quantrs2_circuit/
scirs2_optimization.rs

1//! `SciRS2` optimization integration for parameter tuning
2//!
3//! This module integrates `SciRS2`'s advanced optimization capabilities for quantum circuit
4//! parameter optimization, variational algorithms, and machine learning-enhanced optimization.
5
6use crate::builder::Circuit;
7use crate::scirs2_matrices::SparseMatrix;
8use quantrs2_core::{
9    error::{QuantRS2Error, QuantRS2Result},
10    gate::GateOp,
11    qubit::QubitId,
12};
13use scirs2_core::Complex64;
14use serde::{Deserialize, Serialize};
15use std::collections::HashMap;
16use std::sync::{Arc, Mutex};
17
18// Placeholder types representing SciRS2 optimization interface
19// In the real implementation, these would be imported from SciRS2
20
21/// Optimization objective function
22pub trait ObjectiveFunction: Send + Sync {
23    /// Evaluate the objective at given parameters
24    fn evaluate(&self, parameters: &[f64]) -> f64;
25
26    /// Compute gradient if available
27    fn gradient(&self, parameters: &[f64]) -> Option<Vec<f64>> {
28        None
29    }
30
31    /// Compute Hessian if available
32    fn hessian(&self, parameters: &[f64]) -> Option<Vec<Vec<f64>>> {
33        None
34    }
35
36    /// Get parameter bounds
37    fn bounds(&self) -> Vec<(f64, f64)>;
38
39    /// Get objective name
40    fn name(&self) -> &str;
41}
42
43/// `SciRS2` optimization algorithms
44#[derive(Debug, Clone, PartialEq)]
45pub enum OptimizationAlgorithm {
46    /// Gradient descent variants
47    GradientDescent { learning_rate: f64, momentum: f64 },
48    /// Adam optimizer
49    Adam {
50        learning_rate: f64,
51        beta1: f64,
52        beta2: f64,
53        epsilon: f64,
54    },
55    /// L-BFGS-B
56    LBFGSB {
57        max_iterations: usize,
58        tolerance: f64,
59    },
60    /// Nelder-Mead simplex
61    NelderMead {
62        max_iterations: usize,
63        tolerance: f64,
64    },
65    /// Simulated annealing
66    SimulatedAnnealing {
67        initial_temperature: f64,
68        cooling_rate: f64,
69        min_temperature: f64,
70    },
71    /// Genetic algorithm
72    GeneticAlgorithm {
73        population_size: usize,
74        mutation_rate: f64,
75        crossover_rate: f64,
76    },
77    /// Particle swarm optimization
78    ParticleSwarm {
79        num_particles: usize,
80        inertia_weight: f64,
81        cognitive_weight: f64,
82        social_weight: f64,
83    },
84    /// Bayesian optimization
85    BayesianOptimization {
86        acquisition_function: AcquisitionFunction,
87        kernel: KernelType,
88        num_initial_samples: usize,
89    },
90    /// Quantum approximate optimization algorithm (QAOA)
91    QAOA {
92        num_layers: usize,
93        classical_optimizer: Box<Self>,
94    },
95}
96
97/// Acquisition functions for Bayesian optimization
98#[derive(Debug, Clone, PartialEq)]
99pub enum AcquisitionFunction {
100    ExpectedImprovement,
101    ProbabilityOfImprovement,
102    UpperConfidenceBound { kappa: f64 },
103    Thompson,
104}
105
106/// Kernel types for Gaussian processes
107#[derive(Debug, Clone, PartialEq)]
108pub enum KernelType {
109    RBF { length_scale: f64 },
110    Matern { nu: f64, length_scale: f64 },
111    Linear { variance: f64 },
112    Periodic { period: f64, length_scale: f64 },
113}
114
115/// Optimization configuration
116pub struct OptimizationConfig {
117    /// Optimization algorithm
118    pub algorithm: OptimizationAlgorithm,
119    /// Maximum number of function evaluations
120    pub max_evaluations: usize,
121    /// Convergence tolerance
122    pub tolerance: f64,
123    /// Random seed for reproducibility
124    pub seed: Option<u64>,
125    /// Parallel evaluation of objective
126    pub parallel: bool,
127    /// Number of threads for parallel evaluation
128    pub num_threads: Option<usize>,
129    /// Progress callback
130    pub progress_callback: Option<Box<dyn Fn(usize, f64) + Send + Sync>>,
131    /// Early stopping criteria
132    pub early_stopping: Option<EarlyStoppingCriteria>,
133}
134
135impl std::fmt::Debug for OptimizationConfig {
136    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
137        f.debug_struct("OptimizationConfig")
138            .field("algorithm", &self.algorithm)
139            .field("max_evaluations", &self.max_evaluations)
140            .field("tolerance", &self.tolerance)
141            .field("seed", &self.seed)
142            .field("parallel", &self.parallel)
143            .field("num_threads", &self.num_threads)
144            .field(
145                "progress_callback",
146                &self.progress_callback.as_ref().map(|_| "Some(callback)"),
147            )
148            .field("early_stopping", &self.early_stopping)
149            .finish()
150    }
151}
152
153impl Clone for OptimizationConfig {
154    fn clone(&self) -> Self {
155        Self {
156            algorithm: self.algorithm.clone(),
157            max_evaluations: self.max_evaluations,
158            tolerance: self.tolerance,
159            seed: self.seed,
160            parallel: self.parallel,
161            num_threads: self.num_threads,
162            progress_callback: None, // Function pointers can't be cloned
163            early_stopping: self.early_stopping.clone(),
164        }
165    }
166}
167
168/// Early stopping criteria
169#[derive(Debug, Clone)]
170pub struct EarlyStoppingCriteria {
171    /// Patience (number of iterations without improvement)
172    pub patience: usize,
173    /// Minimum change to be considered an improvement
174    pub min_delta: f64,
175    /// Monitor best value or last value
176    pub monitor_best: bool,
177}
178
179/// Optimization result
180#[derive(Debug, Clone)]
181pub struct OptimizationResult {
182    /// Optimal parameters
183    pub optimal_parameters: Vec<f64>,
184    /// Optimal objective value
185    pub optimal_value: f64,
186    /// Number of function evaluations
187    pub num_evaluations: usize,
188    /// Convergence status
189    pub converged: bool,
190    /// Optimization history
191    pub history: OptimizationHistory,
192    /// Additional algorithm-specific information
193    pub algorithm_info: HashMap<String, String>,
194    /// Total optimization time
195    pub optimization_time: std::time::Duration,
196}
197
198/// Optimization history tracking
199#[derive(Debug, Clone)]
200pub struct OptimizationHistory {
201    /// Parameter values at each iteration
202    pub parameters: Vec<Vec<f64>>,
203    /// Objective values at each iteration
204    pub objective_values: Vec<f64>,
205    /// Gradient norms (if available)
206    pub gradient_norms: Vec<f64>,
207    /// Step sizes
208    pub step_sizes: Vec<f64>,
209    /// Timestamps
210    pub timestamps: Vec<std::time::Instant>,
211}
212
213/// Quantum circuit parameter optimizer using `SciRS2`
214pub struct QuantumCircuitOptimizer {
215    /// Current circuit template
216    circuit_template: CircuitTemplate,
217    /// Optimization configuration
218    config: OptimizationConfig,
219    /// Parameter history
220    history: Arc<Mutex<OptimizationHistory>>,
221    /// Best parameters found so far
222    best_parameters: Arc<Mutex<Option<Vec<f64>>>>,
223    /// Best objective value
224    best_value: Arc<Mutex<f64>>,
225}
226
227/// Parameterized circuit template
228#[derive(Debug, Clone)]
229pub struct CircuitTemplate {
230    /// Circuit structure with parameter placeholders
231    pub structure: Vec<ParameterizedGate>,
232    /// Parameter names and bounds
233    pub parameters: Vec<Parameter>,
234    /// Number of qubits
235    pub num_qubits: usize,
236}
237
238/// Parameterized gate in circuit template
239#[derive(Debug, Clone)]
240pub struct ParameterizedGate {
241    /// Gate name
242    pub gate_name: String,
243    /// Qubits the gate acts on
244    pub qubits: Vec<usize>,
245    /// Parameter indices
246    pub parameter_indices: Vec<usize>,
247    /// Fixed parameters (if any)
248    pub fixed_parameters: Vec<f64>,
249}
250
251/// Parameter definition
252#[derive(Debug, Clone)]
253pub struct Parameter {
254    /// Parameter name
255    pub name: String,
256    /// Lower bound
257    pub lower_bound: f64,
258    /// Upper bound
259    pub upper_bound: f64,
260    /// Initial value
261    pub initial_value: f64,
262    /// Whether parameter is discrete
263    pub discrete: bool,
264}
265
266impl QuantumCircuitOptimizer {
267    /// Create a new quantum circuit optimizer
268    #[must_use]
269    pub fn new(template: CircuitTemplate, config: OptimizationConfig) -> Self {
270        Self {
271            circuit_template: template,
272            config,
273            history: Arc::new(Mutex::new(OptimizationHistory {
274                parameters: Vec::new(),
275                objective_values: Vec::new(),
276                gradient_norms: Vec::new(),
277                step_sizes: Vec::new(),
278                timestamps: Vec::new(),
279            })),
280            best_parameters: Arc::new(Mutex::new(None)),
281            best_value: Arc::new(Mutex::new(f64::INFINITY)),
282        }
283    }
284
285    /// Optimize circuit parameters
286    pub fn optimize(
287        &mut self,
288        objective: Arc<dyn ObjectiveFunction>,
289    ) -> QuantRS2Result<OptimizationResult> {
290        let start_time = std::time::Instant::now();
291
292        // Get initial parameters
293        let initial_params: Vec<f64> = self
294            .circuit_template
295            .parameters
296            .iter()
297            .map(|p| p.initial_value)
298            .collect();
299
300        // Validate parameter bounds
301        let bounds = objective.bounds();
302        if bounds.len() != initial_params.len() {
303            return Err(QuantRS2Error::InvalidInput(
304                "Parameter count mismatch with bounds".to_string(),
305            ));
306        }
307
308        // Run optimization based on algorithm
309        let result = match &self.config.algorithm {
310            OptimizationAlgorithm::GradientDescent {
311                learning_rate,
312                momentum,
313            } => self.optimize_gradient_descent(
314                objective,
315                &initial_params,
316                *learning_rate,
317                *momentum,
318            ),
319            OptimizationAlgorithm::Adam {
320                learning_rate,
321                beta1,
322                beta2,
323                epsilon,
324            } => self.optimize_adam(
325                objective,
326                &initial_params,
327                *learning_rate,
328                *beta1,
329                *beta2,
330                *epsilon,
331            ),
332            OptimizationAlgorithm::LBFGSB {
333                max_iterations,
334                tolerance,
335            } => self.optimize_lbfgs(objective, &initial_params, *max_iterations, *tolerance),
336            OptimizationAlgorithm::NelderMead {
337                max_iterations,
338                tolerance,
339            } => self.optimize_nelder_mead(objective, &initial_params, *max_iterations, *tolerance),
340            OptimizationAlgorithm::SimulatedAnnealing {
341                initial_temperature,
342                cooling_rate,
343                min_temperature,
344            } => self.optimize_simulated_annealing(
345                objective,
346                &initial_params,
347                *initial_temperature,
348                *cooling_rate,
349                *min_temperature,
350            ),
351            OptimizationAlgorithm::BayesianOptimization {
352                acquisition_function,
353                kernel,
354                num_initial_samples,
355            } => self.optimize_bayesian(
356                objective,
357                &initial_params,
358                acquisition_function,
359                kernel,
360                *num_initial_samples,
361            ),
362            _ => Err(QuantRS2Error::InvalidInput(
363                "Algorithm not yet implemented".to_string(),
364            )),
365        }?;
366
367        let history = self
368            .history
369            .lock()
370            .map_err(|e| QuantRS2Error::RuntimeError(format!("Failed to lock history: {}", e)))?
371            .clone();
372
373        Ok(OptimizationResult {
374            optimal_parameters: result.0,
375            optimal_value: result.1,
376            num_evaluations: result.2,
377            converged: result.3,
378            history,
379            algorithm_info: HashMap::new(),
380            optimization_time: start_time.elapsed(),
381        })
382    }
383
384    /// Gradient descent optimization
385    fn optimize_gradient_descent(
386        &self,
387        objective: Arc<dyn ObjectiveFunction>,
388        initial_params: &[f64],
389        learning_rate: f64,
390        momentum: f64,
391    ) -> QuantRS2Result<(Vec<f64>, f64, usize, bool)> {
392        let mut params = initial_params.to_vec();
393        let mut velocity = vec![0.0; params.len()];
394        let mut evaluations = 0;
395        let mut best_value = f64::INFINITY;
396
397        for iteration in 0..self.config.max_evaluations {
398            // Evaluate objective
399            let value = objective.evaluate(&params);
400            evaluations += 1;
401
402            // Update best
403            if value < best_value {
404                best_value = value;
405                if let Ok(mut guard) = self.best_parameters.lock() {
406                    *guard = Some(params.clone());
407                }
408                if let Ok(mut guard) = self.best_value.lock() {
409                    *guard = best_value;
410                }
411            }
412
413            // Record history
414            self.record_iteration(&params, value, iteration);
415
416            // Check convergence
417            if iteration > 0 {
418                let prev_value = self
419                    .history
420                    .lock()
421                    .ok()
422                    .and_then(|h| h.objective_values.get(iteration - 1).copied())
423                    .unwrap_or(value);
424                if (prev_value - value).abs() < self.config.tolerance {
425                    return Ok((params, best_value, evaluations, true));
426                }
427            }
428
429            // Compute gradient (numerical if not available)
430            let gradient = if let Some(grad) = objective.gradient(&params) {
431                grad
432            } else {
433                self.numerical_gradient(&*objective, &params)?
434            };
435
436            // Update parameters with momentum
437            for i in 0..params.len() {
438                velocity[i] = momentum.mul_add(velocity[i], -(learning_rate * gradient[i]));
439                params[i] += velocity[i];
440
441                // Apply bounds
442                let bounds = objective.bounds();
443                params[i] = params[i].max(bounds[i].0).min(bounds[i].1);
444            }
445
446            // Progress callback
447            if let Some(callback) = &self.config.progress_callback {
448                callback(iteration, value);
449            }
450        }
451
452        Ok((params, best_value, evaluations, false))
453    }
454
455    /// Adam optimization algorithm
456    fn optimize_adam(
457        &self,
458        objective: Arc<dyn ObjectiveFunction>,
459        initial_params: &[f64],
460        learning_rate: f64,
461        beta1: f64,
462        beta2: f64,
463        epsilon: f64,
464    ) -> QuantRS2Result<(Vec<f64>, f64, usize, bool)> {
465        let mut params = initial_params.to_vec();
466        let mut m = vec![0.0; params.len()]; // First moment
467        let mut v = vec![0.0; params.len()]; // Second moment
468        let mut evaluations = 0;
469        let mut best_value = f64::INFINITY;
470
471        for iteration in 0..self.config.max_evaluations {
472            let t = iteration + 1;
473
474            // Evaluate objective
475            let value = objective.evaluate(&params);
476            evaluations += 1;
477
478            // Update best
479            if value < best_value {
480                best_value = value;
481                if let Ok(mut guard) = self.best_parameters.lock() {
482                    *guard = Some(params.clone());
483                }
484                if let Ok(mut guard) = self.best_value.lock() {
485                    *guard = best_value;
486                }
487            }
488
489            // Record history
490            self.record_iteration(&params, value, iteration);
491
492            // Check convergence
493            if iteration > 0 {
494                let prev_value = self
495                    .history
496                    .lock()
497                    .ok()
498                    .and_then(|h| h.objective_values.get(iteration - 1).copied())
499                    .unwrap_or(value);
500                if (prev_value - value).abs() < self.config.tolerance {
501                    return Ok((params, best_value, evaluations, true));
502                }
503            }
504
505            // Compute gradient
506            let gradient = if let Some(grad) = objective.gradient(&params) {
507                grad
508            } else {
509                self.numerical_gradient(&*objective, &params)?
510            };
511
512            // Update biased first and second moment estimates
513            for i in 0..params.len() {
514                m[i] = beta1.mul_add(m[i], (1.0 - beta1) * gradient[i]);
515                v[i] = beta2.mul_add(v[i], (1.0 - beta2) * gradient[i] * gradient[i]);
516
517                // Bias correction
518                let m_hat = m[i] / (1.0 - beta1.powi(t as i32));
519                let v_hat = v[i] / (1.0 - beta2.powi(t as i32));
520
521                // Update parameters
522                params[i] -= learning_rate * m_hat / (v_hat.sqrt() + epsilon);
523
524                // Apply bounds
525                let bounds = objective.bounds();
526                params[i] = params[i].max(bounds[i].0).min(bounds[i].1);
527            }
528
529            // Progress callback
530            if let Some(callback) = &self.config.progress_callback {
531                callback(iteration, value);
532            }
533        }
534
535        Ok((params, best_value, evaluations, false))
536    }
537
538    /// L-BFGS-B optimization (simplified implementation)
539    fn optimize_lbfgs(
540        &self,
541        objective: Arc<dyn ObjectiveFunction>,
542        initial_params: &[f64],
543        max_iterations: usize,
544        tolerance: f64,
545    ) -> QuantRS2Result<(Vec<f64>, f64, usize, bool)> {
546        // This is a simplified placeholder for L-BFGS-B
547        // In practice, this would use SciRS2's optimized implementation
548        self.optimize_gradient_descent(objective, initial_params, 0.01, 0.9)
549    }
550
551    /// Nelder-Mead simplex optimization
552    fn optimize_nelder_mead(
553        &self,
554        objective: Arc<dyn ObjectiveFunction>,
555        initial_params: &[f64],
556        max_iterations: usize,
557        tolerance: f64,
558    ) -> QuantRS2Result<(Vec<f64>, f64, usize, bool)> {
559        let n = initial_params.len();
560        let mut simplex = Vec::new();
561        let mut evaluations = 0;
562
563        // Initialize simplex
564        simplex.push(initial_params.to_vec());
565        for i in 0..n {
566            let mut vertex = initial_params.to_vec();
567            vertex[i] += if vertex[i] == 0.0 {
568                0.00025
569            } else {
570                vertex[i] * 0.05
571            };
572            simplex.push(vertex);
573        }
574
575        // Evaluate initial simplex
576        let mut values: Vec<f64> = simplex
577            .iter()
578            .map(|params| {
579                evaluations += 1;
580                objective.evaluate(params)
581            })
582            .collect();
583
584        for iteration in 0..max_iterations {
585            // Sort simplex by objective values
586            let mut indices: Vec<usize> = (0..simplex.len()).collect();
587            indices.sort_by(|&i, &j| {
588                values[i]
589                    .partial_cmp(&values[j])
590                    .unwrap_or(std::cmp::Ordering::Equal)
591            });
592
593            let best_value = values[indices[0]];
594            let worst_idx = indices[n];
595            let second_worst_idx = indices[n - 1];
596
597            // Record best iteration
598            self.record_iteration(&simplex[indices[0]], best_value, iteration);
599
600            // Check convergence
601            let range = values[worst_idx] - values[indices[0]];
602            if range < tolerance {
603                return Ok((simplex[indices[0]].clone(), best_value, evaluations, true));
604            }
605
606            // Compute centroid (excluding worst point)
607            let mut centroid = vec![0.0; n];
608            for i in 0..n {
609                for j in 0..n {
610                    centroid[j] += simplex[indices[i]][j];
611                }
612            }
613            for j in 0..n {
614                centroid[j] /= n as f64;
615            }
616
617            // Reflection
618            let alpha = 1.0;
619            let mut reflected = vec![0.0; n];
620            for j in 0..n {
621                reflected[j] = centroid[j] + alpha * (centroid[j] - simplex[worst_idx][j]);
622            }
623
624            // Apply bounds
625            let bounds = objective.bounds();
626            for j in 0..n {
627                reflected[j] = reflected[j].max(bounds[j].0).min(bounds[j].1);
628            }
629
630            let reflected_value = objective.evaluate(&reflected);
631            evaluations += 1;
632
633            if values[indices[0]] <= reflected_value && reflected_value < values[second_worst_idx] {
634                // Accept reflection
635                simplex[worst_idx] = reflected;
636                values[worst_idx] = reflected_value;
637            } else if reflected_value < values[indices[0]] {
638                // Expansion
639                let gamma = 2.0;
640                let mut expanded = vec![0.0; n];
641                for j in 0..n {
642                    expanded[j] = centroid[j] + gamma * (reflected[j] - centroid[j]);
643                    expanded[j] = expanded[j].max(bounds[j].0).min(bounds[j].1);
644                }
645
646                let expanded_value = objective.evaluate(&expanded);
647                evaluations += 1;
648
649                if expanded_value < reflected_value {
650                    simplex[worst_idx] = expanded;
651                    values[worst_idx] = expanded_value;
652                } else {
653                    simplex[worst_idx] = reflected;
654                    values[worst_idx] = reflected_value;
655                }
656            } else {
657                // Contraction
658                let rho = 0.5;
659                let mut contracted = vec![0.0; n];
660                for j in 0..n {
661                    contracted[j] = centroid[j] + rho * (simplex[worst_idx][j] - centroid[j]);
662                    contracted[j] = contracted[j].max(bounds[j].0).min(bounds[j].1);
663                }
664
665                let contracted_value = objective.evaluate(&contracted);
666                evaluations += 1;
667
668                if contracted_value < values[worst_idx] {
669                    simplex[worst_idx] = contracted;
670                    values[worst_idx] = contracted_value;
671                } else {
672                    // Shrink
673                    let sigma = 0.5;
674                    for i in 1..=n {
675                        for j in 0..n {
676                            simplex[i][j] = simplex[indices[0]][j]
677                                + sigma * (simplex[i][j] - simplex[indices[0]][j]);
678                            simplex[i][j] = simplex[i][j].max(bounds[j].0).min(bounds[j].1);
679                        }
680                        values[i] = objective.evaluate(&simplex[i]);
681                        evaluations += 1;
682                    }
683                }
684            }
685
686            // Progress callback
687            if let Some(callback) = &self.config.progress_callback {
688                callback(iteration, best_value);
689            }
690        }
691
692        // Find best point
693        let mut best_idx = 0;
694        let mut best_value = values[0];
695        for i in 1..values.len() {
696            if values[i] < best_value {
697                best_value = values[i];
698                best_idx = i;
699            }
700        }
701
702        Ok((simplex[best_idx].clone(), best_value, evaluations, false))
703    }
704
705    /// Simulated annealing optimization
706    fn optimize_simulated_annealing(
707        &self,
708        objective: Arc<dyn ObjectiveFunction>,
709        initial_params: &[f64],
710        initial_temperature: f64,
711        cooling_rate: f64,
712        min_temperature: f64,
713    ) -> QuantRS2Result<(Vec<f64>, f64, usize, bool)> {
714        use scirs2_core::random::prelude::*;
715        let mut rng = thread_rng();
716
717        let mut current_params = initial_params.to_vec();
718        let mut current_value = objective.evaluate(&current_params);
719        let mut best_params = current_params.clone();
720        let mut best_value = current_value;
721        let mut temperature = initial_temperature;
722        let mut evaluations = 1;
723
724        let bounds = objective.bounds();
725
726        for iteration in 0..self.config.max_evaluations {
727            if temperature < min_temperature {
728                break;
729            }
730
731            // Generate neighbor solution
732            let mut neighbor_params = current_params.clone();
733            for i in 0..neighbor_params.len() {
734                let range = bounds[i].1 - bounds[i].0;
735                let step = rng.gen_range(-0.1..0.1) * range * temperature / initial_temperature;
736                neighbor_params[i] = (neighbor_params[i] + step)
737                    .max(bounds[i].0)
738                    .min(bounds[i].1);
739            }
740
741            let neighbor_value = objective.evaluate(&neighbor_params);
742            evaluations += 1;
743
744            // Accept or reject based on Metropolis criterion
745            let delta = neighbor_value - current_value;
746            if delta < 0.0 || rng.gen::<f64>() < (-delta / temperature).exp() {
747                current_params = neighbor_params;
748                current_value = neighbor_value;
749
750                if current_value < best_value {
751                    best_params.clone_from(&current_params);
752                    best_value = current_value;
753                }
754            }
755
756            // Record iteration
757            self.record_iteration(&current_params, current_value, iteration);
758
759            // Cool down
760            temperature *= cooling_rate;
761
762            // Progress callback
763            if let Some(callback) = &self.config.progress_callback {
764                callback(iteration, best_value);
765            }
766        }
767
768        Ok((
769            best_params,
770            best_value,
771            evaluations,
772            temperature < min_temperature,
773        ))
774    }
775
776    /// Bayesian optimization (simplified implementation)
777    fn optimize_bayesian(
778        &self,
779        objective: Arc<dyn ObjectiveFunction>,
780        initial_params: &[f64],
781        acquisition_function: &AcquisitionFunction,
782        kernel: &KernelType,
783        num_initial_samples: usize,
784    ) -> QuantRS2Result<(Vec<f64>, f64, usize, bool)> {
785        // This is a simplified placeholder for Bayesian optimization
786        // Real implementation would use SciRS2's Gaussian process implementation
787        self.optimize_nelder_mead(
788            objective,
789            initial_params,
790            self.config.max_evaluations,
791            self.config.tolerance,
792        )
793    }
794
795    /// Compute numerical gradient
796    fn numerical_gradient(
797        &self,
798        objective: &dyn ObjectiveFunction,
799        params: &[f64],
800    ) -> QuantRS2Result<Vec<f64>> {
801        let epsilon = 1e-8;
802        let mut gradient = vec![0.0; params.len()];
803
804        for i in 0..params.len() {
805            let mut params_plus = params.to_vec();
806            let mut params_minus = params.to_vec();
807
808            params_plus[i] += epsilon;
809            params_minus[i] -= epsilon;
810
811            let f_plus = objective.evaluate(&params_plus);
812            let f_minus = objective.evaluate(&params_minus);
813
814            gradient[i] = (f_plus - f_minus) / (2.0 * epsilon);
815        }
816
817        Ok(gradient)
818    }
819
820    /// Record optimization iteration
821    fn record_iteration(&self, params: &[f64], value: f64, iteration: usize) {
822        if let Ok(mut history) = self.history.lock() {
823            history.parameters.push(params.to_vec());
824            history.objective_values.push(value);
825            history.gradient_norms.push(0.0); // Placeholder
826            history.step_sizes.push(0.0); // Placeholder
827            history.timestamps.push(std::time::Instant::now());
828        }
829    }
830
831    /// Get current best parameters
832    #[must_use]
833    pub fn get_best_parameters(&self) -> Option<Vec<f64>> {
834        self.best_parameters.lock().ok().and_then(|g| g.clone())
835    }
836
837    /// Get current best value
838    #[must_use]
839    pub fn get_best_value(&self) -> f64 {
840        self.best_value.lock().ok().map_or(f64::INFINITY, |g| *g)
841    }
842
843    /// Build circuit from parameters
844    pub fn build_circuit(&self, parameters: &[f64]) -> QuantRS2Result<Circuit<32>> {
845        if parameters.len() != self.circuit_template.parameters.len() {
846            return Err(QuantRS2Error::InvalidInput(
847                "Parameter count mismatch".to_string(),
848            ));
849        }
850
851        // This is a simplified circuit building - would need actual gate implementations
852        let mut circuit = Circuit::<32>::new();
853
854        // Build circuit from template using parameters
855        for gate_template in &self.circuit_template.structure {
856            // Apply parameters to gate and add to circuit
857            // This would use the actual gate implementations from quantrs2_core
858        }
859
860        Ok(circuit)
861    }
862}
863
864/// Variational quantum eigensolver (VQE) objective
865pub struct VQEObjective {
866    /// Hamiltonian matrix
867    hamiltonian: SparseMatrix,
868    /// Circuit template
869    circuit_template: CircuitTemplate,
870    /// Parameter bounds
871    bounds: Vec<(f64, f64)>,
872}
873
874impl VQEObjective {
875    /// Create new VQE objective
876    #[must_use]
877    pub fn new(hamiltonian: SparseMatrix, circuit_template: CircuitTemplate) -> Self {
878        let bounds = circuit_template
879            .parameters
880            .iter()
881            .map(|p| (p.lower_bound, p.upper_bound))
882            .collect();
883
884        Self {
885            hamiltonian,
886            circuit_template,
887            bounds,
888        }
889    }
890}
891
892impl ObjectiveFunction for VQEObjective {
893    fn evaluate(&self, parameters: &[f64]) -> f64 {
894        // Build quantum circuit from parameters
895        // Simulate circuit to get state vector
896        // Compute expectation value ⟨ψ|H|ψ⟩
897
898        // This is a placeholder - real implementation would:
899        // 1. Build circuit from template and parameters
900        // 2. Simulate circuit to get final state
901        // 3. Compute expectation value with Hamiltonian
902
903        // For now, return a simple quadratic function for testing
904        parameters.iter().map(|x| x * x).sum::<f64>()
905    }
906
907    fn bounds(&self) -> Vec<(f64, f64)> {
908        self.bounds.clone()
909    }
910
911    fn name(&self) -> &'static str {
912        "VQE"
913    }
914}
915
916/// Quantum Approximate Optimization Algorithm (QAOA) objective
917pub struct QAOAObjective {
918    /// Problem Hamiltonian
919    problem_hamiltonian: SparseMatrix,
920    /// Mixer Hamiltonian
921    mixer_hamiltonian: SparseMatrix,
922    /// Number of QAOA layers
923    num_layers: usize,
924    /// Parameter bounds
925    bounds: Vec<(f64, f64)>,
926}
927
928impl QAOAObjective {
929    /// Create new QAOA objective
930    #[must_use]
931    pub fn new(
932        problem_hamiltonian: SparseMatrix,
933        mixer_hamiltonian: SparseMatrix,
934        num_layers: usize,
935    ) -> Self {
936        // Beta and gamma parameters for each layer
937        let bounds = vec![(0.0, 2.0 * std::f64::consts::PI); 2 * num_layers];
938
939        Self {
940            problem_hamiltonian,
941            mixer_hamiltonian,
942            num_layers,
943            bounds,
944        }
945    }
946}
947
948impl ObjectiveFunction for QAOAObjective {
949    fn evaluate(&self, parameters: &[f64]) -> f64 {
950        // Build QAOA circuit from beta and gamma parameters
951        // Simulate circuit starting from |+⟩^n state
952        // Compute expectation value with problem Hamiltonian
953
954        // Placeholder implementation
955        parameters.iter().map(|x| x.sin().powi(2)).sum::<f64>()
956    }
957
958    fn bounds(&self) -> Vec<(f64, f64)> {
959        self.bounds.clone()
960    }
961
962    fn name(&self) -> &'static str {
963        "QAOA"
964    }
965}
966
967impl Default for OptimizationConfig {
968    fn default() -> Self {
969        Self {
970            algorithm: OptimizationAlgorithm::Adam {
971                learning_rate: 0.01,
972                beta1: 0.9,
973                beta2: 0.999,
974                epsilon: 1e-8,
975            },
976            max_evaluations: 1000,
977            tolerance: 1e-6,
978            seed: None,
979            parallel: false,
980            num_threads: None,
981            progress_callback: None,
982            early_stopping: None,
983        }
984    }
985}
986
987#[cfg(test)]
988mod tests {
989    use super::*;
990
991    #[test]
992    fn test_optimization_config_creation() {
993        let config = OptimizationConfig::default();
994        assert_eq!(config.max_evaluations, 1000);
995        assert_eq!(config.tolerance, 1e-6);
996    }
997
998    #[test]
999    fn test_vqe_objective() {
1000        let hamiltonian = SparseMatrix::identity(4);
1001        let template = CircuitTemplate {
1002            structure: Vec::new(),
1003            parameters: vec![Parameter {
1004                name: "theta".to_string(),
1005                lower_bound: 0.0,
1006                upper_bound: 2.0 * std::f64::consts::PI,
1007                initial_value: 0.5,
1008                discrete: false,
1009            }],
1010            num_qubits: 2,
1011        };
1012
1013        let objective = VQEObjective::new(hamiltonian, template);
1014        let value = objective.evaluate(&[0.5]);
1015        assert!(value >= 0.0);
1016    }
1017
1018    #[test]
1019    fn test_qaoa_objective() {
1020        let problem_h = SparseMatrix::identity(4);
1021        let mixer_h = SparseMatrix::identity(4);
1022
1023        let objective = QAOAObjective::new(problem_h, mixer_h, 2);
1024        assert_eq!(objective.bounds().len(), 4); // 2 parameters per layer
1025
1026        let value = objective.evaluate(&[0.5, 1.0, 1.5, 2.0]);
1027        assert!(value >= 0.0);
1028    }
1029
1030    #[test]
1031    fn test_circuit_template() {
1032        let template = CircuitTemplate {
1033            structure: vec![ParameterizedGate {
1034                gate_name: "RY".to_string(),
1035                qubits: vec![0],
1036                parameter_indices: vec![0],
1037                fixed_parameters: Vec::new(),
1038            }],
1039            parameters: vec![Parameter {
1040                name: "theta".to_string(),
1041                lower_bound: 0.0,
1042                upper_bound: 2.0 * std::f64::consts::PI,
1043                initial_value: 0.0,
1044                discrete: false,
1045            }],
1046            num_qubits: 1,
1047        };
1048
1049        assert_eq!(template.parameters.len(), 1);
1050        assert_eq!(template.structure.len(), 1);
1051    }
1052
1053    struct TestObjective;
1054
1055    impl ObjectiveFunction for TestObjective {
1056        fn evaluate(&self, parameters: &[f64]) -> f64 {
1057            parameters.iter().map(|x| (x - 1.0).powi(2)).sum()
1058        }
1059
1060        fn bounds(&self) -> Vec<(f64, f64)> {
1061            vec![(-5.0, 5.0); 2]
1062        }
1063
1064        fn name(&self) -> &'static str {
1065            "test"
1066        }
1067    }
1068
1069    #[test]
1070    fn test_optimizer_creation() {
1071        let template = CircuitTemplate {
1072            structure: Vec::new(),
1073            parameters: vec![
1074                Parameter {
1075                    name: "x1".to_string(),
1076                    lower_bound: -5.0,
1077                    upper_bound: 5.0,
1078                    initial_value: 0.0,
1079                    discrete: false,
1080                },
1081                Parameter {
1082                    name: "x2".to_string(),
1083                    lower_bound: -5.0,
1084                    upper_bound: 5.0,
1085                    initial_value: 0.0,
1086                    discrete: false,
1087                },
1088            ],
1089            num_qubits: 1,
1090        };
1091
1092        let config = OptimizationConfig::default();
1093        let optimizer = QuantumCircuitOptimizer::new(template, config);
1094
1095        assert_eq!(optimizer.circuit_template.parameters.len(), 2);
1096    }
1097}