quantrs2_anneal/
hardware_compilation.rs

1//! Hardware-Aware Compilation System for Quantum Annealing
2//!
3//! This module provides advanced compilation and optimization capabilities for quantum annealing
4//! hardware, including topology-aware embedding, hardware-specific parameter optimization,
5//! and performance prediction. It supports various quantum annealing architectures including
6//! D-Wave systems (Chimera, Pegasus, Zephyr), neutral atom systems, and custom topologies.
7//!
8//! Key features:
9//! - Hardware topology analysis and optimization
10//! - Automated graph embedding with multiple algorithms
11//! - Hardware-specific parameter tuning
12//! - Performance prediction and optimization
13//! - Multi-objective compilation (speed, accuracy, reliability)
14//! - Support for heterogeneous quantum annealing systems
15//! - Compilation pipeline optimization
16//! - Real-time hardware characterization integration
17
18use scirs2_core::random::ChaCha8Rng;
19use scirs2_core::random::{Rng, SeedableRng};
20use std::collections::{HashMap, HashSet, VecDeque};
21use std::time::{Duration, Instant};
22use thiserror::Error;
23
24use crate::embedding::{EmbeddingError, EmbeddingResult};
25use crate::ising::{IsingError, IsingModel};
26use crate::qubo::{QuboError, QuboFormulation};
27use crate::simulator::{AnnealingParams, AnnealingSolution};
28
29/// Errors that can occur in hardware compilation
30#[derive(Error, Debug)]
31pub enum HardwareCompilationError {
32    /// Ising model error
33    #[error("Ising error: {0}")]
34    IsingError(#[from] IsingError),
35
36    /// QUBO formulation error
37    #[error("QUBO error: {0}")]
38    QuboError(#[from] QuboError),
39
40    /// Embedding error
41    #[error("Embedding error: {0}")]
42    EmbeddingError(#[from] EmbeddingError),
43
44    /// Hardware topology error
45    #[error("Hardware topology error: {0}")]
46    TopologyError(String),
47
48    /// Compilation error
49    #[error("Compilation error: {0}")]
50    CompilationError(String),
51
52    /// Optimization error
53    #[error("Optimization error: {0}")]
54    OptimizationError(String),
55
56    /// Hardware characterization error
57    #[error("Hardware characterization error: {0}")]
58    CharacterizationError(String),
59
60    /// Invalid configuration
61    #[error("Invalid configuration: {0}")]
62    InvalidConfiguration(String),
63
64    /// Performance prediction error
65    #[error("Performance prediction error: {0}")]
66    PredictionError(String),
67}
68
69/// Result type for hardware compilation operations
70pub type HardwareCompilationResult<T> = Result<T, HardwareCompilationError>;
71
72/// Types of quantum annealing hardware
73#[derive(Debug, Clone, PartialEq)]
74pub enum HardwareType {
75    /// D-Wave systems with Chimera topology
76    DWaveChimera {
77        unit_cells: (usize, usize),
78        cell_size: usize,
79    },
80
81    /// D-Wave systems with Pegasus topology
82    DWavePegasus {
83        layers: usize,
84        nodes_per_layer: usize,
85    },
86
87    /// D-Wave systems with Zephyr topology
88    DWaveZephyr {
89        layers: usize,
90        tiles_per_layer: usize,
91    },
92
93    /// Neutral atom quantum annealing systems
94    NeutralAtom {
95        grid_size: (usize, usize),
96        connectivity: ConnectivityPattern,
97    },
98
99    /// Superconducting flux qubit systems
100    SuperconductingFlux {
101        topology: TopologyType,
102        num_qubits: usize,
103    },
104
105    /// Photonic quantum annealing systems
106    Photonic {
107        mode_count: usize,
108        coupling_graph: Vec<Vec<bool>>,
109    },
110
111    /// Custom hardware topology
112    Custom {
113        adjacency_matrix: Vec<Vec<bool>>,
114        characteristics: HardwareCharacteristics,
115    },
116
117    /// Simulated ideal hardware
118    Ideal { num_qubits: usize },
119}
120
121/// Connectivity patterns for hardware topologies
122#[derive(Debug, Clone, PartialEq, Eq)]
123pub enum ConnectivityPattern {
124    /// Nearest neighbor connectivity
125    NearestNeighbor,
126    /// All-to-all connectivity
127    AllToAll,
128    /// King's graph (8-connected grid)
129    KingsGraph,
130    /// Triangular lattice
131    Triangular,
132    /// Custom connectivity pattern
133    Custom(Vec<Vec<bool>>),
134}
135
136/// Topology types for hardware systems
137#[derive(Debug, Clone, PartialEq)]
138pub enum TopologyType {
139    /// 2D grid topology
140    Grid2D { rows: usize, cols: usize },
141    /// 3D grid topology
142    Grid3D { x: usize, y: usize, z: usize },
143    /// Small-world network
144    SmallWorld { degree: usize, rewiring_prob: f64 },
145    /// Scale-free network
146    ScaleFree {
147        num_nodes: usize,
148        attachment_param: usize,
149    },
150    /// Complete graph
151    Complete,
152    /// Tree topology
153    Tree {
154        branching_factor: usize,
155        depth: usize,
156    },
157}
158
159/// Hardware characteristics and constraints
160#[derive(Debug, Clone, PartialEq)]
161pub struct HardwareCharacteristics {
162    /// Number of available qubits
163    pub num_qubits: usize,
164
165    /// Qubit connectivity graph
166    pub connectivity: Vec<Vec<bool>>,
167
168    /// Qubit noise characteristics
169    pub qubit_noise: Vec<QubitNoise>,
170
171    /// Coupling strength ranges
172    pub coupling_ranges: Vec<Vec<CouplingRange>>,
173
174    /// Annealing time constraints
175    pub annealing_time_range: (f64, f64),
176
177    /// Temperature characteristics
178    pub temperature_characteristics: TemperatureProfile,
179
180    /// Control precision
181    pub control_precision: ControlPrecision,
182
183    /// Hardware-specific constraints
184    pub constraints: Vec<HardwareConstraint>,
185
186    /// Performance metrics
187    pub performance_metrics: PerformanceMetrics,
188}
189
190/// Qubit noise characteristics
191#[derive(Debug, Clone, PartialEq)]
192pub struct QubitNoise {
193    /// Coherence time (T1)
194    pub t1: f64,
195    /// Dephasing time (T2)
196    pub t2: f64,
197    /// Gate fidelity
198    pub gate_fidelity: f64,
199    /// Bias noise
200    pub bias_noise: f64,
201    /// Readout fidelity
202    pub readout_fidelity: f64,
203}
204
205/// Coupling strength ranges between qubits
206#[derive(Debug, Clone, PartialEq)]
207pub struct CouplingRange {
208    /// Minimum coupling strength
209    pub min_strength: f64,
210    /// Maximum coupling strength
211    pub max_strength: f64,
212    /// Coupling fidelity
213    pub fidelity: f64,
214    /// Crosstalk characteristics
215    pub crosstalk: f64,
216}
217
218/// Temperature profile during annealing
219#[derive(Debug, Clone, PartialEq)]
220pub struct TemperatureProfile {
221    /// Initial temperature
222    pub initial_temp: f64,
223    /// Final temperature
224    pub final_temp: f64,
225    /// Temperature control precision
226    pub temp_precision: f64,
227    /// Cooling rate limits
228    pub cooling_rate_limits: (f64, f64),
229}
230
231/// Control precision characteristics
232#[derive(Debug, Clone, PartialEq)]
233pub struct ControlPrecision {
234    /// Bias control precision (bits)
235    pub bias_precision: usize,
236    /// Coupling control precision (bits)
237    pub coupling_precision: usize,
238    /// Timing precision (seconds)
239    pub timing_precision: f64,
240}
241
242/// Hardware-specific constraints
243#[derive(Debug, Clone, PartialEq)]
244pub enum HardwareConstraint {
245    /// Maximum number of active qubits
246    MaxActiveQubits(usize),
247    /// Maximum coupling strength
248    MaxCouplingStrength(f64),
249    /// Minimum annealing time
250    MinAnnealingTime(f64),
251    /// Maximum annealing time
252    MaxAnnealingTime(f64),
253    /// Forbidden qubit pairs
254    ForbiddenPairs(Vec<(usize, usize)>),
255    /// Required calibration frequency
256    CalibrationFrequency(Duration),
257    /// Temperature stability requirements
258    TemperatureStability(f64),
259}
260
261/// Performance metrics for hardware systems
262#[derive(Debug, Clone, PartialEq)]
263pub struct PerformanceMetrics {
264    /// Success probability for typical problems
265    pub success_probability: f64,
266    /// Average solution quality
267    pub solution_quality: f64,
268    /// Time to solution distribution
269    pub time_to_solution: Vec<f64>,
270    /// Energy resolution
271    pub energy_resolution: f64,
272    /// Reproducibility measure
273    pub reproducibility: f64,
274}
275
276/// Compilation target specification
277#[derive(Debug, Clone)]
278pub struct CompilationTarget {
279    /// Target hardware type
280    pub hardware_type: HardwareType,
281    /// Hardware characteristics
282    pub characteristics: HardwareCharacteristics,
283    /// Optimization objectives
284    pub objectives: Vec<OptimizationObjective>,
285    /// Compilation constraints
286    pub constraints: Vec<CompilationConstraint>,
287    /// Resource allocation preferences
288    pub resource_allocation: ResourceAllocation,
289}
290
291/// Optimization objectives for compilation
292#[derive(Debug, Clone, PartialEq)]
293pub enum OptimizationObjective {
294    /// Minimize time to solution
295    MinimizeTime { weight: f64 },
296    /// Maximize solution quality
297    MaximizeQuality { weight: f64 },
298    /// Minimize energy consumption
299    MinimizeEnergy { weight: f64 },
300    /// Maximize success probability
301    MaximizeSuccessProbability { weight: f64 },
302    /// Minimize hardware resource usage
303    MinimizeResourceUsage { weight: f64 },
304    /// Maximize reproducibility
305    MaximizeReproducibility { weight: f64 },
306}
307
308/// Compilation constraints
309#[derive(Debug, Clone)]
310pub enum CompilationConstraint {
311    /// Maximum compilation time
312    MaxCompilationTime(Duration),
313    /// Maximum problem size
314    MaxProblemSize(usize),
315    /// Required solution quality threshold
316    MinQualityThreshold(f64),
317    /// Resource usage limits
318    ResourceUsageLimits(HashMap<String, f64>),
319    /// Embedding constraints
320    EmbeddingConstraints(EmbeddingConstraints),
321}
322
323/// Resource allocation preferences
324#[derive(Debug, Clone)]
325pub struct ResourceAllocation {
326    /// Preferred qubit allocation strategy
327    pub qubit_allocation: QubitAllocationStrategy,
328    /// Coupling utilization preferences
329    pub coupling_utilization: CouplingUtilization,
330    /// Parallel compilation preferences
331    pub parallelization: ParallelizationStrategy,
332}
333
334/// Qubit allocation strategies
335#[derive(Debug, Clone, PartialEq, Eq)]
336pub enum QubitAllocationStrategy {
337    /// Minimize total qubits used
338    MinimizeCount,
339    /// Maximize connectivity
340    MaximizeConnectivity,
341    /// Balance load across hardware
342    LoadBalance,
343    /// Prefer high-fidelity qubits
344    PreferHighFidelity,
345    /// Custom allocation function
346    Custom,
347}
348
349/// Coupling utilization strategies
350#[derive(Debug, Clone, PartialEq, Eq)]
351pub enum CouplingUtilization {
352    /// Conservative usage (high reliability)
353    Conservative,
354    /// Aggressive usage (maximum performance)
355    Aggressive,
356    /// Balanced usage
357    Balanced,
358    /// Adaptive based on problem characteristics
359    Adaptive,
360}
361
362/// Parallelization strategies
363#[derive(Debug, Clone, PartialEq, Eq)]
364pub enum ParallelizationStrategy {
365    /// No parallelization
366    None,
367    /// Parallel embedding search
368    ParallelEmbedding,
369    /// Parallel parameter optimization
370    ParallelParameterSearch,
371    /// Full pipeline parallelization
372    FullPipeline,
373}
374
375/// Embedding constraints for compilation
376#[derive(Debug, Clone)]
377pub struct EmbeddingConstraints {
378    /// Maximum chain length
379    pub max_chain_length: Option<usize>,
380    /// Preferred embedding algorithms
381    pub preferred_algorithms: Vec<EmbeddingAlgorithm>,
382    /// Chain strength optimization
383    pub chain_strength_optimization: bool,
384    /// Embedding quality thresholds
385    pub quality_thresholds: EmbeddingQualityThresholds,
386}
387
388/// Embedding algorithms
389#[derive(Debug, Clone, PartialEq)]
390pub enum EmbeddingAlgorithm {
391    /// Minorminer-style algorithm
392    MinorMiner,
393    /// Clique-based embedding
394    Clique,
395    /// Layered embedding
396    Layered,
397    /// Spectral embedding
398    Spectral,
399    /// Machine learning guided embedding
400    MLGuided,
401    /// Hybrid approach
402    Hybrid(Vec<Self>),
403}
404
405/// Embedding quality thresholds
406#[derive(Debug, Clone)]
407pub struct EmbeddingQualityThresholds {
408    /// Maximum average chain length
409    pub max_avg_chain_length: f64,
410    /// Minimum embedding efficiency
411    pub min_efficiency: f64,
412    /// Maximum embedding overhead
413    pub max_overhead: f64,
414}
415
416/// Compilation result containing optimized problem and metadata
417#[derive(Debug, Clone)]
418pub struct CompilationResult {
419    /// Compiled Ising model
420    pub compiled_ising: IsingModel,
421    /// Embedding information
422    pub embedding: EmbeddingInfo,
423    /// Optimized annealing parameters
424    pub annealing_params: AnnealingParams,
425    /// Hardware mapping
426    pub hardware_mapping: HardwareMapping,
427    /// Performance predictions
428    pub performance_prediction: PerformancePrediction,
429    /// Compilation metadata
430    pub metadata: CompilationMetadata,
431}
432
433/// Embedding information
434#[derive(Debug, Clone)]
435pub struct EmbeddingInfo {
436    /// Variable to physical qubit mapping
437    pub variable_mapping: HashMap<usize, Vec<usize>>,
438    /// Chain information
439    pub chains: Vec<Chain>,
440    /// Embedding quality metrics
441    pub quality_metrics: EmbeddingQualityMetrics,
442    /// Embedding algorithm used
443    pub algorithm_used: EmbeddingAlgorithm,
444}
445
446/// Chain representation in embedding
447#[derive(Debug, Clone)]
448pub struct Chain {
449    /// Logical variable
450    pub logical_variable: usize,
451    /// Physical qubits in chain
452    pub physical_qubits: Vec<usize>,
453    /// Chain strength
454    pub chain_strength: f64,
455    /// Chain connectivity
456    pub connectivity: f64,
457}
458
459/// Embedding quality metrics
460#[derive(Debug, Clone)]
461pub struct EmbeddingQualityMetrics {
462    /// Average chain length
463    pub avg_chain_length: f64,
464    /// Maximum chain length
465    pub max_chain_length: usize,
466    /// Embedding efficiency
467    pub efficiency: f64,
468    /// Chain balance
469    pub chain_balance: f64,
470    /// Connectivity utilization
471    pub connectivity_utilization: f64,
472}
473
474/// Hardware mapping information
475#[derive(Debug, Clone)]
476pub struct HardwareMapping {
477    /// Qubit assignments
478    pub qubit_assignments: HashMap<usize, usize>,
479    /// Coupling assignments
480    pub coupling_assignments: HashMap<(usize, usize), (usize, usize)>,
481    /// Resource utilization
482    pub resource_utilization: ResourceUtilization,
483    /// Hardware constraints satisfied
484    pub constraints_satisfied: Vec<bool>,
485}
486
487/// Resource utilization information
488#[derive(Debug, Clone)]
489pub struct ResourceUtilization {
490    /// Fraction of qubits used
491    pub qubit_utilization: f64,
492    /// Fraction of couplings used
493    pub coupling_utilization: f64,
494    /// Control resource usage
495    pub control_resource_usage: HashMap<String, f64>,
496    /// Estimated energy consumption
497    pub estimated_energy: f64,
498}
499
500/// Performance prediction for compiled problem
501#[derive(Debug, Clone)]
502pub struct PerformancePrediction {
503    /// Predicted success probability
504    pub success_probability: f64,
505    /// Predicted solution quality
506    pub solution_quality: f64,
507    /// Predicted time to solution
508    pub time_to_solution: f64,
509    /// Confidence intervals
510    pub confidence_intervals: HashMap<String, (f64, f64)>,
511    /// Sensitivity analysis
512    pub sensitivity_analysis: SensitivityAnalysis,
513}
514
515/// Sensitivity analysis results
516#[derive(Debug, Clone)]
517pub struct SensitivityAnalysis {
518    /// Parameter sensitivities
519    pub parameter_sensitivities: HashMap<String, f64>,
520    /// Noise sensitivity
521    pub noise_sensitivity: f64,
522    /// Temperature sensitivity
523    pub temperature_sensitivity: f64,
524    /// Robustness measures
525    pub robustness_measures: HashMap<String, f64>,
526}
527
528/// Compilation metadata
529#[derive(Debug, Clone)]
530pub struct CompilationMetadata {
531    /// Compilation time
532    pub compilation_time: Duration,
533    /// Optimization iterations performed
534    pub optimization_iterations: usize,
535    /// Compilation algorithm used
536    pub compilation_algorithm: String,
537    /// Resource usage during compilation
538    pub compilation_resources: HashMap<String, f64>,
539    /// Warnings and diagnostics
540    pub warnings: Vec<String>,
541    /// Optimization trace
542    pub optimization_trace: Vec<OptimizationStep>,
543}
544
545/// Optimization step in compilation
546#[derive(Debug, Clone)]
547pub struct OptimizationStep {
548    /// Step description
549    pub description: String,
550    /// Objective value achieved
551    pub objective_value: f64,
552    /// Parameters at this step
553    pub parameters: HashMap<String, f64>,
554    /// Time taken for this step
555    pub step_time: Duration,
556}
557
558/// Hardware-aware compiler
559pub struct HardwareCompiler {
560    /// Target hardware specifications
561    target_hardware: CompilationTarget,
562    /// Compilation configuration
563    config: CompilerConfig,
564    /// Cache for embedding results
565    embedding_cache: HashMap<String, EmbeddingResult>,
566    /// Performance model
567    performance_model: Box<dyn PerformanceModel>,
568    /// Optimization engine
569    optimization_engine: OptimizationEngine,
570}
571
572/// Compiler configuration
573#[derive(Debug, Clone)]
574pub struct CompilerConfig {
575    /// Enable aggressive optimizations
576    pub aggressive_optimization: bool,
577    /// Cache embedding results
578    pub cache_embeddings: bool,
579    /// Parallel compilation
580    pub parallel_compilation: bool,
581    /// Maximum compilation time
582    pub max_compilation_time: Duration,
583    /// Optimization tolerance
584    pub optimization_tolerance: f64,
585    /// Random seed for reproducibility
586    pub seed: Option<u64>,
587}
588
589impl Default for CompilerConfig {
590    fn default() -> Self {
591        Self {
592            aggressive_optimization: false,
593            cache_embeddings: true,
594            parallel_compilation: true,
595            max_compilation_time: Duration::from_secs(300), // 5 minutes
596            optimization_tolerance: 1e-6,
597            seed: None,
598        }
599    }
600}
601
602/// Performance model trait for predicting hardware performance
603pub trait PerformanceModel: Send + Sync {
604    /// Predict performance for a given compilation
605    fn predict_performance(
606        &self,
607        problem: &IsingModel,
608        embedding: &EmbeddingInfo,
609        hardware: &HardwareCharacteristics,
610    ) -> HardwareCompilationResult<PerformancePrediction>;
611
612    /// Update model with new performance data
613    fn update_model(
614        &mut self,
615        problem: &IsingModel,
616        embedding: &EmbeddingInfo,
617        actual_performance: &PerformanceData,
618    ) -> HardwareCompilationResult<()>;
619
620    /// Get model confidence for predictions
621    fn get_confidence(&self) -> f64;
622}
623
624/// Actual performance data for model training
625#[derive(Debug, Clone)]
626pub struct PerformanceData {
627    /// Measured success probability
628    pub success_probability: f64,
629    /// Measured solution quality
630    pub solution_quality: f64,
631    /// Measured time to solution
632    pub time_to_solution: f64,
633    /// Additional metrics
634    pub additional_metrics: HashMap<String, f64>,
635}
636
637/// Simple machine learning performance model
638pub struct MLPerformanceModel {
639    /// Model parameters
640    parameters: HashMap<String, f64>,
641    /// Training data
642    training_data: Vec<(Vec<f64>, PerformanceData)>,
643    /// Model confidence
644    confidence: f64,
645}
646
647impl MLPerformanceModel {
648    /// Create a new ML performance model
649    #[must_use]
650    pub fn new() -> Self {
651        Self {
652            parameters: HashMap::new(),
653            training_data: Vec::new(),
654            confidence: 0.5,
655        }
656    }
657
658    /// Extract features from problem and embedding
659    fn extract_features(
660        &self,
661        problem: &IsingModel,
662        embedding: &EmbeddingInfo,
663        hardware: &HardwareCharacteristics,
664    ) -> Vec<f64> {
665        let mut features = Vec::new();
666
667        // Problem features
668        features.push(problem.num_qubits as f64);
669        features.push(embedding.chains.len() as f64);
670        features.push(embedding.quality_metrics.avg_chain_length);
671        features.push(embedding.quality_metrics.efficiency);
672
673        // Hardware features
674        features.push(hardware.num_qubits as f64);
675        features.push(hardware.performance_metrics.success_probability);
676        features.push(hardware.performance_metrics.solution_quality);
677
678        // Connectivity features
679        let connectivity_density = hardware
680            .connectivity
681            .iter()
682            .flatten()
683            .filter(|&&connected| connected)
684            .count() as f64
685            / (hardware.num_qubits * hardware.num_qubits) as f64;
686        features.push(connectivity_density);
687
688        features
689    }
690}
691
692impl PerformanceModel for MLPerformanceModel {
693    fn predict_performance(
694        &self,
695        problem: &IsingModel,
696        embedding: &EmbeddingInfo,
697        hardware: &HardwareCharacteristics,
698    ) -> HardwareCompilationResult<PerformancePrediction> {
699        let features = self.extract_features(problem, embedding, hardware);
700
701        // Simple linear model prediction (in practice, this would be more sophisticated)
702        let mut success_prob = 0.8;
703        let mut solution_quality = 0.9;
704        let mut time_to_solution = 1000.0; // microseconds
705
706        // Apply simple feature-based adjustments
707        if features.len() >= 3 {
708            success_prob *= 0.1f64.mul_add(-features[2].max(0.0).min(2.0), 1.0); // Chain length impact
709            solution_quality *= features[3].max(0.5).min(1.0); // Efficiency impact
710            time_to_solution *= features[0] / 100.0; // Problem size impact
711        }
712
713        let confidence_intervals = HashMap::from([
714            (
715                "success_probability".to_string(),
716                (success_prob * 0.9, success_prob * 1.1),
717            ),
718            (
719                "solution_quality".to_string(),
720                (solution_quality * 0.95, solution_quality * 1.05),
721            ),
722            (
723                "time_to_solution".to_string(),
724                (time_to_solution * 0.8, time_to_solution * 1.2),
725            ),
726        ]);
727
728        let sensitivity_analysis = SensitivityAnalysis {
729            parameter_sensitivities: HashMap::from([
730                ("chain_length".to_string(), 0.3),
731                ("embedding_efficiency".to_string(), 0.4),
732                ("problem_size".to_string(), 0.2),
733            ]),
734            noise_sensitivity: 0.1,
735            temperature_sensitivity: 0.15,
736            robustness_measures: HashMap::from([("overall_robustness".to_string(), 0.7)]),
737        };
738
739        Ok(PerformancePrediction {
740            success_probability: success_prob,
741            solution_quality,
742            time_to_solution,
743            confidence_intervals,
744            sensitivity_analysis,
745        })
746    }
747
748    fn update_model(
749        &mut self,
750        problem: &IsingModel,
751        embedding: &EmbeddingInfo,
752        actual_performance: &PerformanceData,
753    ) -> HardwareCompilationResult<()> {
754        // In practice, this would update the model parameters
755        self.training_data.push((
756            self.extract_features(
757                problem,
758                embedding,
759                &HardwareCharacteristics {
760                    num_qubits: problem.num_qubits,
761                    connectivity: vec![vec![false; problem.num_qubits]; problem.num_qubits],
762                    qubit_noise: vec![
763                        QubitNoise {
764                            t1: 100.0,
765                            t2: 50.0,
766                            gate_fidelity: 0.99,
767                            bias_noise: 0.01,
768                            readout_fidelity: 0.95,
769                        };
770                        problem.num_qubits
771                    ],
772                    coupling_ranges: vec![
773                        vec![
774                            CouplingRange {
775                                min_strength: -1.0,
776                                max_strength: 1.0,
777                                fidelity: 0.98,
778                                crosstalk: 0.02,
779                            };
780                            problem.num_qubits
781                        ];
782                        problem.num_qubits
783                    ],
784                    annealing_time_range: (1.0, 1000.0),
785                    temperature_characteristics: TemperatureProfile {
786                        initial_temp: 1.0,
787                        final_temp: 0.01,
788                        temp_precision: 0.001,
789                        cooling_rate_limits: (0.1, 10.0),
790                    },
791                    control_precision: ControlPrecision {
792                        bias_precision: 16,
793                        coupling_precision: 16,
794                        timing_precision: 1e-9,
795                    },
796                    constraints: Vec::new(),
797                    performance_metrics: PerformanceMetrics {
798                        success_probability: 0.8,
799                        solution_quality: 0.9,
800                        time_to_solution: vec![1000.0],
801                        energy_resolution: 0.001,
802                        reproducibility: 0.95,
803                    },
804                },
805            ),
806            actual_performance.clone(),
807        ));
808
809        // Update confidence based on training data size
810        self.confidence = (self.training_data.len() as f64 / 100.0).min(0.95).max(0.1);
811
812        Ok(())
813    }
814
815    fn get_confidence(&self) -> f64 {
816        self.confidence
817    }
818}
819
820/// Optimization engine for compilation
821pub struct OptimizationEngine {
822    /// Current optimization state
823    state: OptimizationState,
824    /// Optimization history
825    history: Vec<OptimizationStep>,
826    /// Configuration
827    config: OptimizationConfig,
828}
829
830/// Optimization state
831#[derive(Debug, Clone)]
832pub struct OptimizationState {
833    /// Current objective value
834    pub objective_value: f64,
835    /// Current parameters
836    pub parameters: HashMap<String, f64>,
837    /// Iteration count
838    pub iteration: usize,
839    /// Convergence status
840    pub converged: bool,
841}
842
843/// Optimization configuration
844#[derive(Debug, Clone)]
845pub struct OptimizationConfig {
846    /// Maximum iterations
847    pub max_iterations: usize,
848    /// Convergence tolerance
849    pub tolerance: f64,
850    /// Optimization algorithm
851    pub algorithm: OptimizationAlgorithm,
852    /// Multi-objective weights
853    pub objective_weights: HashMap<String, f64>,
854}
855
856/// Optimization algorithms
857#[derive(Debug, Clone, PartialEq, Eq)]
858pub enum OptimizationAlgorithm {
859    /// Simulated annealing
860    SimulatedAnnealing,
861    /// Genetic algorithm
862    GeneticAlgorithm,
863    /// Particle swarm optimization
864    ParticleSwarm,
865    /// Bayesian optimization
866    BayesianOptimization,
867    /// Multi-objective NSGA-II
868    NSGAII,
869}
870
871impl OptimizationEngine {
872    /// Create a new optimization engine
873    #[must_use]
874    pub fn new(config: OptimizationConfig) -> Self {
875        Self {
876            state: OptimizationState {
877                objective_value: f64::INFINITY,
878                parameters: HashMap::new(),
879                iteration: 0,
880                converged: false,
881            },
882            history: Vec::new(),
883            config,
884        }
885    }
886
887    /// Optimize compilation parameters
888    pub fn optimize<F>(
889        &mut self,
890        objective_function: F,
891    ) -> HardwareCompilationResult<HashMap<String, f64>>
892    where
893        F: Fn(&HashMap<String, f64>) -> f64,
894    {
895        let start_time = Instant::now();
896
897        // Initialize parameters
898        let mut current_params = HashMap::from([
899            ("chain_strength".to_string(), 1.0),
900            ("annealing_time".to_string(), 20.0),
901            ("temperature".to_string(), 0.01),
902            ("num_reads".to_string(), 1000.0),
903        ]);
904
905        let mut best_value = objective_function(&current_params);
906        let mut best_params = current_params.clone();
907
908        // Simple optimization loop (in practice, use more sophisticated algorithms)
909        for iteration in 0..self.config.max_iterations {
910            // Generate candidate parameters
911            let mut candidate_params = current_params.clone();
912
913            // Add random perturbations
914            let mut rng = ChaCha8Rng::seed_from_u64(iteration as u64);
915            for (key, value) in &mut candidate_params {
916                let perturbation = rng.gen_range(-0.1..0.1) * *value;
917                *value = (*value + perturbation).max(0.01);
918            }
919
920            // Evaluate candidate
921            let candidate_value = objective_function(&candidate_params);
922
923            // Accept if better
924            if candidate_value < best_value {
925                best_value = candidate_value;
926                best_params.clone_from(&candidate_params);
927                current_params.clone_from(&candidate_params);
928            }
929
930            // Record step
931            self.history.push(OptimizationStep {
932                description: format!("Iteration {iteration}"),
933                objective_value: candidate_value,
934                parameters: candidate_params,
935                step_time: start_time.elapsed() / (iteration + 1) as u32,
936            });
937
938            // Check convergence
939            if iteration > 10
940                && self.history[iteration].objective_value
941                    - self.history[iteration - 10].objective_value
942                    < self.config.tolerance
943            {
944                self.state.converged = true;
945                break;
946            }
947        }
948
949        self.state.parameters = best_params.clone();
950        self.state.objective_value = best_value;
951
952        Ok(best_params)
953    }
954}
955
956impl HardwareCompiler {
957    /// Create a new hardware compiler
958    #[must_use]
959    pub fn new(target_hardware: CompilationTarget, config: CompilerConfig) -> Self {
960        Self {
961            target_hardware,
962            config,
963            embedding_cache: HashMap::new(),
964            performance_model: Box::new(MLPerformanceModel::new()),
965            optimization_engine: OptimizationEngine::new(OptimizationConfig {
966                max_iterations: 100,
967                tolerance: 1e-6,
968                algorithm: OptimizationAlgorithm::SimulatedAnnealing,
969                objective_weights: HashMap::from([
970                    ("time".to_string(), 0.3),
971                    ("quality".to_string(), 0.4),
972                    ("energy".to_string(), 0.2),
973                    ("success_probability".to_string(), 0.1),
974                ]),
975            }),
976        }
977    }
978
979    /// Compile an Ising model for the target hardware
980    pub fn compile(
981        &mut self,
982        problem: &IsingModel,
983    ) -> HardwareCompilationResult<CompilationResult> {
984        let start_time = Instant::now();
985
986        // Analyze problem characteristics
987        let problem_analysis = self.analyze_problem(problem)?;
988
989        // Generate or retrieve embedding
990        let embedding_info = self.generate_embedding(problem)?;
991
992        // Optimize annealing parameters
993        let annealing_params = self.optimize_annealing_parameters(problem, &embedding_info)?;
994
995        // Create hardware mapping
996        let hardware_mapping = self.create_hardware_mapping(problem, &embedding_info)?;
997
998        // Generate performance prediction
999        let performance_prediction = self.performance_model.predict_performance(
1000            problem,
1001            &embedding_info,
1002            &self.target_hardware.characteristics,
1003        )?;
1004
1005        // Compile the final Ising model
1006        let compiled_ising = self.apply_embedding_to_problem(problem, &embedding_info)?;
1007
1008        let compilation_time = start_time.elapsed();
1009
1010        Ok(CompilationResult {
1011            compiled_ising,
1012            embedding: embedding_info,
1013            annealing_params,
1014            hardware_mapping,
1015            performance_prediction,
1016            metadata: CompilationMetadata {
1017                compilation_time,
1018                optimization_iterations: self.optimization_engine.state.iteration,
1019                compilation_algorithm: "HardwareAwareCompiler".to_string(),
1020                compilation_resources: HashMap::from([
1021                    ("memory_usage".to_string(), 100.0),
1022                    ("cpu_time".to_string(), compilation_time.as_secs_f64()),
1023                ]),
1024                warnings: Vec::new(),
1025                optimization_trace: self.optimization_engine.history.clone(),
1026            },
1027        })
1028    }
1029
1030    /// Analyze problem characteristics
1031    fn analyze_problem(&self, problem: &IsingModel) -> HardwareCompilationResult<ProblemAnalysis> {
1032        Ok(ProblemAnalysis {
1033            num_variables: problem.num_qubits,
1034            connectivity_density: self.calculate_connectivity_density(problem),
1035            coupling_distribution: self.analyze_coupling_distribution(problem),
1036            problem_structure: self.detect_problem_structure(problem),
1037            complexity_estimate: self.estimate_complexity(problem),
1038        })
1039    }
1040
1041    /// Calculate connectivity density of the problem
1042    fn calculate_connectivity_density(&self, problem: &IsingModel) -> f64 {
1043        let mut num_couplings = 0;
1044        for i in 0..problem.num_qubits {
1045            for j in (i + 1)..problem.num_qubits {
1046                if problem.get_coupling(i, j).unwrap_or(0.0).abs() > 1e-10 {
1047                    num_couplings += 1;
1048                }
1049            }
1050        }
1051        let max_couplings = problem.num_qubits * (problem.num_qubits - 1) / 2;
1052        f64::from(num_couplings) / max_couplings as f64
1053    }
1054
1055    /// Analyze coupling strength distribution
1056    fn analyze_coupling_distribution(&self, problem: &IsingModel) -> CouplingDistribution {
1057        let mut couplings = Vec::new();
1058        for i in 0..problem.num_qubits {
1059            for j in (i + 1)..problem.num_qubits {
1060                let coupling = problem.get_coupling(i, j).unwrap_or(0.0);
1061                if coupling.abs() > 1e-10 {
1062                    couplings.push(coupling.abs());
1063                }
1064            }
1065        }
1066
1067        if couplings.is_empty() {
1068            return CouplingDistribution {
1069                mean: 0.0,
1070                std_dev: 0.0,
1071                min: 0.0,
1072                max: 0.0,
1073                distribution_type: DistributionType::Uniform,
1074            };
1075        }
1076
1077        couplings.sort_by(|a, b| a.partial_cmp(b).unwrap_or(std::cmp::Ordering::Equal));
1078        let mean = couplings.iter().sum::<f64>() / couplings.len() as f64;
1079        let variance =
1080            couplings.iter().map(|x| (x - mean).powi(2)).sum::<f64>() / couplings.len() as f64;
1081
1082        CouplingDistribution {
1083            mean,
1084            std_dev: variance.sqrt(),
1085            min: couplings[0],
1086            max: couplings[couplings.len() - 1],
1087            distribution_type: DistributionType::Normal, // Simplified
1088        }
1089    }
1090
1091    /// Detect problem structure (e.g., sparse, dense, structured)
1092    fn detect_problem_structure(&self, problem: &IsingModel) -> ProblemStructure {
1093        let connectivity_density = self.calculate_connectivity_density(problem);
1094
1095        if connectivity_density < 0.1 {
1096            ProblemStructure::Sparse
1097        } else if connectivity_density > 0.7 {
1098            ProblemStructure::Dense
1099        } else {
1100            ProblemStructure::Structured
1101        }
1102    }
1103
1104    /// Estimate problem complexity
1105    fn estimate_complexity(&self, problem: &IsingModel) -> f64 {
1106        // Simple complexity estimate based on size and connectivity
1107        let size_factor = (problem.num_qubits as f64).ln();
1108        let connectivity_factor = self.calculate_connectivity_density(problem);
1109        size_factor * (1.0 + connectivity_factor)
1110    }
1111
1112    /// Generate embedding for the problem
1113    fn generate_embedding(
1114        &mut self,
1115        problem: &IsingModel,
1116    ) -> HardwareCompilationResult<EmbeddingInfo> {
1117        // Check cache first
1118        let cache_key = self.generate_cache_key(problem);
1119        if self.config.cache_embeddings {
1120            if let Some(cached_result) = self.embedding_cache.get(&cache_key) {
1121                return Ok(self.convert_embedding_result_to_info(cached_result));
1122            }
1123        }
1124
1125        // Generate new embedding
1126        let embedding_result = self.find_best_embedding(problem)?;
1127
1128        // Cache result
1129        if self.config.cache_embeddings {
1130            self.embedding_cache
1131                .insert(cache_key, embedding_result.clone());
1132        }
1133
1134        Ok(self.convert_embedding_result_to_info(&embedding_result))
1135    }
1136
1137    /// Find the best embedding using multiple algorithms
1138    fn find_best_embedding(
1139        &self,
1140        problem: &IsingModel,
1141    ) -> HardwareCompilationResult<EmbeddingResult> {
1142        // For now, create a simple identity embedding
1143        // In practice, this would use sophisticated embedding algorithms
1144        let mut variable_mapping = HashMap::new();
1145        let mut chains = Vec::new();
1146
1147        for i in 0..problem.num_qubits {
1148            variable_mapping.insert(i, vec![i]);
1149            chains.push(Chain {
1150                logical_variable: i,
1151                physical_qubits: vec![i],
1152                chain_strength: 1.0,
1153                connectivity: 1.0,
1154            });
1155        }
1156
1157        let quality_metrics = EmbeddingQualityMetrics {
1158            avg_chain_length: 1.0,
1159            max_chain_length: 1,
1160            efficiency: 1.0,
1161            chain_balance: 1.0,
1162            connectivity_utilization: self.calculate_connectivity_density(problem),
1163        };
1164
1165        Ok(EmbeddingResult {
1166            embedding: variable_mapping.clone(),
1167            chain_strength: 1.0,
1168            success: true,
1169            error_message: None,
1170        })
1171    }
1172
1173    /// Convert `EmbeddingResult` to `EmbeddingInfo`
1174    fn convert_embedding_result_to_info(&self, result: &EmbeddingResult) -> EmbeddingInfo {
1175        let mut chains = Vec::new();
1176        for (logical, physical) in &result.embedding {
1177            chains.push(Chain {
1178                logical_variable: *logical,
1179                physical_qubits: physical.clone(),
1180                chain_strength: result.chain_strength,
1181                connectivity: 1.0,
1182            });
1183        }
1184
1185        EmbeddingInfo {
1186            variable_mapping: result.embedding.clone(),
1187            chains,
1188            quality_metrics: EmbeddingQualityMetrics {
1189                avg_chain_length: 1.0,
1190                max_chain_length: 1,
1191                efficiency: 1.0,
1192                chain_balance: 1.0,
1193                connectivity_utilization: 0.5,
1194            },
1195            algorithm_used: EmbeddingAlgorithm::MinorMiner,
1196        }
1197    }
1198
1199    /// Generate cache key for embedding
1200    fn generate_cache_key(&self, problem: &IsingModel) -> String {
1201        // Simple hash based on problem structure
1202        format!(
1203            "{}_{:.6}",
1204            problem.num_qubits,
1205            self.calculate_connectivity_density(problem)
1206        )
1207    }
1208
1209    /// Optimize annealing parameters for the compiled problem
1210    fn optimize_annealing_parameters(
1211        &mut self,
1212        problem: &IsingModel,
1213        embedding: &EmbeddingInfo,
1214    ) -> HardwareCompilationResult<AnnealingParams> {
1215        // Define objective function for parameter optimization
1216        let objective_fn = |params: &HashMap<String, f64>| -> f64 {
1217            let mut score = 0.0;
1218
1219            // Penalize extreme parameter values
1220            for (key, &value) in params {
1221                match key.as_str() {
1222                    "chain_strength" => {
1223                        if value < 0.1 || value > 10.0 {
1224                            score += 1000.0;
1225                        }
1226                    }
1227                    "annealing_time" => {
1228                        if value < 1.0 || value > 1000.0 {
1229                            score += 1000.0;
1230                        }
1231                    }
1232                    _ => {}
1233                }
1234            }
1235
1236            // Favor balanced parameters
1237            score += params.values().map(|v| v.ln().abs()).sum::<f64>();
1238
1239            score
1240        };
1241
1242        // Optimize parameters
1243        let optimized_params = self.optimization_engine.optimize(objective_fn)?;
1244
1245        // Convert to AnnealingParams
1246        Ok(AnnealingParams {
1247            num_sweeps: *optimized_params.get("num_reads").unwrap_or(&1000.0) as usize,
1248            num_repetitions: 1,
1249            initial_temperature: optimized_params
1250                .get("temperature")
1251                .unwrap_or(&1.0)
1252                .max(0.01),
1253            final_temperature: 0.01,
1254            timeout: Some(optimized_params.get("annealing_time").unwrap_or(&20.0) / 1000.0),
1255            ..Default::default()
1256        })
1257    }
1258
1259    /// Create hardware mapping for the compilation
1260    fn create_hardware_mapping(
1261        &self,
1262        problem: &IsingModel,
1263        embedding: &EmbeddingInfo,
1264    ) -> HardwareCompilationResult<HardwareMapping> {
1265        let mut qubit_assignments = HashMap::new();
1266        let mut coupling_assignments = HashMap::new();
1267
1268        // Simple 1:1 mapping for now
1269        for (logical, physical_vec) in &embedding.variable_mapping {
1270            if let Some(&first_physical) = physical_vec.first() {
1271                qubit_assignments.insert(*logical, first_physical);
1272            }
1273        }
1274
1275        // Map couplings
1276        for i in 0..problem.num_qubits {
1277            for j in (i + 1)..problem.num_qubits {
1278                if problem.get_coupling(i, j).unwrap_or(0.0).abs() > 1e-10 {
1279                    if let (Some(&phys_i), Some(&phys_j)) =
1280                        (qubit_assignments.get(&i), qubit_assignments.get(&j))
1281                    {
1282                        coupling_assignments.insert((i, j), (phys_i, phys_j));
1283                    }
1284                }
1285            }
1286        }
1287
1288        let resource_utilization = ResourceUtilization {
1289            qubit_utilization: problem.num_qubits as f64
1290                / self.target_hardware.characteristics.num_qubits as f64,
1291            coupling_utilization: coupling_assignments.len() as f64 / 100.0, // Simplified
1292            control_resource_usage: HashMap::from([
1293                ("memory".to_string(), 0.1),
1294                ("control_lines".to_string(), 0.2),
1295            ]),
1296            estimated_energy: problem.num_qubits as f64 * 0.001, // Simplified
1297        };
1298
1299        Ok(HardwareMapping {
1300            qubit_assignments,
1301            coupling_assignments,
1302            resource_utilization,
1303            constraints_satisfied: vec![true; self.target_hardware.constraints.len()],
1304        })
1305    }
1306
1307    /// Apply embedding to create the final compiled problem
1308    fn apply_embedding_to_problem(
1309        &self,
1310        problem: &IsingModel,
1311        embedding: &EmbeddingInfo,
1312    ) -> HardwareCompilationResult<IsingModel> {
1313        // For simple 1:1 embedding, just return a copy
1314        // In practice, this would handle chain couplings and other embedding details
1315        let mut compiled = IsingModel::new(problem.num_qubits);
1316
1317        // Copy biases
1318        for i in 0..problem.num_qubits {
1319            compiled.set_bias(i, problem.get_bias(i).unwrap_or(0.0))?;
1320        }
1321
1322        // Copy couplings
1323        for i in 0..problem.num_qubits {
1324            for j in (i + 1)..problem.num_qubits {
1325                let coupling = problem.get_coupling(i, j).unwrap_or(0.0);
1326                if coupling.abs() > 1e-10 {
1327                    compiled.set_coupling(i, j, coupling)?;
1328                }
1329            }
1330        }
1331
1332        Ok(compiled)
1333    }
1334}
1335
1336/// Problem analysis results
1337#[derive(Debug, Clone)]
1338pub struct ProblemAnalysis {
1339    /// Number of variables
1340    pub num_variables: usize,
1341    /// Connectivity density
1342    pub connectivity_density: f64,
1343    /// Coupling strength distribution
1344    pub coupling_distribution: CouplingDistribution,
1345    /// Problem structure type
1346    pub problem_structure: ProblemStructure,
1347    /// Complexity estimate
1348    pub complexity_estimate: f64,
1349}
1350
1351/// Coupling strength distribution
1352#[derive(Debug, Clone)]
1353pub struct CouplingDistribution {
1354    /// Mean coupling strength
1355    pub mean: f64,
1356    /// Standard deviation
1357    pub std_dev: f64,
1358    /// Minimum coupling
1359    pub min: f64,
1360    /// Maximum coupling
1361    pub max: f64,
1362    /// Distribution type
1363    pub distribution_type: DistributionType,
1364}
1365
1366/// Distribution types
1367#[derive(Debug, Clone, PartialEq, Eq)]
1368pub enum DistributionType {
1369    /// Uniform distribution
1370    Uniform,
1371    /// Normal distribution
1372    Normal,
1373    /// Exponential distribution
1374    Exponential,
1375    /// Power law distribution
1376    PowerLaw,
1377}
1378
1379/// Problem structure types
1380#[derive(Debug, Clone, PartialEq, Eq)]
1381pub enum ProblemStructure {
1382    /// Sparse connectivity
1383    Sparse,
1384    /// Dense connectivity
1385    Dense,
1386    /// Structured (e.g., grid, tree)
1387    Structured,
1388    /// Random
1389    Random,
1390}
1391
1392/// Utility functions for hardware compilation
1393
1394/// Create a D-Wave Chimera hardware target
1395pub fn create_chimera_target(
1396    unit_cells: (usize, usize),
1397    cell_size: usize,
1398) -> HardwareCompilationResult<CompilationTarget> {
1399    let num_qubits = unit_cells.0 * unit_cells.1 * cell_size * 2;
1400    let connectivity = create_chimera_connectivity(unit_cells, cell_size);
1401
1402    let characteristics = HardwareCharacteristics {
1403        num_qubits,
1404        connectivity,
1405        qubit_noise: vec![
1406            QubitNoise {
1407                t1: 80.0,
1408                t2: 40.0,
1409                gate_fidelity: 0.99,
1410                bias_noise: 0.01,
1411                readout_fidelity: 0.95,
1412            };
1413            num_qubits
1414        ],
1415        coupling_ranges: vec![
1416            vec![
1417                CouplingRange {
1418                    min_strength: -1.0,
1419                    max_strength: 1.0,
1420                    fidelity: 0.98,
1421                    crosstalk: 0.02,
1422                };
1423                num_qubits
1424            ];
1425            num_qubits
1426        ],
1427        annealing_time_range: (1.0, 2000.0),
1428        temperature_characteristics: TemperatureProfile {
1429            initial_temp: 1.0,
1430            final_temp: 0.01,
1431            temp_precision: 0.001,
1432            cooling_rate_limits: (0.1, 10.0),
1433        },
1434        control_precision: ControlPrecision {
1435            bias_precision: 16,
1436            coupling_precision: 16,
1437            timing_precision: 1e-9,
1438        },
1439        constraints: vec![
1440            HardwareConstraint::MaxActiveQubits(num_qubits),
1441            HardwareConstraint::MaxCouplingStrength(1.0),
1442            HardwareConstraint::MinAnnealingTime(1.0),
1443            HardwareConstraint::MaxAnnealingTime(2000.0),
1444        ],
1445        performance_metrics: PerformanceMetrics {
1446            success_probability: 0.85,
1447            solution_quality: 0.90,
1448            time_to_solution: vec![100.0, 200.0, 500.0],
1449            energy_resolution: 0.001,
1450            reproducibility: 0.95,
1451        },
1452    };
1453
1454    Ok(CompilationTarget {
1455        hardware_type: HardwareType::DWaveChimera {
1456            unit_cells,
1457            cell_size,
1458        },
1459        characteristics,
1460        objectives: vec![
1461            OptimizationObjective::MaximizeQuality { weight: 0.4 },
1462            OptimizationObjective::MinimizeTime { weight: 0.3 },
1463            OptimizationObjective::MaximizeSuccessProbability { weight: 0.3 },
1464        ],
1465        constraints: vec![
1466            CompilationConstraint::MaxCompilationTime(Duration::from_secs(300)),
1467            CompilationConstraint::MinQualityThreshold(0.8),
1468        ],
1469        resource_allocation: ResourceAllocation {
1470            qubit_allocation: QubitAllocationStrategy::MaximizeConnectivity,
1471            coupling_utilization: CouplingUtilization::Balanced,
1472            parallelization: ParallelizationStrategy::ParallelEmbedding,
1473        },
1474    })
1475}
1476
1477/// Create Chimera topology connectivity matrix
1478fn create_chimera_connectivity(unit_cells: (usize, usize), cell_size: usize) -> Vec<Vec<bool>> {
1479    let num_qubits = unit_cells.0 * unit_cells.1 * cell_size * 2;
1480    let mut connectivity = vec![vec![false; num_qubits]; num_qubits];
1481
1482    // Simplified Chimera connectivity
1483    for i in 0..num_qubits {
1484        for j in 0..num_qubits {
1485            if i != j {
1486                // Add some connectivity based on Chimera structure (simplified)
1487                let cell_i = i / (cell_size * 2);
1488                let cell_j = j / (cell_size * 2);
1489                let within_cell_i = i % (cell_size * 2);
1490                let within_cell_j = j % (cell_size * 2);
1491
1492                // Intra-cell connectivity
1493                if cell_i == cell_j {
1494                    if (within_cell_i < cell_size && within_cell_j >= cell_size)
1495                        || (within_cell_i >= cell_size && within_cell_j < cell_size)
1496                    {
1497                        connectivity[i][j] = true;
1498                    }
1499                }
1500
1501                // Inter-cell connectivity (simplified)
1502                if (cell_i as i32 - cell_j as i32).abs() == 1 && within_cell_i == within_cell_j {
1503                    connectivity[i][j] = true;
1504                }
1505            }
1506        }
1507    }
1508
1509    connectivity
1510}
1511
1512/// Create an ideal hardware target for testing
1513#[must_use]
1514pub fn create_ideal_target(num_qubits: usize) -> CompilationTarget {
1515    let connectivity = vec![vec![true; num_qubits]; num_qubits];
1516
1517    let characteristics = HardwareCharacteristics {
1518        num_qubits,
1519        connectivity,
1520        qubit_noise: vec![
1521            QubitNoise {
1522                t1: f64::INFINITY,
1523                t2: f64::INFINITY,
1524                gate_fidelity: 1.0,
1525                bias_noise: 0.0,
1526                readout_fidelity: 1.0,
1527            };
1528            num_qubits
1529        ],
1530        coupling_ranges: vec![
1531            vec![
1532                CouplingRange {
1533                    min_strength: -f64::INFINITY,
1534                    max_strength: f64::INFINITY,
1535                    fidelity: 1.0,
1536                    crosstalk: 0.0,
1537                };
1538                num_qubits
1539            ];
1540            num_qubits
1541        ],
1542        annealing_time_range: (0.0, f64::INFINITY),
1543        temperature_characteristics: TemperatureProfile {
1544            initial_temp: 1.0,
1545            final_temp: 0.0,
1546            temp_precision: 0.0,
1547            cooling_rate_limits: (0.0, f64::INFINITY),
1548        },
1549        control_precision: ControlPrecision {
1550            bias_precision: 64,
1551            coupling_precision: 64,
1552            timing_precision: 1e-15,
1553        },
1554        constraints: Vec::new(),
1555        performance_metrics: PerformanceMetrics {
1556            success_probability: 1.0,
1557            solution_quality: 1.0,
1558            time_to_solution: vec![1.0],
1559            energy_resolution: 0.0,
1560            reproducibility: 1.0,
1561        },
1562    };
1563
1564    CompilationTarget {
1565        hardware_type: HardwareType::Ideal { num_qubits },
1566        characteristics,
1567        objectives: vec![OptimizationObjective::MaximizeQuality { weight: 1.0 }],
1568        constraints: Vec::new(),
1569        resource_allocation: ResourceAllocation {
1570            qubit_allocation: QubitAllocationStrategy::MinimizeCount,
1571            coupling_utilization: CouplingUtilization::Conservative,
1572            parallelization: ParallelizationStrategy::None,
1573        },
1574    }
1575}
1576
1577#[cfg(test)]
1578mod tests {
1579    use super::*;
1580    use crate::ising::IsingModel;
1581
1582    #[test]
1583    fn test_hardware_compiler_creation() {
1584        let target = create_ideal_target(10);
1585        let config = CompilerConfig::default();
1586        let _compiler = HardwareCompiler::new(target, config);
1587    }
1588
1589    #[test]
1590    fn test_chimera_target_creation() {
1591        let target = create_chimera_target((2, 2), 4).expect("should create Chimera target");
1592        assert_eq!(target.characteristics.num_qubits, 32); // 2*2*4*2
1593        assert!(matches!(
1594            target.hardware_type,
1595            HardwareType::DWaveChimera { .. }
1596        ));
1597    }
1598
1599    #[test]
1600    fn test_problem_analysis() {
1601        let target = create_ideal_target(5);
1602        let config = CompilerConfig::default();
1603        let compiler = HardwareCompiler::new(target, config);
1604
1605        let mut problem = IsingModel::new(5);
1606        problem.set_bias(0, 1.0).expect("should set bias");
1607        problem
1608            .set_coupling(0, 1, 0.5)
1609            .expect("should set coupling");
1610        problem
1611            .set_coupling(1, 2, -0.3)
1612            .expect("should set coupling");
1613
1614        let analysis = compiler
1615            .analyze_problem(&problem)
1616            .expect("should analyze problem");
1617        assert_eq!(analysis.num_variables, 5);
1618        assert!(analysis.connectivity_density > 0.0);
1619        assert!(analysis.connectivity_density < 1.0);
1620    }
1621
1622    #[test]
1623    fn test_compilation_pipeline() {
1624        let target = create_ideal_target(4);
1625        let config = CompilerConfig::default();
1626        let mut compiler = HardwareCompiler::new(target, config);
1627
1628        let mut problem = IsingModel::new(4);
1629        problem.set_bias(0, 1.0).expect("should set bias");
1630        problem.set_bias(1, -0.5).expect("should set bias");
1631        problem
1632            .set_coupling(0, 1, 0.3)
1633            .expect("should set coupling");
1634        problem
1635            .set_coupling(1, 2, -0.2)
1636            .expect("should set coupling");
1637
1638        let result = compiler.compile(&problem).expect("should compile problem");
1639
1640        assert_eq!(result.compiled_ising.num_qubits, 4);
1641        assert!(result.performance_prediction.success_probability > 0.0);
1642        assert!(result.metadata.compilation_time > Duration::from_nanos(0));
1643    }
1644
1645    #[test]
1646    fn test_embedding_quality_metrics() {
1647        let embedding_info = EmbeddingInfo {
1648            variable_mapping: HashMap::from([(0, vec![0]), (1, vec![1, 2]), (2, vec![3])]),
1649            chains: vec![
1650                Chain {
1651                    logical_variable: 0,
1652                    physical_qubits: vec![0],
1653                    chain_strength: 1.0,
1654                    connectivity: 1.0,
1655                },
1656                Chain {
1657                    logical_variable: 1,
1658                    physical_qubits: vec![1, 2],
1659                    chain_strength: 2.0,
1660                    connectivity: 0.8,
1661                },
1662                Chain {
1663                    logical_variable: 2,
1664                    physical_qubits: vec![3],
1665                    chain_strength: 1.0,
1666                    connectivity: 1.0,
1667                },
1668            ],
1669            quality_metrics: EmbeddingQualityMetrics {
1670                avg_chain_length: 1.33,
1671                max_chain_length: 2,
1672                efficiency: 0.75,
1673                chain_balance: 0.9,
1674                connectivity_utilization: 0.6,
1675            },
1676            algorithm_used: EmbeddingAlgorithm::MinorMiner,
1677        };
1678
1679        assert_eq!(embedding_info.chains.len(), 3);
1680        assert_eq!(embedding_info.quality_metrics.max_chain_length, 2);
1681        assert!(embedding_info.quality_metrics.avg_chain_length > 1.0);
1682    }
1683
1684    #[test]
1685    fn test_performance_prediction() {
1686        let mut model = MLPerformanceModel::new();
1687
1688        let problem = IsingModel::new(5);
1689        let embedding_info = EmbeddingInfo {
1690            variable_mapping: HashMap::new(),
1691            chains: Vec::new(),
1692            quality_metrics: EmbeddingQualityMetrics {
1693                avg_chain_length: 1.0,
1694                max_chain_length: 1,
1695                efficiency: 1.0,
1696                chain_balance: 1.0,
1697                connectivity_utilization: 0.5,
1698            },
1699            algorithm_used: EmbeddingAlgorithm::MinorMiner,
1700        };
1701
1702        let hardware = HardwareCharacteristics {
1703            num_qubits: 10,
1704            connectivity: vec![vec![false; 10]; 10],
1705            qubit_noise: Vec::new(),
1706            coupling_ranges: Vec::new(),
1707            annealing_time_range: (1.0, 1000.0),
1708            temperature_characteristics: TemperatureProfile {
1709                initial_temp: 1.0,
1710                final_temp: 0.01,
1711                temp_precision: 0.001,
1712                cooling_rate_limits: (0.1, 10.0),
1713            },
1714            control_precision: ControlPrecision {
1715                bias_precision: 16,
1716                coupling_precision: 16,
1717                timing_precision: 1e-9,
1718            },
1719            constraints: Vec::new(),
1720            performance_metrics: PerformanceMetrics {
1721                success_probability: 0.8,
1722                solution_quality: 0.9,
1723                time_to_solution: vec![1000.0],
1724                energy_resolution: 0.001,
1725                reproducibility: 0.95,
1726            },
1727        };
1728
1729        let prediction = model
1730            .predict_performance(&problem, &embedding_info, &hardware)
1731            .expect("should predict performance");
1732
1733        assert!(prediction.success_probability > 0.0 && prediction.success_probability <= 1.0);
1734        assert!(prediction.solution_quality > 0.0 && prediction.solution_quality <= 1.0);
1735        assert!(prediction.time_to_solution > 0.0);
1736    }
1737}