,
235                        }) as Box<dyn GateOp>);
236                        circuit.push(Box::new(Hadamard {
237                            target: QubitId::new(qubit as u32),
238                        }) as Box<dyn GateOp>);
239                    }
240                    "Z" | _ => {} // Z-basis measurement (default) or unrecognized
241                }
242            }
243
244            circuits.push(circuit);
245        }
246
247        circuits
248    }
249
250    /// Reconstruct density matrix from measurement data
251    pub fn reconstruct_density_matrix(
252        &self,
253        measurement_data: &HashMap<usize, Vec<f64>>,
254    ) -> QuantRS2Result<Array2<Complex64>> {
255        let dim = 2_usize.pow(self.num_qubits as u32);
256
257        // Maximum likelihood estimation for density matrix
258        let mut rho = Array2::<Complex64>::eye(dim) / dim as f64;
259
260        // Iterative optimization (placeholder)
261        for _iter in 0..100 {
262            // Update density matrix based on measurement data
263            // This would implement actual MLE or linear inversion
264        }
265
266        Ok(rho)
267    }
268}
269
270/// Randomized benchmarking for characterizing average gate fidelity
271pub struct RandomizedBenchmarking {
272    /// Target qubits
273    qubits: Vec<QubitId>,
274    /// Clifford group generators
275    clifford_group: Vec<String>,
276}
277
278impl RandomizedBenchmarking {
279    /// Create a new randomized benchmarking instance
280    pub fn new(qubits: Vec<QubitId>) -> Self {
281        Self {
282            qubits,
283            clifford_group: vec!["H", "S", "CNOT"]
284                .into_iter()
285                .map(String::from)
286                .collect(),
287        }
288    }
289
290    /// Generate random Clifford sequence of given length
291    pub fn generate_clifford_sequence(&self, length: usize) -> Vec<Box<dyn GateOp>> {
292        use scirs2_core::random::prelude::*;
293        let mut rng = thread_rng();
294        let mut sequence = Vec::new();
295
296        for _ in 0..length {
297            // Randomly select Clifford gate
298            let gate_idx = rng.gen_range(0..self.clifford_group.len());
299            match self.clifford_group[gate_idx].as_str() {
300                "H" => {
301                    let qubit = self.qubits[rng.gen_range(0..self.qubits.len())];
302                    sequence.push(Box::new(Hadamard { target: qubit }) as Box<dyn GateOp>);
303                }
304                "X" => {
305                    let qubit = self.qubits[rng.gen_range(0..self.qubits.len())];
306                    sequence.push(Box::new(PauliX { target: qubit }) as Box<dyn GateOp>);
307                }
308                "Y" => {
309                    let qubit = self.qubits[rng.gen_range(0..self.qubits.len())];
310                    sequence.push(Box::new(PauliY { target: qubit }) as Box<dyn GateOp>);
311                }
312                "Z" => {
313                    let qubit = self.qubits[rng.gen_range(0..self.qubits.len())];
314                    sequence.push(Box::new(PauliZ { target: qubit }) as Box<dyn GateOp>);
315                }
316                _ => {}
317            }
318        }
319
320        // Add recovery operation (inverse of the sequence)
321        // In practice, this would compute the actual inverse
322
323        sequence
324    }
325
326    /// Generate RB sequences for different lengths
327    pub fn generate_rb_circuits(
328        &self,
329        lengths: &[usize],
330        num_sequences: usize,
331    ) -> HashMap<usize, Vec<Vec<Box<dyn GateOp>>>> {
332        let mut circuits = HashMap::new();
333
334        for &length in lengths {
335            let mut length_circuits = Vec::new();
336            for _ in 0..num_sequences {
337                length_circuits.push(self.generate_clifford_sequence(length));
338            }
339            circuits.insert(length, length_circuits);
340        }
341
342        circuits
343    }
344
345    /// Extract error rate from RB data
346    pub fn extract_error_rate(&self, rb_data: &HashMap<usize, Vec<f64>>) -> QuantRS2Result<f64> {
347        // Fit exponential decay: p(m) = A * r^m + B
348        // where m is sequence length, r is related to error rate
349
350        let mut x_values = Vec::new();
351        let mut y_values = Vec::new();
352
353        for (&length, survival_probs) in rb_data {
354            let avg_survival = survival_probs.iter().sum::<f64>() / survival_probs.len() as f64;
355            x_values.push(length as f64);
356            y_values.push(avg_survival);
357        }
358
359        // Simple linear regression on log scale (placeholder)
360        // In practice, would use proper exponential fitting
361        let error_rate = 0.001; // Placeholder
362
363        Ok(error_rate)
364    }
365}
366
367/// Cross-talk characterization
368pub struct CrosstalkCharacterization {
369    /// Device topology
370    num_qubits: usize,
371}
372
373impl CrosstalkCharacterization {
374    /// Create a new crosstalk characterization instance
375    pub const fn new(num_qubits: usize) -> Self {
376        Self { num_qubits }
377    }
378
379    /// Generate simultaneous operation test circuits
380    pub fn generate_crosstalk_circuits(
381        &self,
382        target_qubit: QubitId,
383        spectator_qubits: &[QubitId],
384    ) -> Vec<Vec<Box<dyn GateOp>>> {
385        let mut circuits = Vec::new();
386
387        // Baseline: operation on target only
388        circuits.push(vec![Box::new(Hadamard {
389            target: target_qubit,
390        }) as Box<dyn GateOp>]);
391
392        // Test each spectator individually
393        for &spectator in spectator_qubits {
394            let mut circuit = vec![
395                Box::new(Hadamard {
396                    target: target_qubit,
397                }) as Box<dyn GateOp>,
398                Box::new(PauliX { target: spectator }) as Box<dyn GateOp>,
399            ];
400            circuits.push(circuit);
401        }
402
403        // Test all spectators simultaneously
404        let mut circuit = vec![Box::new(Hadamard {
405            target: target_qubit,
406        }) as Box<dyn GateOp>];
407        for &spectator in spectator_qubits {
408            circuit.push(Box::new(PauliX { target: spectator }) as Box<dyn GateOp>);
409        }
410        circuits.push(circuit);
411
412        circuits
413    }
414
415    /// Extract crosstalk matrix from measurement data
416    pub fn extract_crosstalk_matrix(
417        &self,
418        measurement_data: &HashMap<usize, Vec<f64>>,
419    ) -> QuantRS2Result<Array2<f64>> {
420        let mut crosstalk = Array2::<f64>::zeros((self.num_qubits, self.num_qubits));
421
422        // Analyze measurement data to extract crosstalk coefficients
423        // This is a placeholder - actual implementation would compare
424        // baseline vs simultaneous operation fidelities
425
426        Ok(crosstalk)
427    }
428}
429
430/// Drift tracking for monitoring parameter changes over time
431pub struct DriftTracker {
432    /// Parameters to track
433    tracked_params: Vec<String>,
434    /// Historical data
435    history: HashMap<String, Vec<(f64, f64)>>, // (timestamp, value)
436}
437
438impl DriftTracker {
439    /// Create a new drift tracker
440    pub fn new(params: Vec<String>) -> Self {
441        Self {
442            tracked_params: params,
443            history: HashMap::new(),
444        }
445    }
446
447    /// Add measurement data point
448    pub fn add_measurement(&mut self, param: &str, timestamp: f64, value: f64) {
449        self.history
450            .entry(param.to_string())
451            .or_default()
452            .push((timestamp, value));
453    }
454
455    /// Detect drift in parameter
456    pub fn detect_drift(&self, param: &str, window_size: usize) -> Option<f64> {
457        if let Some(history) = self.history.get(param) {
458            if history.len() < window_size * 2 {
459                return None;
460            }
461
462            // Compare recent window to earlier window
463            let recent_start = history.len() - window_size;
464            let early_end = history.len() - window_size;
465
466            let recent_avg: f64 =
467                history[recent_start..].iter().map(|(_, v)| v).sum::<f64>() / window_size as f64;
468
469            let early_avg: f64 = history[..early_end]
470                .iter()
471                .take(window_size)
472                .map(|(_, v)| v)
473                .sum::<f64>()
474                / window_size as f64;
475
476            Some((recent_avg - early_avg).abs())
477        } else {
478            None
479        }
480    }
481}
482
483/// Comprehensive SciRS2-powered hardware noise characterization
484#[derive(Debug, Clone)]
485pub struct AdvancedNoiseCharacterizer {
486    device_id: String,
487    calibration_manager: CalibrationManager,
488    noise_modeler: SciRS2NoiseModeler,
489    config: NoiseCharacterizationConfig,
490    measurement_history: HashMap<String, Vec<CharacterizationMeasurement>>,
491}
492
493/// Configuration for noise characterization protocols
494#[derive(Debug, Clone)]
495pub struct NoiseCharacterizationConfig {
496    /// Enable advanced statistical analysis
497    pub enable_advanced_statistics: bool,
498    /// Enable machine learning predictions
499    pub enable_ml_predictions: bool,
500    /// Enable real-time drift monitoring
501    pub enable_drift_monitoring: bool,
502    /// Frequency of characterization updates (hours)
503    pub update_frequency_hours: f64,
504    /// Confidence level for statistical tests
505    pub confidence_level: f64,
506    /// Number of repetitions for each protocol
507    pub protocol_repetitions: usize,
508    /// Enable crosstalk characterization
509    pub enable_crosstalk_analysis: bool,
510    /// Enable temporal correlation analysis
511    pub enable_temporal_analysis: bool,
512}
513
514impl Default for NoiseCharacterizationConfig {
515    fn default() -> Self {
516        Self {
517            enable_advanced_statistics: true,
518            enable_ml_predictions: true,
519            enable_drift_monitoring: true,
520            update_frequency_hours: 24.0,
521            confidence_level: 0.95,
522            protocol_repetitions: 100,
523            enable_crosstalk_analysis: true,
524            enable_temporal_analysis: true,
525        }
526    }
527}
528
529/// Individual characterization measurement
530#[derive(Debug, Clone)]
531pub struct CharacterizationMeasurement {
532    pub timestamp: SystemTime,
533    pub protocol_type: CharacterizationProtocol,
534    pub target_qubits: Vec<QubitId>,
535    pub measurement_type: String,
536    pub value: f64,
537    pub error: f64,
538    pub metadata: HashMap<String, String>,
539}
540
541/// Types of characterization protocols
542#[derive(Debug, Clone, PartialEq, Eq, Hash)]
543pub enum CharacterizationProtocol {
544    ProcessTomography,
545    StateTomography,
546    RandomizedBenchmarking,
547    CrosstalkCharacterization,
548    CoherenceDecay,
549    RabiOscillation,
550    EchoSequences,
551    PulsedGateCalibration,
552    ReadoutFidelity,
553    Custom(String),
554}
555
556/// Comprehensive characterization results with SciRS2 analysis
557#[derive(Debug, Clone)]
558pub struct ComprehensiveCharacterizationResult {
559    pub device_id: String,
560    pub timestamp: SystemTime,
561    pub protocol_results: HashMap<CharacterizationProtocol, ProtocolResult>,
562    pub statistical_analysis: AdvancedStatisticalAnalysis,
563    pub noise_model_update: Option<crate::noise_model::CalibrationNoiseModel>,
564    pub drift_analysis: Option<DriftAnalysisResult>,
565    pub crosstalk_analysis: Option<AdvancedCrosstalkAnalysis>,
566    pub predictive_models: Option<PredictiveModels>,
567    pub recommendations: Vec<CharacterizationRecommendation>,
568}
569
570/// Results from individual characterization protocols
571#[derive(Debug, Clone)]
572pub struct ProtocolResult {
573    pub protocol_type: CharacterizationProtocol,
574    pub success_rate: f64,
575    pub average_fidelity: f64,
576    pub error_rates: HashMap<String, f64>,
577    pub coherence_times: HashMap<QubitId, CoherenceMetrics>,
578    pub gate_fidelities: HashMap<String, f64>,
579    pub readout_fidelities: HashMap<QubitId, f64>,
580    pub execution_time: Duration,
581    pub raw_data: Option<Vec<f64>>,
582}
583
584/// Advanced statistical analysis using SciRS2
585#[derive(Debug, Clone)]
586pub struct AdvancedStatisticalAnalysis {
587    pub distribution_fits: HashMap<String, DistributionFitResult>,
588    pub correlation_analysis: CorrelationAnalysisResult,
589    pub hypothesis_tests: HashMap<String, StatisticalTestResult>,
590    pub outlier_detection: OutlierDetectionResult,
591    pub trend_analysis: TrendAnalysisResult,
592    pub confidence_intervals: HashMap<String, (f64, f64)>,
593}
594
595/// Drift analysis results
596#[derive(Debug, Clone)]
597pub struct DriftAnalysisResult {
598    pub drift_rates: HashMap<String, f64>,
599    pub trend_significance: HashMap<String, bool>,
600    pub change_points: HashMap<String, Vec<SystemTime>>,
601    pub forecast: HashMap<String, TimeSeriesForecast>,
602    pub stability_score: f64,
603}
604
605/// Advanced crosstalk analysis
606#[derive(Debug, Clone)]
607pub struct AdvancedCrosstalkAnalysis {
608    pub crosstalk_matrix: Array2<f64>,
609    pub significant_pairs: Vec<(QubitId, QubitId, f64)>,
610    pub spatial_patterns: SpatialCrosstalkPattern,
611    pub temporal_variations: HashMap<String, Array1<f64>>,
612    pub mitigation_strategies: Vec<CrosstalkMitigationStrategy>,
613}
614
615/// Predictive models for performance forecasting
616#[derive(Debug, Clone)]
617pub struct PredictiveModels {
618    pub fidelity_predictor: ModelPrediction,
619    pub coherence_predictor: ModelPrediction,
620    pub error_rate_predictor: ModelPrediction,
621    pub drift_predictor: ModelPrediction,
622    pub model_accuracy: HashMap<String, f64>,
623}
624
625/// Individual model predictions
626#[derive(Debug, Clone)]
627pub struct ModelPrediction {
628    pub predicted_values: Array1<f64>,
629    pub prediction_intervals: Array2<f64>,
630    pub feature_importance: HashMap<String, f64>,
631    pub model_type: String,
632    pub accuracy_metrics: ModelAccuracyMetrics,
633}
634
635/// Supporting data structures
636#[derive(Debug, Clone)]
637pub struct CoherenceMetrics {
638    pub t1: f64,
639    pub t2: f64,
640    pub t2_echo: f64,
641    pub thermal_population: f64,
642}
643
644#[derive(Debug, Clone)]
645pub struct DistributionFitResult {
646    pub distribution_name: String,
647    pub parameters: Vec<f64>,
648    pub goodness_of_fit: f64,
649    pub p_value: f64,
650    pub aic: f64,
651    pub bic: f64,
652}
653
654#[derive(Debug, Clone)]
655pub struct CorrelationAnalysisResult {
656    pub correlationmatrix: Array2<f64>,
657    pub significant_correlations: Vec<(String, String, f64, f64)>,
658    pub correlation_network: HashMap<String, Vec<String>>,
659}
660
661#[derive(Debug, Clone)]
662pub struct StatisticalTestResult {
663    pub test_name: String,
664    pub statistic: f64,
665    pub p_value: f64,
666    pub significant: bool,
667    pub effect_size: Option<f64>,
668    pub interpretation: String,
669}
670
671#[derive(Debug, Clone)]
672pub struct OutlierDetectionResult {
673    pub outliers: HashMap<String, Vec<usize>>,
674    pub outlier_scores: HashMap<String, Array1<f64>>,
675    pub outlier_threshold: f64,
676    pub detection_method: String,
677}
678
679#[derive(Debug, Clone)]
680pub struct TrendAnalysisResult {
681    pub trend_coefficients: HashMap<String, f64>,
682    pub trend_significance: HashMap<String, bool>,
683    pub seasonal_components: HashMap<String, Array1<f64>>,
684    pub residuals: HashMap<String, Array1<f64>>,
685}
686
687#[derive(Debug, Clone)]
688pub struct TimeSeriesForecast {
689    pub forecast_values: Array1<f64>,
690    pub forecast_intervals: Array2<f64>,
691    pub forecast_horizon: Duration,
692    pub model_confidence: f64,
693}
694
695#[derive(Debug, Clone)]
696pub struct SpatialCrosstalkPattern {
697    pub spatial_correlation: Array2<f64>,
698    pub decay_constants: HashMap<String, f64>,
699    pub dominant_frequencies: Array1<f64>,
700    pub anisotropy_parameters: HashMap<String, f64>,
701}
702
703#[derive(Debug, Clone)]
704pub struct CrosstalkMitigationStrategy {
705    pub strategy_type: String,
706    pub target_pairs: Vec<(QubitId, QubitId)>,
707    pub expected_improvement: f64,
708    pub implementation_cost: f64,
709    pub description: String,
710}
711
712#[derive(Debug, Clone)]
713pub struct ModelAccuracyMetrics {
714    pub rmse: f64,
715    pub mae: f64,
716    pub r_squared: f64,
717    pub cross_validation_score: f64,
718}
719
720#[derive(Debug, Clone)]
721pub struct CharacterizationRecommendation {
722    pub priority: RecommendationPriority,
723    pub category: RecommendationCategory,
724    pub description: String,
725    pub expected_impact: f64,
726    pub implementation_effort: f64,
727    pub urgency_score: f64,
728}
729
730#[derive(Debug, Clone, PartialEq, Eq)]
731pub enum RecommendationPriority {
732    Critical,
733    High,
734    Medium,
735    Low,
736}
737
738#[derive(Debug, Clone, PartialEq, Eq)]
739pub enum RecommendationCategory {
740    Calibration,
741    Maintenance,
742    Protocol,
743    Analysis,
744    Hardware,
745}
746
747impl AdvancedNoiseCharacterizer {
748    /// Create a new advanced noise characterizer
749    pub fn new(
750        device_id: String,
751        calibration_manager: CalibrationManager,
752        config: NoiseCharacterizationConfig,
753    ) -> Self {
754        let noise_config = SciRS2NoiseConfig {
755            enable_ml_modeling: config.enable_ml_predictions,
756            enable_temporal_modeling: config.enable_temporal_analysis,
757            enable_spatial_modeling: config.enable_crosstalk_analysis,
758            ..Default::default()
759        };
760
761        let noise_modeler = SciRS2NoiseModeler::with_config(device_id.clone(), noise_config);
762
763        Self {
764            device_id,
765            calibration_manager,
766            noise_modeler,
767            config,
768            measurement_history: HashMap::new(),
769        }
770    }
771
772    /// Perform comprehensive noise characterization
773    pub async fn perform_comprehensive_characterization<E: CharacterizationExecutor>(
774        &mut self,
775        executor: &E,
776    ) -> DeviceResult<ComprehensiveCharacterizationResult> {
777        let start_time = Instant::now();
778        let timestamp = SystemTime::now();
779
780        // Get current calibration
781        let calibration = self
782            .calibration_manager
783            .get_calibration(&self.device_id)
784            .ok_or_else(|| DeviceError::APIError("No calibration data available".into()))?;
785
786        // Run characterization protocols
787        let mut protocol_results = HashMap::new();
788
789        // Process tomography for critical gates
790        if let Ok(result) = self.run_process_tomography(executor, calibration).await {
791            protocol_results.insert(CharacterizationProtocol::ProcessTomography, result);
792        }
793
794        // Randomized benchmarking for error rates
795        if let Ok(result) = self
796            .run_randomized_benchmarking(executor, calibration)
797            .await
798        {
799            protocol_results.insert(CharacterizationProtocol::RandomizedBenchmarking, result);
800        }
801
802        // Coherence measurements
803        if let Ok(result) = self.run_coherence_measurements(executor, calibration).await {
804            protocol_results.insert(CharacterizationProtocol::CoherenceDecay, result);
805        }
806
807        // Crosstalk characterization
808        let crosstalk_analysis = if self.config.enable_crosstalk_analysis {
809            if let Ok(result) = self
810                .run_crosstalk_characterization(executor, calibration)
811                .await
812            {
813                protocol_results
814                    .insert(CharacterizationProtocol::CrosstalkCharacterization, result);
815                Some(self.analyze_crosstalk_patterns(calibration)?)
816            } else {
817                None
818            }
819        } else {
820            None
821        };
822
823        // Readout fidelity measurements
824        if let Ok(result) = self.run_readout_fidelity(executor, calibration).await {
825            protocol_results.insert(CharacterizationProtocol::ReadoutFidelity, result);
826        }
827
828        // Advanced statistical analysis
829        let statistical_analysis = self.perform_advanced_statistical_analysis(&protocol_results)?;
830
831        // Drift analysis
832        let drift_analysis = if self.config.enable_drift_monitoring {
833            Some(self.analyze_drift_patterns()?)
834        } else {
835            None
836        };
837
838        // Predictive modeling
839        let predictive_models = if self.config.enable_ml_predictions {
840            Some(self.build_predictive_models(&protocol_results, &statistical_analysis)?)
841        } else {
842            None
843        };
844
845        // Update noise model
846        let noise_model_update = self.update_noise_model(calibration, &protocol_results)?;
847
848        // Generate recommendations
849        let recommendations = self.generate_recommendations(
850            &protocol_results,
851            &statistical_analysis,
852            drift_analysis.as_ref(),
853            predictive_models.as_ref(),
854        )?;
855
856        Ok(ComprehensiveCharacterizationResult {
857            device_id: self.device_id.clone(),
858            timestamp,
859            protocol_results,
860            statistical_analysis,
861            noise_model_update: Some(noise_model_update),
862            drift_analysis,
863            crosstalk_analysis,
864            predictive_models,
865            recommendations,
866        })
867    }
868
869    /// Run process tomography on key gates
870    async fn run_process_tomography<E: CharacterizationExecutor>(
871        &self,
872        executor: &E,
873        calibration: &DeviceCalibration,
874    ) -> DeviceResult<ProtocolResult> {
875        let start_time = Instant::now();
876        let mut error_rates = HashMap::new();
877        let mut gate_fidelities = HashMap::new();
878        let mut raw_data = Vec::new();
879
880        // Test single-qubit gates
881        for gate_name in calibration.single_qubit_gates.keys() {
882            for qubit_id in 0..calibration.topology.num_qubits.min(4) {
883                let qubit = QubitId(qubit_id as u32);
884
885                // Create process tomography circuit
886                let circuit = Self::create_process_tomography_circuit(gate_name, vec![qubit])?;
887
888                // Execute circuit multiple times
889                let mut fidelities = Vec::new();
890                for _ in 0..self.config.protocol_repetitions.min(20) {
891                    match executor
892                        .execute_characterization_circuit(&circuit, 1000)
893                        .await
894                    {
895                        Ok(result) => {
896                            let fidelity = Self::calculate_process_fidelity(&result, gate_name)?;
897                            fidelities.push(fidelity);
898                            raw_data.push(fidelity);
899                        }
900                        Err(_) => continue,
901                    }
902                }
903
904                if !fidelities.is_empty() {
905                    let avg_fidelity = fidelities.iter().sum::<f64>() / fidelities.len() as f64;
906                    let error_rate = 1.0 - avg_fidelity;
907
908                    gate_fidelities.insert(format!("{gate_name}_{qubit_id}"), avg_fidelity);
909                    error_rates.insert(format!("{gate_name}_{qubit_id}"), error_rate);
910                }
911            }
912        }
913
914        // Test two-qubit gates
915        for (&(q1, q2), _) in calibration.two_qubit_gates.iter().take(6) {
916            let circuit = Self::create_process_tomography_circuit("CNOT", vec![q1, q2])?;
917
918            let mut fidelities = Vec::new();
919            for _ in 0..self.config.protocol_repetitions.min(10) {
920                match executor
921                    .execute_characterization_circuit(&circuit, 1000)
922                    .await
923                {
924                    Ok(result) => {
925                        let fidelity = Self::calculate_process_fidelity(&result, "CNOT")?;
926                        fidelities.push(fidelity);
927                        raw_data.push(fidelity);
928                    }
929                    Err(_) => continue,
930                }
931            }
932
933            if !fidelities.is_empty() {
934                let avg_fidelity = fidelities.iter().sum::<f64>() / fidelities.len() as f64;
935                let error_rate = 1.0 - avg_fidelity;
936
937                gate_fidelities.insert(format!("CNOT_{}_{}", q1.0, q2.0), avg_fidelity);
938                error_rates.insert(format!("CNOT_{}_{}", q1.0, q2.0), error_rate);
939            }
940        }
941
942        let avg_fidelity =
943            gate_fidelities.values().sum::<f64>() / gate_fidelities.len().max(1) as f64;
944        let success_rate = gate_fidelities.len() as f64
945            / (calibration.single_qubit_gates.len() + calibration.two_qubit_gates.len().min(6))
946                as f64;
947
948        Ok(ProtocolResult {
949            protocol_type: CharacterizationProtocol::ProcessTomography,
950            success_rate,
951            average_fidelity: avg_fidelity,
952            error_rates,
953            coherence_times: HashMap::new(),
954            gate_fidelities,
955            readout_fidelities: HashMap::new(),
956            execution_time: start_time.elapsed(),
957            raw_data: Some(raw_data),
958        })
959    }
960
961    /// Run randomized benchmarking
962    async fn run_randomized_benchmarking<E: CharacterizationExecutor>(
963        &self,
964        executor: &E,
965        calibration: &DeviceCalibration,
966    ) -> DeviceResult<ProtocolResult> {
967        let start_time = Instant::now();
968        let mut error_rates = HashMap::new();
969        let mut gate_fidelities = HashMap::new();
970        let mut raw_data = Vec::new();
971
972        // Test different sequence lengths
973        let lengths = vec![1, 2, 4, 8, 16, 32];
974
975        for qubit_id in 0..calibration.topology.num_qubits.min(4) {
976            let qubit = QubitId(qubit_id as u32);
977            let rb = RandomizedBenchmarking::new(vec![qubit]);
978
979            let mut survival_data = HashMap::new();
980
981            for &length in &lengths {
982                let circuits = rb.generate_rb_circuits(&[length], 10);
983                let mut survival_probs = Vec::new();
984
985                if let Some(length_circuits) = circuits.get(&length) {
986                    for circuit_gates in length_circuits {
987                        let circuit = self.convert_gates_to_circuit(circuit_gates)?;
988
989                        match executor
990                            .execute_characterization_circuit(&circuit, 1000)
991                            .await
992                        {
993                            Ok(result) => {
994                                let survival_prob = self.calculate_survival_probability(&result)?;
995                                survival_probs.push(survival_prob);
996                                raw_data.push(survival_prob);
997                            }
998                            Err(_) => continue,
999                        }
1000                    }
1001                }
1002
1003                if !survival_probs.is_empty() {
1004                    survival_data.insert(length, survival_probs);
1005                }
1006            }
1007
1008            // Extract error rate from RB data
1009            if let Ok(error_rate) = rb.extract_error_rate(&survival_data) {
1010                error_rates.insert(format!("RB_{qubit_id}"), error_rate);
1011                gate_fidelities.insert(format!("RB_fidelity_{qubit_id}"), 1.0 - error_rate);
1012            }
1013        }
1014
1015        let avg_fidelity =
1016            gate_fidelities.values().sum::<f64>() / gate_fidelities.len().max(1) as f64;
1017        let success_rate =
1018            gate_fidelities.len() as f64 / calibration.topology.num_qubits.min(4) as f64;
1019
1020        Ok(ProtocolResult {
1021            protocol_type: CharacterizationProtocol::RandomizedBenchmarking,
1022            success_rate,
1023            average_fidelity: avg_fidelity,
1024            error_rates,
1025            coherence_times: HashMap::new(),
1026            gate_fidelities,
1027            readout_fidelities: HashMap::new(),
1028            execution_time: start_time.elapsed(),
1029            raw_data: Some(raw_data),
1030        })
1031    }
1032
1033    /// Run coherence measurements
1034    async fn run_coherence_measurements<E: CharacterizationExecutor>(
1035        &self,
1036        executor: &E,
1037        calibration: &DeviceCalibration,
1038    ) -> DeviceResult<ProtocolResult> {
1039        let start_time = Instant::now();
1040        let mut coherence_times = HashMap::new();
1041        let mut raw_data = Vec::new();
1042
1043        // Measure T1 and T2 for each qubit
1044        for qubit_id in 0..calibration.topology.num_qubits.min(4) {
1045            let qubit = QubitId(qubit_id as u32);
1046
1047            // T1 measurement (energy decay)
1048            let t1_times = vec![0.0, 5000.0, 10000.0, 20000.0, 40000.0]; // nanoseconds
1049            let mut t1_data = Vec::new();
1050
1051            for &wait_time in &t1_times {
1052                let circuit = self.create_t1_measurement_circuit(qubit, wait_time)?;
1053
1054                match executor
1055                    .execute_characterization_circuit(&circuit, 1000)
1056                    .await
1057                {
1058                    Ok(result) => {
1059                        let population = self.calculate_excited_population(&result)?;
1060                        t1_data.push((wait_time, population));
1061                        raw_data.push(population);
1062                    }
1063                    Err(_) => continue,
1064                }
1065            }
1066
1067            // Fit exponential decay to extract T1
1068            let t1 = self.fit_exponential_decay(&t1_data)?;
1069
1070            // T2 measurement (dephasing with echo)
1071            let t2_times = vec![0.0, 2000.0, 5000.0, 10000.0, 20000.0]; // nanoseconds
1072            let mut t2_data = Vec::new();
1073
1074            for &wait_time in &t2_times {
1075                let circuit = self.create_t2_echo_circuit(qubit, wait_time)?;
1076
1077                match executor
1078                    .execute_characterization_circuit(&circuit, 1000)
1079                    .await
1080                {
1081                    Ok(result) => {
1082                        let coherence = self.calculate_coherence_amplitude(&result)?;
1083                        t2_data.push((wait_time, coherence));
1084                        raw_data.push(coherence);
1085                    }
1086                    Err(_) => continue,
1087                }
1088            }
1089
1090            let t2_echo = self.fit_exponential_decay(&t2_data)?;
1091
1092            coherence_times.insert(
1093                qubit,
1094                CoherenceMetrics {
1095                    t1,
1096                    t2: t2_echo * 0.5, // Approximate T2* from T2_echo
1097                    t2_echo,
1098                    thermal_population: 0.01, // Default value
1099                },
1100            );
1101        }
1102
1103        let avg_t1 = coherence_times.values().map(|c| c.t1).sum::<f64>()
1104            / coherence_times.len().max(1) as f64;
1105        let success_rate =
1106            coherence_times.len() as f64 / calibration.topology.num_qubits.min(4) as f64;
1107
1108        Ok(ProtocolResult {
1109            protocol_type: CharacterizationProtocol::CoherenceDecay,
1110            success_rate,
1111            average_fidelity: 0.99, // Placeholder
1112            error_rates: HashMap::new(),
1113            coherence_times,
1114            gate_fidelities: HashMap::new(),
1115            readout_fidelities: HashMap::new(),
1116            execution_time: start_time.elapsed(),
1117            raw_data: Some(raw_data),
1118        })
1119    }
1120
1121    /// Run crosstalk characterization
1122    async fn run_crosstalk_characterization<E: CharacterizationExecutor>(
1123        &self,
1124        executor: &E,
1125        calibration: &DeviceCalibration,
1126    ) -> DeviceResult<ProtocolResult> {
1127        let start_time = Instant::now();
1128        let mut error_rates = HashMap::new();
1129        let mut raw_data = Vec::new();
1130
1131        // Test crosstalk between adjacent qubits
1132        for (&(q1, q2), _) in calibration.two_qubit_gates.iter().take(6) {
1133            let crosstalk_char = CrosstalkCharacterization::new(calibration.topology.num_qubits);
1134            let circuits = crosstalk_char.generate_crosstalk_circuits(q1, &[q2]);
1135
1136            let mut baseline_fidelity = 0.0;
1137            let mut crosstalk_fidelity = 0.0;
1138
1139            for (circuit_idx, circuit_gates) in circuits.iter().enumerate() {
1140                let circuit = self.convert_gates_to_circuit(circuit_gates)?;
1141
1142                match executor
1143                    .execute_characterization_circuit(&circuit, 1000)
1144                    .await
1145                {
1146                    Ok(result) => {
1147                        let fidelity = Self::calculate_process_fidelity(&result, "crosstalk_test")?;
1148                        raw_data.push(fidelity);
1149
1150                        if circuit_idx == 0 {
1151                            baseline_fidelity = fidelity;
1152                        } else {
1153                            crosstalk_fidelity += fidelity;
1154                        }
1155                    }
1156                    Err(_) => continue,
1157                }
1158            }
1159
1160            if circuits.len() > 1 {
1161                crosstalk_fidelity /= (circuits.len() - 1) as f64;
1162                let crosstalk_error = baseline_fidelity - crosstalk_fidelity;
1163                error_rates.insert(
1164                    format!("crosstalk_{}_{}", q1.0, q2.0),
1165                    crosstalk_error.max(0.0),
1166                );
1167            }
1168        }
1169
1170        let avg_error = error_rates.values().sum::<f64>() / error_rates.len().max(1) as f64;
1171        let success_rate =
1172            error_rates.len() as f64 / calibration.two_qubit_gates.len().min(6) as f64;
1173
1174        Ok(ProtocolResult {
1175            protocol_type: CharacterizationProtocol::CrosstalkCharacterization,
1176            success_rate,
1177            average_fidelity: 1.0 - avg_error,
1178            error_rates,
1179            coherence_times: HashMap::new(),
1180            gate_fidelities: HashMap::new(),
1181            readout_fidelities: HashMap::new(),
1182            execution_time: start_time.elapsed(),
1183            raw_data: Some(raw_data),
1184        })
1185    }
1186
1187    /// Run readout fidelity measurements
1188    async fn run_readout_fidelity<E: CharacterizationExecutor>(
1189        &self,
1190        executor: &E,
1191        calibration: &DeviceCalibration,
1192    ) -> DeviceResult<ProtocolResult> {
1193        let start_time = Instant::now();
1194        let mut readout_fidelities = HashMap::new();
1195        let mut raw_data = Vec::new();
1196
1197        for qubit_id in 0..calibration.topology.num_qubits.min(4) {
1198            let qubit = QubitId(qubit_id as u32);
1199
1200            // Measure |0> state readout
1201            let circuit_0 = self.create_readout_circuit(qubit, false)?;
1202            let mut prob_0_given_0 = 0.0;
1203
1204            if let Ok(result) = executor
1205                .execute_characterization_circuit(&circuit_0, 1000)
1206                .await
1207            {
1208                prob_0_given_0 = self.calculate_state_probability(&result, false)?;
1209                raw_data.push(prob_0_given_0);
1210            }
1211
1212            // Measure |1> state readout
1213            let circuit_1 = self.create_readout_circuit(qubit, true)?;
1214            let mut prob_1_given_1 = 0.0;
1215
1216            if let Ok(result) = executor
1217                .execute_characterization_circuit(&circuit_1, 1000)
1218                .await
1219            {
1220                prob_1_given_1 = self.calculate_state_probability(&result, true)?;
1221                raw_data.push(prob_1_given_1);
1222            }
1223
1224            // Calculate readout fidelity
1225            let readout_fidelity = f64::midpoint(prob_0_given_0, prob_1_given_1);
1226            readout_fidelities.insert(qubit, readout_fidelity);
1227        }
1228
1229        let avg_fidelity =
1230            readout_fidelities.values().sum::<f64>() / readout_fidelities.len().max(1) as f64;
1231        let success_rate =
1232            readout_fidelities.len() as f64 / calibration.topology.num_qubits.min(4) as f64;
1233
1234        Ok(ProtocolResult {
1235            protocol_type: CharacterizationProtocol::ReadoutFidelity,
1236            success_rate,
1237            average_fidelity: avg_fidelity,
1238            error_rates: HashMap::new(),
1239            coherence_times: HashMap::new(),
1240            gate_fidelities: HashMap::new(),
1241            readout_fidelities,
1242            execution_time: start_time.elapsed(),
1243            raw_data: Some(raw_data),
1244        })
1245    }
1246
1247    /// Perform advanced statistical analysis using SciRS2
1248    fn perform_advanced_statistical_analysis(
1249        &self,
1250        protocol_results: &HashMap<CharacterizationProtocol, ProtocolResult>,
1251    ) -> DeviceResult<AdvancedStatisticalAnalysis> {
1252        let mut distribution_fits = HashMap::new();
1253        let mut hypothesis_tests = HashMap::new();
1254        let mut confidence_intervals = HashMap::new();
1255
1256        // Collect all measurement data
1257        let mut all_fidelities: Vec<f64> = Vec::new();
1258        let mut all_error_rates: Vec<f64> = Vec::new();
1259
1260        for result in protocol_results.values() {
1261            all_fidelities.extend(result.gate_fidelities.values());
1262            all_error_rates.extend(result.error_rates.values());
1263
1264            if let Some(ref raw_data) = result.raw_data {
1265                all_fidelities.extend(raw_data);
1266            }
1267        }
1268
1269        // Statistical analysis on fidelities
1270        if !all_fidelities.is_empty() {
1271            let fidelity_array = Array1::from_vec(all_fidelities.clone());
1272
1273            // Fit normal distribution
1274            let mean_fid = mean(&fidelity_array.view()).unwrap_or(0.9);
1275            let std_fid = std(&fidelity_array.view(), 1, None).unwrap_or(0.1);
1276
1277            distribution_fits.insert(
1278                "fidelity_normal".to_string(),
1279                DistributionFitResult {
1280                    distribution_name: "Normal".to_string(),
1281                    parameters: vec![mean_fid, std_fid],
1282                    goodness_of_fit: 0.9, // Would calculate actual GoF
1283                    p_value: 0.05,
1284                    aic: 100.0,
1285                    bic: 105.0,
1286                },
1287            );
1288
1289            // Calculate confidence interval
1290            let ci_margin = 1.96 * std_fid / (all_fidelities.len() as f64).sqrt();
1291            confidence_intervals.insert(
1292                "fidelity".to_string(),
1293                (mean_fid - ci_margin, mean_fid + ci_margin),
1294            );
1295
1296            // Test if fidelity meets threshold
1297            if fidelity_array.len() >= 8 {
1298                let threshold = 0.95;
1299                if let Ok(test_result) = ttest_1samp(
1300                    &fidelity_array.view(),
1301                    threshold,
1302                    Alternative::Greater,
1303                    "propagate",
1304                ) {
1305                    hypothesis_tests.insert(
1306                        "fidelity_threshold_test".to_string(),
1307                        StatisticalTestResult {
1308                            test_name: "One-sample t-test (fidelity > 0.95)".to_string(),
1309                            statistic: test_result.statistic,
1310                            p_value: test_result.pvalue,
1311                            significant: test_result.pvalue < 0.05,
1312                            effect_size: Some((mean_fid - threshold) / std_fid),
1313                            interpretation: if test_result.pvalue < 0.05 {
1314                                "Fidelity significantly exceeds threshold".to_string()
1315                            } else {
1316                                "Fidelity does not significantly exceed threshold".to_string()
1317                            },
1318                        },
1319                    );
1320                }
1321            }
1322        }
1323
1324        // Correlation analysis
1325        let correlation_analysis = Self::perform_correlation_analysis(protocol_results)?;
1326
1327        // Outlier detection
1328        let outlier_detection = Self::detect_outliers(protocol_results)?;
1329
1330        // Trend analysis
1331        let trend_analysis = Self::analyze_trends(protocol_results)?;
1332
1333        Ok(AdvancedStatisticalAnalysis {
1334            distribution_fits,
1335            correlation_analysis,
1336            hypothesis_tests,
1337            outlier_detection,
1338            trend_analysis,
1339            confidence_intervals,
1340        })
1341    }
1342
1343    /// Additional helper methods for the characterization system...
1344    /// (Implementation details for circuit creation, data analysis, etc.)
1345    fn create_process_tomography_circuit(
1346        gate_name: &str,
1347        qubits: Vec<QubitId>,
1348    ) -> DeviceResult<Circuit<8>> {
1349        let mut circuit = Circuit::<8>::new();
1350
1351        // Add preparation
1352        if !qubits.is_empty() {
1353            let _ = circuit.h(qubits[0]);
1354        }
1355
1356        // Add target gate
1357        match gate_name {
1358            "H" => {
1359                if !qubits.is_empty() {
1360                    let _ = circuit.h(qubits[0]);
1361                }
1362            }
1363            "X" => {
1364                if !qubits.is_empty() {
1365                    let _ = circuit.x(qubits[0]);
1366                }
1367            }
1368            "CNOT" => {
1369                if qubits.len() >= 2 {
1370                    let _ = circuit.cnot(qubits[0], qubits[1]);
1371                }
1372            }
1373            _ => return Err(DeviceError::UnsupportedOperation(gate_name.to_string())),
1374        }
1375
1376        // Add measurement preparation
1377        if !qubits.is_empty() {
1378            let _ = circuit.h(qubits[0]);
1379        }
1380
1381        Ok(circuit)
1382    }
1383
1384    fn calculate_process_fidelity(result: &CircuitResult, _gate_name: &str) -> DeviceResult<f64> {
1385        // Simplified fidelity calculation
1386        let total_shots = result.shots as f64;
1387        let successful_outcomes = result
1388            .counts
1389            .values()
1390            .map(|&count| count as f64)
1391            .sum::<f64>();
1392        Ok(successful_outcomes / total_shots)
1393    }
1394
1395    // Additional helper methods would be implemented here...
1396
1397    fn perform_correlation_analysis(
1398        _protocol_results: &HashMap<CharacterizationProtocol, ProtocolResult>,
1399    ) -> DeviceResult<CorrelationAnalysisResult> {
1400        // Placeholder implementation
1401        Ok(CorrelationAnalysisResult {
1402            correlationmatrix: Array2::eye(3),
1403            significant_correlations: Vec::new(),
1404            correlation_network: HashMap::new(),
1405        })
1406    }
1407
1408    fn detect_outliers(
1409        _protocol_results: &HashMap<CharacterizationProtocol, ProtocolResult>,
1410    ) -> DeviceResult<OutlierDetectionResult> {
1411        // Placeholder implementation
1412        Ok(OutlierDetectionResult {
1413            outliers: HashMap::new(),
1414            outlier_scores: HashMap::new(),
1415            outlier_threshold: 3.0,
1416            detection_method: "IQR".to_string(),
1417        })
1418    }
1419
1420    fn analyze_trends(
1421        _protocol_results: &HashMap<CharacterizationProtocol, ProtocolResult>,
1422    ) -> DeviceResult<TrendAnalysisResult> {
1423        // Placeholder implementation
1424        Ok(TrendAnalysisResult {
1425            trend_coefficients: HashMap::new(),
1426            trend_significance: HashMap::new(),
1427            seasonal_components: HashMap::new(),
1428            residuals: HashMap::new(),
1429        })
1430    }
1431
1432    fn analyze_drift_patterns(&self) -> DeviceResult<DriftAnalysisResult> {
1433        // Placeholder implementation
1434        Ok(DriftAnalysisResult {
1435            drift_rates: HashMap::new(),
1436            trend_significance: HashMap::new(),
1437            change_points: HashMap::new(),
1438            forecast: HashMap::new(),
1439            stability_score: 0.9,
1440        })
1441    }
1442
1443    fn analyze_crosstalk_patterns(
1444        &self,
1445        calibration: &DeviceCalibration,
1446    ) -> DeviceResult<AdvancedCrosstalkAnalysis> {
1447        let n = calibration.topology.num_qubits;
1448
1449        Ok(AdvancedCrosstalkAnalysis {
1450            crosstalk_matrix: {
1451                let matrix = &calibration.crosstalk_matrix.matrix;
1452                let rows = matrix.len();
1453                let cols = if rows > 0 { matrix[0].len() } else { 0 };
1454                let flat: Vec<f64> = matrix.iter().flatten().copied().collect();
1455                Array2::from_shape_vec((rows, cols), flat).unwrap_or_else(|_| Array2::eye(n))
1456            },
1457            significant_pairs: Vec::new(),
1458            spatial_patterns: SpatialCrosstalkPattern {
1459                spatial_correlation: Array2::eye(n),
1460                decay_constants: HashMap::new(),
1461                dominant_frequencies: Array1::zeros(5),
1462                anisotropy_parameters: HashMap::new(),
1463            },
1464            temporal_variations: HashMap::new(),
1465            mitigation_strategies: Vec::new(),
1466        })
1467    }
1468
1469    fn build_predictive_models(
1470        &self,
1471        _protocol_results: &HashMap<CharacterizationProtocol, ProtocolResult>,
1472        _statistical_analysis: &AdvancedStatisticalAnalysis,
1473    ) -> DeviceResult<PredictiveModels> {
1474        // Placeholder implementation
1475        Ok(PredictiveModels {
1476            fidelity_predictor: ModelPrediction {
1477                predicted_values: Array1::from_vec(vec![0.95, 0.94, 0.93]),
1478                prediction_intervals: Array2::from_shape_vec(
1479                    (3, 2),
1480                    vec![0.93, 0.97, 0.92, 0.96, 0.91, 0.95],
1481                )
1482                .expect("prediction_intervals shape is always valid"),
1483                feature_importance: HashMap::new(),
1484                model_type: "Linear Regression".to_string(),
1485                accuracy_metrics: ModelAccuracyMetrics {
1486                    rmse: 0.01,
1487                    mae: 0.005,
1488                    r_squared: 0.8,
1489                    cross_validation_score: 0.75,
1490                },
1491            },
1492            coherence_predictor: ModelPrediction {
1493                predicted_values: Array1::from_vec(vec![50000.0, 48000.0, 46000.0]),
1494                prediction_intervals: Array2::from_shape_vec(
1495                    (3, 2),
1496                    vec![48000.0, 52000.0, 46000.0, 50000.0, 44000.0, 48000.0],
1497                )
1498                .expect("prediction_intervals shape is always valid"),
1499                feature_importance: HashMap::new(),
1500                model_type: "Random Forest".to_string(),
1501                accuracy_metrics: ModelAccuracyMetrics {
1502                    rmse: 2000.0,
1503                    mae: 1500.0,
1504                    r_squared: 0.85,
1505                    cross_validation_score: 0.82,
1506                },
1507            },
1508            error_rate_predictor: ModelPrediction {
1509                predicted_values: Array1::from_vec(vec![0.001, 0.0012, 0.0015]),
1510                prediction_intervals: Array2::from_shape_vec(
1511                    (3, 2),
1512                    vec![0.0008, 0.0012, 0.001, 0.0014, 0.0012, 0.0018],
1513                )
1514                .expect("prediction_intervals shape is always valid"),
1515                feature_importance: HashMap::new(),
1516                model_type: "Support Vector Regression".to_string(),
1517                accuracy_metrics: ModelAccuracyMetrics {
1518                    rmse: 0.0002,
1519                    mae: 0.0001,
1520                    r_squared: 0.7,
1521                    cross_validation_score: 0.68,
1522                },
1523            },
1524            drift_predictor: ModelPrediction {
1525                predicted_values: Array1::from_vec(vec![0.0001, 0.0002, 0.0003]),
1526                prediction_intervals: Array2::from_shape_vec(
1527                    (3, 2),
1528                    vec![0.00005, 0.00015, 0.00015, 0.00025, 0.00025, 0.00035],
1529                )
1530                .expect("prediction_intervals shape is always valid"),
1531                feature_importance: HashMap::new(),
1532                model_type: "ARIMA".to_string(),
1533                accuracy_metrics: ModelAccuracyMetrics {
1534                    rmse: 0.00005,
1535                    mae: 0.00003,
1536                    r_squared: 0.6,
1537                    cross_validation_score: 0.55,
1538                },
1539            },
1540            model_accuracy: [
1541                ("fidelity".to_string(), 0.8),
1542                ("coherence".to_string(), 0.85),
1543                ("error_rate".to_string(), 0.7),
1544                ("drift".to_string(), 0.6),
1545            ]
1546            .iter()
1547            .cloned()
1548            .collect(),
1549        })
1550    }
1551
1552    fn update_noise_model(
1553        &self,
1554        calibration: &DeviceCalibration,
1555        _protocol_results: &HashMap<CharacterizationProtocol, ProtocolResult>,
1556    ) -> DeviceResult<crate::noise_model::CalibrationNoiseModel> {
1557        self.noise_modeler.model_noise(calibration)
1558    }
1559
1560    fn generate_recommendations(
1561        &self,
1562        protocol_results: &HashMap<CharacterizationProtocol, ProtocolResult>,
1563        statistical_analysis: &AdvancedStatisticalAnalysis,
1564        drift_analysis: Option<&DriftAnalysisResult>,
1565        _predictive_models: Option<&PredictiveModels>,
1566    ) -> DeviceResult<Vec<CharacterizationRecommendation>> {
1567        let mut recommendations = Vec::new();
1568
1569        // Check overall fidelity
1570        let avg_fidelity = protocol_results
1571            .values()
1572            .map(|r| r.average_fidelity)
1573            .sum::<f64>()
1574            / protocol_results.len().max(1) as f64;
1575
1576        if avg_fidelity < 0.9 {
1577            recommendations.push(CharacterizationRecommendation {
1578                priority: RecommendationPriority::High,
1579                category: RecommendationCategory::Calibration,
1580                description: "Overall fidelity below target. Consider recalibration.".to_string(),
1581                expected_impact: 0.8,
1582                implementation_effort: 0.6,
1583                urgency_score: 0.9,
1584            });
1585        }
1586
1587        // Check for significant drift
1588        if let Some(drift) = drift_analysis {
1589            if drift.stability_score < 0.8 {
1590                recommendations.push(CharacterizationRecommendation {
1591                    priority: RecommendationPriority::Medium,
1592                    category: RecommendationCategory::Maintenance,
1593                    description: "Parameter drift detected. Increase monitoring frequency."
1594                        .to_string(),
1595                    expected_impact: 0.7,
1596                    implementation_effort: 0.3,
1597                    urgency_score: 0.6,
1598                });
1599            }
1600        }
1601
1602        // Check statistical significance
1603        for (test_name, test_result) in &statistical_analysis.hypothesis_tests {
1604            if !test_result.significant && test_name.contains("threshold") {
1605                recommendations.push(CharacterizationRecommendation {
1606                    priority: RecommendationPriority::Medium,
1607                    category: RecommendationCategory::Analysis,
1608                    description: format!(
1609                        "Statistical test '{test_name}' not significant. Review protocols."
1610                    ),
1611                    expected_impact: 0.5,
1612                    implementation_effort: 0.4,
1613                    urgency_score: 0.4,
1614                });
1615            }
1616        }
1617
1618        Ok(recommendations)
1619    }
1620
1621    // Additional helper methods for circuit creation and analysis
1622    fn convert_gates_to_circuit(&self, gates: &[Box<dyn GateOp>]) -> DeviceResult<Circuit<8>> {
1623        let mut circuit = Circuit::<8>::new();
1624        // Convert gate operations to circuit - simplified implementation
1625        Ok(circuit)
1626    }
1627
1628    fn calculate_survival_probability(&self, result: &CircuitResult) -> DeviceResult<f64> {
1629        let total_shots = result.shots as f64;
1630        let ground_state_count = result.counts.get("0").unwrap_or(&0);
1631        Ok(*ground_state_count as f64 / total_shots)
1632    }
1633
1634    fn create_t1_measurement_circuit(
1635        &self,
1636        qubit: QubitId,
1637        wait_time: f64,
1638    ) -> DeviceResult<Circuit<8>> {
1639        let mut circuit = Circuit::<8>::new();
1640        let _ = circuit.x(qubit); // Prepare excited state
1641                                  // Add wait time (would be implemented with delays in real hardware)
1642        Ok(circuit)
1643    }
1644
1645    fn create_t2_echo_circuit(&self, qubit: QubitId, wait_time: f64) -> DeviceResult<Circuit<8>> {
1646        let mut circuit = Circuit::<8>::new();
1647        let _ = circuit.h(qubit); // Create superposition
1648                                  // Add echo sequence with wait time
1649        let _ = circuit.h(qubit); // Return to computational basis
1650        Ok(circuit)
1651    }
1652
1653    fn calculate_excited_population(&self, result: &CircuitResult) -> DeviceResult<f64> {
1654        let total_shots = result.shots as f64;
1655        let excited_count = result.counts.get("1").unwrap_or(&0);
1656        Ok(*excited_count as f64 / total_shots)
1657    }
1658
1659    fn calculate_coherence_amplitude(&self, result: &CircuitResult) -> DeviceResult<f64> {
1660        // Simplified coherence calculation
1661        let total_shots = result.shots as f64;
1662        let coherent_count = result.counts.values().max().unwrap_or(&0);
1663        Ok(*coherent_count as f64 / total_shots)
1664    }
1665
1666    fn fit_exponential_decay(&self, data: &[(f64, f64)]) -> DeviceResult<f64> {
1667        // Simplified exponential fitting - would use proper optimization
1668        if data.len() < 2 {
1669            return Ok(50000.0); // Default value
1670        }
1671
1672        // Simple linear fit on log scale
1673        let mut sum_x = 0.0;
1674        let mut sum_y = 0.0;
1675        let mut sum_xy = 0.0;
1676        let mut sum_x2 = 0.0;
1677        let n = data.len() as f64;
1678
1679        for &(x, y) in data {
1680            let log_y = (y.max(1e-6)).ln();
1681            sum_x += x;
1682            sum_y += log_y;
1683            sum_xy += x * log_y;
1684            sum_x2 += x * x;
1685        }
1686
1687        let slope = n.mul_add(sum_xy, -(sum_x * sum_y)) / n.mul_add(sum_x2, -(sum_x * sum_x));
1688        let decay_constant = -1.0 / slope;
1689
1690        Ok(decay_constant.abs().clamp(1000.0, 200_000.0)) // Reasonable bounds
1691    }
1692
1693    fn create_readout_circuit(
1694        &self,
1695        qubit: QubitId,
1696        excited_state: bool,
1697    ) -> DeviceResult<Circuit<8>> {
1698        let mut circuit = Circuit::<8>::new();
1699        if excited_state {
1700            let _ = circuit.x(qubit); // Prepare |1> state
1701        }
1702        // |0> state is prepared by default
1703        Ok(circuit)
1704    }
1705
1706    fn calculate_state_probability(
1707        &self,
1708        result: &CircuitResult,
1709        target_state: bool,
1710    ) -> DeviceResult<f64> {
1711        let total_shots = result.shots as f64;
1712        let target_key = if target_state { "1" } else { "0" };
1713        let target_count = result.counts.get(target_key).unwrap_or(&0);
1714        Ok(*target_count as f64 / total_shots)
1715    }
1716}
1717
1718/// Trait for executing characterization circuits
1719#[async_trait::async_trait]
1720pub trait CharacterizationExecutor {
1721    async fn execute_characterization_circuit<const N: usize>(
1722        &self,
1723        circuit: &Circuit<N>,
1724        shots: usize,
1725    ) -> DeviceResult<CircuitResult>;
1726}
1727
1728#[cfg(test)]
1729mod tests {
1730    use super::*;
1731
1732    #[test]
1733    fn test_process_tomography_circuits() {
1734        let tomo = ProcessTomography::new(1);
1735        let prep_circuits = tomo.preparation_circuits();
1736        let meas_circuits = tomo.measurement_circuits();
1737
1738        assert_eq!(prep_circuits.len(), 4); // 4^1 preparation states
1739        assert_eq!(meas_circuits.len(), 4); // 4^1 measurement bases
1740    }
1741
1742    #[test]
1743    fn test_state_tomography_circuits() {
1744        let tomo = StateTomography::new(2);
1745        let circuits = tomo.measurement_circuits();
1746
1747        assert_eq!(circuits.len(), 9); // 3^2 measurement configurations
1748    }
1749
1750    #[test]
1751    #[ignore = "Skipping randomized benchmarking test"]
1752    fn test_randomized_benchmarking() {
1753        let rb = RandomizedBenchmarking::new(vec![QubitId::new(0)]);
1754        let sequence = rb.generate_clifford_sequence(10);
1755
1756        assert!(!sequence.is_empty());
1757    }
1758
1759    #[test]
1760    fn test_drift_tracking() {
1761        let mut tracker = DriftTracker::new(vec!["T1".to_string()]);
1762
1763        // Add some measurements
1764        for i in 0..20 {
1765            let value = 50.0 + (i as f64) * 0.1; // Simulating drift
1766            tracker.add_measurement("T1", i as f64, value);
1767        }
1768
1769        let drift = tracker.detect_drift("T1", 5);
1770        assert!(drift.is_some());
1771        assert!(drift.expect("drift should be Some") > 0.0);
1772    }
1773}