quantrs2-anneal 0.1.0-rc.1

Quantum annealing support for the QuantRS2 framework
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
# QuantRS2-Anneal: Comprehensive Quantum Annealing Framework

[![Crates.io](https://img.shields.io/crates/v/quantrs2-anneal.svg)](https://crates.io/crates/quantrs2-anneal)
[![Documentation](https://docs.rs/quantrs2-anneal/badge.svg)](https://docs.rs/quantrs2-anneal)
[![License](https://img.shields.io/badge/license-MIT%2FApache--2.0-blue.svg)](https://github.com/cool-japan/quantrs)

QuantRS2-Anneal is the premier quantum annealing module of the [QuantRS2](https://github.com/cool-japan/quantrs) quantum computing framework, providing comprehensive support for quantum annealing, optimization problems, and quantum-inspired algorithms.

## Version 0.1.0-beta.2

This release features:
- Stable APIs for D-Wave, AWS Braket, and Fujitsu integrations
- Enhanced performance using SciRS2 v0.1.0-beta.3's parallel algorithms for large-scale optimization
- Improved minor graph embedding with refined SciRS2 graph algorithms
- Memory-efficient sparse matrix operations via SciRS2

## πŸš€ Quick Start

```rust
use quantrs2_anneal::{
    ising::IsingModel,
    simulator::{ClassicalAnnealingSimulator, AnnealingParams}
};

// Create and solve a simple Max-Cut problem
let mut model = IsingModel::new(4);
model.set_coupling(0, 1, -1.0)?;
model.set_coupling(1, 2, -1.0)?;
model.set_coupling(2, 3, -1.0)?;
model.set_coupling(3, 0, -1.0)?;

let simulator = ClassicalAnnealingSimulator::new(AnnealingParams::default())?;
let result = simulator.solve(&model)?;

println!("Best energy: {}", result.best_energy);
println!("Solution: {:?}", result.best_spins);
```

## 🌟 Key Features

### Core Problem Formulations
- **πŸ”— Ising Models**: Complete sparse matrix support with biases and couplings
- **🎯 QUBO Formulations**: Quadratic Unconstrained Binary Optimization with constraint handling
- **πŸ—οΈ Problem Builder**: Intuitive DSL for complex optimization problem construction
- **πŸ”„ Format Conversion**: Seamless conversion between Ising and QUBO representations

### Quantum Annealing Simulators
- **🌑️ Classical Annealing**: Simulated annealing with configurable temperature schedules
- **🌊 Path Integral Monte Carlo**: Quantum annealing simulation with tunneling effects
- **πŸ‘₯ Population Annealing**: Parallel annealing with population-based sampling
- **πŸŽͺ Coherent Ising Machine**: Quantum-inspired optimization using coherent states
- **πŸ“Š Non-Stoquastic Simulators**: Support for non-stoquastic Hamiltonians

### Cloud Quantum Hardware Integration
- **🌐 D-Wave Leap**: Comprehensive client with auto-embedding and advanced parameters
- **☁️ AWS Braket**: Full integration with cost tracking and device optimization
- **πŸ—Ύ Fujitsu DAU**: Digital annealer unit integration for hybrid optimization
- **πŸ€– Hybrid Solvers**: Classical-quantum hybrid algorithms for large-scale problems

### Advanced Algorithms and Techniques
- **πŸ—ΊοΈ Graph Embedding**: Minor graph embedding with optimization and layout algorithms
- **βš–οΈ Penalty Optimization**: Automatic constraint penalty weight optimization
- **πŸ”„ Reverse Annealing**: Advanced annealing schedules starting from known solutions
- **🌈 Flux Bias Optimization**: Per-qubit flux bias tuning for enhanced performance
- **🌟 QAOA Integration**: Bridge to variational quantum algorithms via circuit module

### Specialized Applications
- **⚑ Energy Systems**: Power grid optimization, smart grid scheduling, renewable integration
- **πŸ’° Finance**: Portfolio optimization, risk management, algorithmic trading
- **πŸ₯ Healthcare**: Drug discovery, treatment planning, resource allocation
- **πŸ“¦ Logistics**: Vehicle routing, supply chain optimization, warehouse management
- **🏭 Manufacturing**: Production scheduling, quality control, resource allocation
- **πŸ“‘ Telecommunications**: Network optimization, spectrum allocation, routing protocols

### Visualization and Analysis
- **πŸ“ˆ Energy Landscapes**: Interactive visualization of optimization energy surfaces
- **πŸ“Š Performance Analytics**: Comprehensive metrics, timing analysis, and benchmarking
- **🎨 Solution Visualization**: Graphical representation of optimization solutions
- **πŸ“‰ Convergence Analysis**: Real-time monitoring of annealing convergence behavior

## πŸ“¦ Installation

Add to your `Cargo.toml`:

```toml
[dependencies]
quantrs2-anneal = "0.1.0-beta.3"

# Optional features for cloud integration
quantrs2-anneal = { version = "0.1.0-beta.3", features = ["dwave", "braket", "fujitsu"] }
```

## 🎯 Feature Flags

- **`default`**: Core functionality (Ising models, QUBO, classical simulators)
- **`dwave`**: D-Wave Leap cloud service integration
- **`braket`**: AWS Braket quantum computing platform
- **`fujitsu`**: Fujitsu Digital Annealer Unit integration

## πŸ“š Module Overview

### Core Modules

| Module | Description | Key Features |
|--------|-------------|--------------|
| `ising` | Ising model representation | Sparse matrices, efficient operations |
| `qubo` | QUBO formulation and constraints | Penalty methods, constraint handling |
| `simulator` | Classical annealing simulators | Multiple algorithms, configurable schedules |
| `dsl` | Problem construction DSL | Intuitive problem building syntax |

### Advanced Algorithms

| Module | Description | Use Cases |
|--------|-------------|-----------|
| `coherent_ising_machine` | Quantum-inspired optimization | Large-scale continuous optimization |
| `population_annealing` | Parallel population-based annealing | High-quality solution sampling |
| `reverse_annealing` | Reverse annealing schedules | Solution refinement and local search |
| `variational_quantum_annealing` | VQA-based optimization | Hybrid classical-quantum optimization |

### Embedding and Optimization

| Module | Description | Applications |
|--------|-------------|--------------|
| `embedding` | Minor graph embedding | Hardware topology mapping |
| `layout_embedding` | Layout-aware embedding | Optimized hardware utilization |
| `penalty_optimization` | Constraint penalty tuning | Enhanced solution quality |
| `compression` | Problem compression techniques | Large problem reduction |

### Cloud Integration

| Module | Description | Capabilities |
|--------|-------------|--------------|
| `dwave` | D-Wave Leap integration | QPU access, hybrid solvers, embedding |
| `braket` | AWS Braket integration | Multi-provider access, cost management |
| `fujitsu` | Fujitsu DAU integration | Digital annealer optimization |

### Applications

| Module | Description | Domain Expertise |
|--------|-------------|------------------|
| `applications::energy` | Energy system optimization | Grid operations, renewable integration |
| `applications::finance` | Financial optimization | Portfolio management, risk analysis |
| `applications::healthcare` | Healthcare optimization | Resource allocation, treatment planning |
| `applications::logistics` | Logistics and supply chain | Routing, scheduling, inventory |

## πŸ”§ Usage Examples

### 1. Basic QUBO Problem with Constraints

```rust
use quantrs2_anneal::{
    qubo::{QuboBuilder, QuboFormulation},
    simulator::ClassicalAnnealingSimulator
};

// Portfolio optimization: select assets with target return and risk constraints
let mut qubo = QuboBuilder::new(10); // 10 assets

// Objective: minimize risk (maximize return)
let risk_matrix = vec![vec![0.1; 10]; 10]; // Simplified risk matrix
qubo.add_quadratic_objective(&risk_matrix, 1.0)?;

// Constraint: select exactly 5 assets
let selection = vec![1.0; 10];
qubo.add_constraint_eq(&(0..10).collect::<Vec<_>>(), &selection, 5.0, 10.0)?;

// Solve
let formulation = qubo.build()?;
let ising_model = formulation.to_ising_model()?;
let simulator = ClassicalAnnealingSimulator::new(Default::default())?;
let result = simulator.solve(&ising_model)?;

let portfolio = formulation.to_binary_solution(&result.best_spins)?;
println!("Selected assets: {:?}", portfolio);
```

### 2. Advanced D-Wave Leap Integration

```rust
#[cfg(feature = "dwave")]
use quantrs2_anneal::dwave::{
    DWaveClient, SolverSelector, SolverCategory, EmbeddingConfig, 
    ChainStrengthMethod, AdvancedProblemParams, AnnealingSchedule
};

#[cfg(feature = "dwave")]
async fn solve_with_dwave() -> Result<(), Box<dyn std::error::Error>> {
    // Advanced solver selection
    let selector = SolverSelector {
        category: SolverCategory::QPU,
        min_qubits: Some(2000),
        max_queue_time: Some(60.0),
        topology_preference: Some("pegasus".to_string()),
        ..Default::default()
    };

    // Custom embedding configuration
    let embedding_config = EmbeddingConfig {
        auto_embed: true,
        chain_strength_method: ChainStrengthMethod::Adaptive(1.5),
        optimization_level: 3,
        ..Default::default()
    };

    // Advanced annealing parameters
    let schedule = AnnealingSchedule::pause_and_ramp(200.0, 100.0, 20.0);
    let params = AdvancedProblemParams {
        num_reads: 10000,
        anneal_schedule: Some(schedule),
        programming_thermalization: Some(2000),
        auto_scale: Some(true),
        ..Default::default()
    };

    let client = DWaveClient::new(std::env::var("DWAVE_TOKEN")?, None)?;
    let solution = client.submit_ising_with_embedding(
        &ising_model,
        None, // Auto-select best solver
        Some(params),
        Some(&embedding_config),
    )?;

    Ok(())
}
```

### 3. AWS Braket with Cost Management

```rust
#[cfg(feature = "braket")]
use quantrs2_anneal::braket::{
    BraketClient, DeviceSelector, DeviceType, CostTracker, AdvancedAnnealingParams
};

#[cfg(feature = "braket")]
async fn solve_with_braket() -> Result<(), Box<dyn std::error::Error>> {
    // Cost tracking setup
    let cost_tracker = CostTracker {
        cost_limit: Some(100.0), // $100 budget
        current_cost: 0.0,
        cost_estimates: HashMap::new(),
    };

    // Device selection for cost optimization
    let device_selector = DeviceSelector {
        device_type: Some(DeviceType::QuantumProcessor),
        max_cost_per_shot: Some(0.001), // Prefer cheaper devices
        required_capabilities: vec!["ANNEALING".to_string()],
        ..Default::default()
    };

    let client = BraketClient::with_config(
        std::env::var("AWS_ACCESS_KEY_ID")?,
        std::env::var("AWS_SECRET_ACCESS_KEY")?,
        None,
        "us-east-1",
        device_selector,
        cost_tracker,
    )?;

    // Submit with cost monitoring
    let task_result = client.submit_ising(&ising_model, None, None)?;
    let metrics = client.get_task_metrics(&task_result.task_arn)?;
    
    println!("Cost: ${:.4}", metrics.cost);
    println!("Best energy: {:.6}", metrics.best_energy.unwrap_or(0.0));

    Ok(())
}
```

### 4. Coherent Ising Machine for Large Problems

```rust
use quantrs2_anneal::{
    coherent_ising_machine::{CoherentIsingMachine, CIMParams},
    ising::IsingModel
};

// Large-scale continuous optimization problem
let mut large_model = IsingModel::new(10000);
// ... populate with problem data ...

let cim_params = CIMParams {
    pump_power: 2.0,
    detuning: 0.1,
    coupling_strength: 0.5,
    num_iterations: 1000,
    convergence_threshold: 1e-6,
    ..Default::default()
};

let cim = CoherentIsingMachine::new(cim_params)?;
let result = cim.solve(&large_model)?;

println!("CIM found energy: {}", result.best_energy);
```

### 5. Multi-Objective Optimization

```rust
use quantrs2_anneal::{
    multi_objective::{MultiObjectiveOptimizer, ObjectiveWeight},
    ising::IsingModel
};

// Portfolio optimization with multiple objectives: return, risk, diversity
let mut optimizer = MultiObjectiveOptimizer::new();

// Add objectives with weights
optimizer.add_objective("return", return_model, ObjectiveWeight::Maximize(0.4))?;
optimizer.add_objective("risk", risk_model, ObjectiveWeight::Minimize(0.4))?;
optimizer.add_objective("diversity", diversity_model, ObjectiveWeight::Maximize(0.2))?;

// Pareto frontier analysis
let pareto_solutions = optimizer.find_pareto_frontier(100)?;
for solution in &pareto_solutions {
    println!("Return: {:.3}, Risk: {:.3}, Diversity: {:.3}", 
             solution.objectives["return"],
             solution.objectives["risk"], 
             solution.objectives["diversity"]);
}
```

### 6. Energy System Optimization

```rust
use quantrs2_anneal::applications::energy::{
    PowerGridOptimizer, GridConstraints, RenewableIntegration
};

// Smart grid optimization with renewable integration
let grid_config = GridConstraints {
    total_demand: 1000.0, // MW
    renewable_capacity: 300.0, // MW
    storage_capacity: 100.0, // MWh
    transmission_limits: vec![200.0, 150.0, 250.0], // MW per line
    cost_coefficients: vec![50.0, 80.0, 120.0], // $/MWh per generator
};

let renewable_config = RenewableIntegration {
    solar_forecast: vec![0.0, 50.0, 150.0, 200.0, 150.0, 50.0], // Hourly MW
    wind_forecast: vec![80.0, 90.0, 70.0, 60.0, 85.0, 95.0], // Hourly MW
    storage_schedule: true,
    demand_response: true,
};

let optimizer = PowerGridOptimizer::new(grid_config, renewable_config)?;
let schedule = optimizer.optimize_24_hour_schedule()?;

println!("Optimized power generation schedule:");
for (hour, power) in schedule.generation_schedule.iter().enumerate() {
    println!("Hour {}: {:.1} MW", hour, power);
}
```

## πŸ§ͺ Testing and Benchmarking

The framework includes comprehensive testing and benchmarking capabilities:

```rust
use quantrs2_anneal::{
    applications::performance_benchmarks::{BenchmarkSuite, Algorithm},
    applications::integration_tests::IntegrationTestSuite
};

// Run performance benchmarks
let mut benchmark = BenchmarkSuite::new();
benchmark.add_algorithm(Algorithm::ClassicalAnnealing);
benchmark.add_algorithm(Algorithm::PopulationAnnealing);
benchmark.add_algorithm(Algorithm::CoherentIsingMachine);

let results = benchmark.run_all_benchmarks()?;
results.print_comparison_report();

// Run integration tests
let test_suite = IntegrationTestSuite::new();
let test_results = test_suite.run_all_tests()?;
println!("Integration tests: {}/{} passed", 
         test_results.passed, test_results.total);
```

## πŸ“Š Visualization

```rust
use quantrs2_anneal::visualization::{
    EnergyLandscapeVisualizer, SolutionVisualizer, ConvergenceAnalyzer
};

// Visualize energy landscape
let visualizer = EnergyLandscapeVisualizer::new(&ising_model)?;
visualizer.plot_2d_projection("energy_landscape.svg")?;

// Analyze solution quality
let solution_viz = SolutionVisualizer::new(&result);
solution_viz.plot_energy_histogram("solution_quality.svg")?;

// Monitor convergence
let convergence = ConvergenceAnalyzer::new(&annealing_trace);
convergence.plot_convergence_curve("convergence.svg")?;
```

## πŸ”— Integration with QuantRS2 Ecosystem

QuantRS2-Anneal integrates seamlessly with other QuantRS2 modules:

- **[quantrs2-core]../core/README.md**: Shared types, error handling, and utilities
- **[quantrs2-circuit]../circuit/README.md**: QAOA bridge for variational quantum algorithms
- **[quantrs2-ml]../ml/README.md**: Quantum machine learning integration
- **[quantrs2-sim]../sim/README.md**: Advanced quantum simulation backends

## πŸš€ Performance Characteristics

| Algorithm | Problem Size | Time Complexity | Memory Usage | Best Use Case |
|-----------|--------------|-----------------|--------------|---------------|
| Classical Annealing | < 10,000 vars | O(nΒ²Β·t) | O(nΒ²) | General optimization |
| Population Annealing | < 1,000 vars | O(pΒ·nΒ²Β·t) | O(pΒ·n) | High-quality sampling |
| Coherent Ising Machine | < 100,000 vars | O(nΒ·t) | O(n) | Large continuous problems |
| D-Wave QPU | < 5,000 qubits | Constant | Cloud | Real quantum annealing |
| AWS Braket | < 30 qubits | Variable | Cloud | Multi-vendor quantum access |
| Hybrid Solvers | > 10,000 vars | O(nΒ·log(n)Β·t) | Cloud | Very large problems |

## πŸ“– Documentation

- [API Documentation]https://docs.rs/quantrs2-anneal
- [D-Wave Leap Client Guide]docs/dwave_leap_client.md
- [AWS Braket Client Guide]docs/aws_braket_client.md
- [Embedding Algorithms Guide]docs/embedding_guide.md
- [Application Tutorials]docs/tutorials/
- [Performance Optimization]docs/performance.md

## πŸ› οΈ Examples

Comprehensive examples are available in the [`examples/`](examples/) directory:

- **Basic Usage**: `simple_penalty_optimization.rs`, `advanced_embedding.rs`
- **Cloud Integration**: `dwave_leap_client_example.rs`, `aws_braket_client_example.rs`
- **Advanced Algorithms**: `coherent_ising_machine_example.rs`, `population_annealing_example.rs`
- **Applications**: `energy_optimization.rs`, `portfolio_optimization.rs`
- **Visualization**: `energy_landscape_visualization.rs`

## 🀝 Contributing

We welcome contributions! Please see our [Contributing Guide](../CONTRIBUTING.md) for details.

## πŸ“„ License

This project is licensed under either:

- [Apache License, Version 2.0]../LICENSE-APACHE
- [MIT License]../LICENSE-MIT

at your option.

## πŸ”¬ Research and Citations

If you use QuantRS2-Anneal in your research, please cite:

```bibtex
@software{quantrs2_anneal,
  title={QuantRS2-Anneal: Comprehensive Quantum Annealing Framework},
  author={QuantRS2 Development Team},
  year={2024},
  url={https://github.com/cool-japan/quantrs}
}
```

---

**🌟 Ready to solve optimization problems with quantum annealing? Check out our [Quick Start Guide](docs/quickstart.md) and [Examples](examples/)!**