1use scirs2_core::random::ChaCha8Rng;
19use scirs2_core::random::{Rng, SeedableRng};
20use std::collections::{HashMap, HashSet, VecDeque};
21use std::time::{Duration, Instant};
22use thiserror::Error;
23
24use crate::embedding::{EmbeddingError, EmbeddingResult};
25use crate::ising::{IsingError, IsingModel};
26use crate::qubo::{QuboError, QuboFormulation};
27use crate::simulator::{AnnealingParams, AnnealingSolution};
28
29#[derive(Error, Debug)]
31pub enum HardwareCompilationError {
32 #[error("Ising error: {0}")]
34 IsingError(#[from] IsingError),
35
36 #[error("QUBO error: {0}")]
38 QuboError(#[from] QuboError),
39
40 #[error("Embedding error: {0}")]
42 EmbeddingError(#[from] EmbeddingError),
43
44 #[error("Hardware topology error: {0}")]
46 TopologyError(String),
47
48 #[error("Compilation error: {0}")]
50 CompilationError(String),
51
52 #[error("Optimization error: {0}")]
54 OptimizationError(String),
55
56 #[error("Hardware characterization error: {0}")]
58 CharacterizationError(String),
59
60 #[error("Invalid configuration: {0}")]
62 InvalidConfiguration(String),
63
64 #[error("Performance prediction error: {0}")]
66 PredictionError(String),
67}
68
69pub type HardwareCompilationResult<T> = Result<T, HardwareCompilationError>;
71
72#[derive(Debug, Clone, PartialEq)]
74pub enum HardwareType {
75 DWaveChimera {
77 unit_cells: (usize, usize),
78 cell_size: usize,
79 },
80
81 DWavePegasus {
83 layers: usize,
84 nodes_per_layer: usize,
85 },
86
87 DWaveZephyr {
89 layers: usize,
90 tiles_per_layer: usize,
91 },
92
93 NeutralAtom {
95 grid_size: (usize, usize),
96 connectivity: ConnectivityPattern,
97 },
98
99 SuperconductingFlux {
101 topology: TopologyType,
102 num_qubits: usize,
103 },
104
105 Photonic {
107 mode_count: usize,
108 coupling_graph: Vec<Vec<bool>>,
109 },
110
111 Custom {
113 adjacency_matrix: Vec<Vec<bool>>,
114 characteristics: HardwareCharacteristics,
115 },
116
117 Ideal { num_qubits: usize },
119}
120
121#[derive(Debug, Clone, PartialEq, Eq)]
123pub enum ConnectivityPattern {
124 NearestNeighbor,
126 AllToAll,
128 KingsGraph,
130 Triangular,
132 Custom(Vec<Vec<bool>>),
134}
135
136#[derive(Debug, Clone, PartialEq)]
138pub enum TopologyType {
139 Grid2D { rows: usize, cols: usize },
141 Grid3D { x: usize, y: usize, z: usize },
143 SmallWorld { degree: usize, rewiring_prob: f64 },
145 ScaleFree {
147 num_nodes: usize,
148 attachment_param: usize,
149 },
150 Complete,
152 Tree {
154 branching_factor: usize,
155 depth: usize,
156 },
157}
158
159#[derive(Debug, Clone, PartialEq)]
161pub struct HardwareCharacteristics {
162 pub num_qubits: usize,
164
165 pub connectivity: Vec<Vec<bool>>,
167
168 pub qubit_noise: Vec<QubitNoise>,
170
171 pub coupling_ranges: Vec<Vec<CouplingRange>>,
173
174 pub annealing_time_range: (f64, f64),
176
177 pub temperature_characteristics: TemperatureProfile,
179
180 pub control_precision: ControlPrecision,
182
183 pub constraints: Vec<HardwareConstraint>,
185
186 pub performance_metrics: PerformanceMetrics,
188}
189
190#[derive(Debug, Clone, PartialEq)]
192pub struct QubitNoise {
193 pub t1: f64,
195 pub t2: f64,
197 pub gate_fidelity: f64,
199 pub bias_noise: f64,
201 pub readout_fidelity: f64,
203}
204
205#[derive(Debug, Clone, PartialEq)]
207pub struct CouplingRange {
208 pub min_strength: f64,
210 pub max_strength: f64,
212 pub fidelity: f64,
214 pub crosstalk: f64,
216}
217
218#[derive(Debug, Clone, PartialEq)]
220pub struct TemperatureProfile {
221 pub initial_temp: f64,
223 pub final_temp: f64,
225 pub temp_precision: f64,
227 pub cooling_rate_limits: (f64, f64),
229}
230
231#[derive(Debug, Clone, PartialEq)]
233pub struct ControlPrecision {
234 pub bias_precision: usize,
236 pub coupling_precision: usize,
238 pub timing_precision: f64,
240}
241
242#[derive(Debug, Clone, PartialEq)]
244pub enum HardwareConstraint {
245 MaxActiveQubits(usize),
247 MaxCouplingStrength(f64),
249 MinAnnealingTime(f64),
251 MaxAnnealingTime(f64),
253 ForbiddenPairs(Vec<(usize, usize)>),
255 CalibrationFrequency(Duration),
257 TemperatureStability(f64),
259}
260
261#[derive(Debug, Clone, PartialEq)]
263pub struct PerformanceMetrics {
264 pub success_probability: f64,
266 pub solution_quality: f64,
268 pub time_to_solution: Vec<f64>,
270 pub energy_resolution: f64,
272 pub reproducibility: f64,
274}
275
276#[derive(Debug, Clone)]
278pub struct CompilationTarget {
279 pub hardware_type: HardwareType,
281 pub characteristics: HardwareCharacteristics,
283 pub objectives: Vec<OptimizationObjective>,
285 pub constraints: Vec<CompilationConstraint>,
287 pub resource_allocation: ResourceAllocation,
289}
290
291#[derive(Debug, Clone, PartialEq)]
293pub enum OptimizationObjective {
294 MinimizeTime { weight: f64 },
296 MaximizeQuality { weight: f64 },
298 MinimizeEnergy { weight: f64 },
300 MaximizeSuccessProbability { weight: f64 },
302 MinimizeResourceUsage { weight: f64 },
304 MaximizeReproducibility { weight: f64 },
306}
307
308#[derive(Debug, Clone)]
310pub enum CompilationConstraint {
311 MaxCompilationTime(Duration),
313 MaxProblemSize(usize),
315 MinQualityThreshold(f64),
317 ResourceUsageLimits(HashMap<String, f64>),
319 EmbeddingConstraints(EmbeddingConstraints),
321}
322
323#[derive(Debug, Clone)]
325pub struct ResourceAllocation {
326 pub qubit_allocation: QubitAllocationStrategy,
328 pub coupling_utilization: CouplingUtilization,
330 pub parallelization: ParallelizationStrategy,
332}
333
334#[derive(Debug, Clone, PartialEq, Eq)]
336pub enum QubitAllocationStrategy {
337 MinimizeCount,
339 MaximizeConnectivity,
341 LoadBalance,
343 PreferHighFidelity,
345 Custom,
347}
348
349#[derive(Debug, Clone, PartialEq, Eq)]
351pub enum CouplingUtilization {
352 Conservative,
354 Aggressive,
356 Balanced,
358 Adaptive,
360}
361
362#[derive(Debug, Clone, PartialEq, Eq)]
364pub enum ParallelizationStrategy {
365 None,
367 ParallelEmbedding,
369 ParallelParameterSearch,
371 FullPipeline,
373}
374
375#[derive(Debug, Clone)]
377pub struct EmbeddingConstraints {
378 pub max_chain_length: Option<usize>,
380 pub preferred_algorithms: Vec<EmbeddingAlgorithm>,
382 pub chain_strength_optimization: bool,
384 pub quality_thresholds: EmbeddingQualityThresholds,
386}
387
388#[derive(Debug, Clone, PartialEq)]
390pub enum EmbeddingAlgorithm {
391 MinorMiner,
393 Clique,
395 Layered,
397 Spectral,
399 MLGuided,
401 Hybrid(Vec<Self>),
403}
404
405#[derive(Debug, Clone)]
407pub struct EmbeddingQualityThresholds {
408 pub max_avg_chain_length: f64,
410 pub min_efficiency: f64,
412 pub max_overhead: f64,
414}
415
416#[derive(Debug, Clone)]
418pub struct CompilationResult {
419 pub compiled_ising: IsingModel,
421 pub embedding: EmbeddingInfo,
423 pub annealing_params: AnnealingParams,
425 pub hardware_mapping: HardwareMapping,
427 pub performance_prediction: PerformancePrediction,
429 pub metadata: CompilationMetadata,
431}
432
433#[derive(Debug, Clone)]
435pub struct EmbeddingInfo {
436 pub variable_mapping: HashMap<usize, Vec<usize>>,
438 pub chains: Vec<Chain>,
440 pub quality_metrics: EmbeddingQualityMetrics,
442 pub algorithm_used: EmbeddingAlgorithm,
444}
445
446#[derive(Debug, Clone)]
448pub struct Chain {
449 pub logical_variable: usize,
451 pub physical_qubits: Vec<usize>,
453 pub chain_strength: f64,
455 pub connectivity: f64,
457}
458
459#[derive(Debug, Clone)]
461pub struct EmbeddingQualityMetrics {
462 pub avg_chain_length: f64,
464 pub max_chain_length: usize,
466 pub efficiency: f64,
468 pub chain_balance: f64,
470 pub connectivity_utilization: f64,
472}
473
474#[derive(Debug, Clone)]
476pub struct HardwareMapping {
477 pub qubit_assignments: HashMap<usize, usize>,
479 pub coupling_assignments: HashMap<(usize, usize), (usize, usize)>,
481 pub resource_utilization: ResourceUtilization,
483 pub constraints_satisfied: Vec<bool>,
485}
486
487#[derive(Debug, Clone)]
489pub struct ResourceUtilization {
490 pub qubit_utilization: f64,
492 pub coupling_utilization: f64,
494 pub control_resource_usage: HashMap<String, f64>,
496 pub estimated_energy: f64,
498}
499
500#[derive(Debug, Clone)]
502pub struct PerformancePrediction {
503 pub success_probability: f64,
505 pub solution_quality: f64,
507 pub time_to_solution: f64,
509 pub confidence_intervals: HashMap<String, (f64, f64)>,
511 pub sensitivity_analysis: SensitivityAnalysis,
513}
514
515#[derive(Debug, Clone)]
517pub struct SensitivityAnalysis {
518 pub parameter_sensitivities: HashMap<String, f64>,
520 pub noise_sensitivity: f64,
522 pub temperature_sensitivity: f64,
524 pub robustness_measures: HashMap<String, f64>,
526}
527
528#[derive(Debug, Clone)]
530pub struct CompilationMetadata {
531 pub compilation_time: Duration,
533 pub optimization_iterations: usize,
535 pub compilation_algorithm: String,
537 pub compilation_resources: HashMap<String, f64>,
539 pub warnings: Vec<String>,
541 pub optimization_trace: Vec<OptimizationStep>,
543}
544
545#[derive(Debug, Clone)]
547pub struct OptimizationStep {
548 pub description: String,
550 pub objective_value: f64,
552 pub parameters: HashMap<String, f64>,
554 pub step_time: Duration,
556}
557
558pub struct HardwareCompiler {
560 target_hardware: CompilationTarget,
562 config: CompilerConfig,
564 embedding_cache: HashMap<String, EmbeddingResult>,
566 performance_model: Box<dyn PerformanceModel>,
568 optimization_engine: OptimizationEngine,
570}
571
572#[derive(Debug, Clone)]
574pub struct CompilerConfig {
575 pub aggressive_optimization: bool,
577 pub cache_embeddings: bool,
579 pub parallel_compilation: bool,
581 pub max_compilation_time: Duration,
583 pub optimization_tolerance: f64,
585 pub seed: Option<u64>,
587}
588
589impl Default for CompilerConfig {
590 fn default() -> Self {
591 Self {
592 aggressive_optimization: false,
593 cache_embeddings: true,
594 parallel_compilation: true,
595 max_compilation_time: Duration::from_secs(300), optimization_tolerance: 1e-6,
597 seed: None,
598 }
599 }
600}
601
602pub trait PerformanceModel: Send + Sync {
604 fn predict_performance(
606 &self,
607 problem: &IsingModel,
608 embedding: &EmbeddingInfo,
609 hardware: &HardwareCharacteristics,
610 ) -> HardwareCompilationResult<PerformancePrediction>;
611
612 fn update_model(
614 &mut self,
615 problem: &IsingModel,
616 embedding: &EmbeddingInfo,
617 actual_performance: &PerformanceData,
618 ) -> HardwareCompilationResult<()>;
619
620 fn get_confidence(&self) -> f64;
622}
623
624#[derive(Debug, Clone)]
626pub struct PerformanceData {
627 pub success_probability: f64,
629 pub solution_quality: f64,
631 pub time_to_solution: f64,
633 pub additional_metrics: HashMap<String, f64>,
635}
636
637pub struct MLPerformanceModel {
639 parameters: HashMap<String, f64>,
641 training_data: Vec<(Vec<f64>, PerformanceData)>,
643 confidence: f64,
645}
646
647impl MLPerformanceModel {
648 #[must_use]
650 pub fn new() -> Self {
651 Self {
652 parameters: HashMap::new(),
653 training_data: Vec::new(),
654 confidence: 0.5,
655 }
656 }
657
658 fn extract_features(
660 &self,
661 problem: &IsingModel,
662 embedding: &EmbeddingInfo,
663 hardware: &HardwareCharacteristics,
664 ) -> Vec<f64> {
665 let mut features = Vec::new();
666
667 features.push(problem.num_qubits as f64);
669 features.push(embedding.chains.len() as f64);
670 features.push(embedding.quality_metrics.avg_chain_length);
671 features.push(embedding.quality_metrics.efficiency);
672
673 features.push(hardware.num_qubits as f64);
675 features.push(hardware.performance_metrics.success_probability);
676 features.push(hardware.performance_metrics.solution_quality);
677
678 let connectivity_density = hardware
680 .connectivity
681 .iter()
682 .flatten()
683 .filter(|&&connected| connected)
684 .count() as f64
685 / (hardware.num_qubits * hardware.num_qubits) as f64;
686 features.push(connectivity_density);
687
688 features
689 }
690}
691
692impl PerformanceModel for MLPerformanceModel {
693 fn predict_performance(
694 &self,
695 problem: &IsingModel,
696 embedding: &EmbeddingInfo,
697 hardware: &HardwareCharacteristics,
698 ) -> HardwareCompilationResult<PerformancePrediction> {
699 let features = self.extract_features(problem, embedding, hardware);
700
701 let mut success_prob = 0.8;
703 let mut solution_quality = 0.9;
704 let mut time_to_solution = 1000.0; if features.len() >= 3 {
708 success_prob *= 0.1f64.mul_add(-features[2].max(0.0).min(2.0), 1.0); solution_quality *= features[3].max(0.5).min(1.0); time_to_solution *= features[0] / 100.0; }
712
713 let confidence_intervals = HashMap::from([
714 (
715 "success_probability".to_string(),
716 (success_prob * 0.9, success_prob * 1.1),
717 ),
718 (
719 "solution_quality".to_string(),
720 (solution_quality * 0.95, solution_quality * 1.05),
721 ),
722 (
723 "time_to_solution".to_string(),
724 (time_to_solution * 0.8, time_to_solution * 1.2),
725 ),
726 ]);
727
728 let sensitivity_analysis = SensitivityAnalysis {
729 parameter_sensitivities: HashMap::from([
730 ("chain_length".to_string(), 0.3),
731 ("embedding_efficiency".to_string(), 0.4),
732 ("problem_size".to_string(), 0.2),
733 ]),
734 noise_sensitivity: 0.1,
735 temperature_sensitivity: 0.15,
736 robustness_measures: HashMap::from([("overall_robustness".to_string(), 0.7)]),
737 };
738
739 Ok(PerformancePrediction {
740 success_probability: success_prob,
741 solution_quality,
742 time_to_solution,
743 confidence_intervals,
744 sensitivity_analysis,
745 })
746 }
747
748 fn update_model(
749 &mut self,
750 problem: &IsingModel,
751 embedding: &EmbeddingInfo,
752 actual_performance: &PerformanceData,
753 ) -> HardwareCompilationResult<()> {
754 self.training_data.push((
756 self.extract_features(
757 problem,
758 embedding,
759 &HardwareCharacteristics {
760 num_qubits: problem.num_qubits,
761 connectivity: vec![vec![false; problem.num_qubits]; problem.num_qubits],
762 qubit_noise: vec![
763 QubitNoise {
764 t1: 100.0,
765 t2: 50.0,
766 gate_fidelity: 0.99,
767 bias_noise: 0.01,
768 readout_fidelity: 0.95,
769 };
770 problem.num_qubits
771 ],
772 coupling_ranges: vec![
773 vec![
774 CouplingRange {
775 min_strength: -1.0,
776 max_strength: 1.0,
777 fidelity: 0.98,
778 crosstalk: 0.02,
779 };
780 problem.num_qubits
781 ];
782 problem.num_qubits
783 ],
784 annealing_time_range: (1.0, 1000.0),
785 temperature_characteristics: TemperatureProfile {
786 initial_temp: 1.0,
787 final_temp: 0.01,
788 temp_precision: 0.001,
789 cooling_rate_limits: (0.1, 10.0),
790 },
791 control_precision: ControlPrecision {
792 bias_precision: 16,
793 coupling_precision: 16,
794 timing_precision: 1e-9,
795 },
796 constraints: Vec::new(),
797 performance_metrics: PerformanceMetrics {
798 success_probability: 0.8,
799 solution_quality: 0.9,
800 time_to_solution: vec![1000.0],
801 energy_resolution: 0.001,
802 reproducibility: 0.95,
803 },
804 },
805 ),
806 actual_performance.clone(),
807 ));
808
809 self.confidence = (self.training_data.len() as f64 / 100.0).min(0.95).max(0.1);
811
812 Ok(())
813 }
814
815 fn get_confidence(&self) -> f64 {
816 self.confidence
817 }
818}
819
820pub struct OptimizationEngine {
822 state: OptimizationState,
824 history: Vec<OptimizationStep>,
826 config: OptimizationConfig,
828}
829
830#[derive(Debug, Clone)]
832pub struct OptimizationState {
833 pub objective_value: f64,
835 pub parameters: HashMap<String, f64>,
837 pub iteration: usize,
839 pub converged: bool,
841}
842
843#[derive(Debug, Clone)]
845pub struct OptimizationConfig {
846 pub max_iterations: usize,
848 pub tolerance: f64,
850 pub algorithm: OptimizationAlgorithm,
852 pub objective_weights: HashMap<String, f64>,
854}
855
856#[derive(Debug, Clone, PartialEq, Eq)]
858pub enum OptimizationAlgorithm {
859 SimulatedAnnealing,
861 GeneticAlgorithm,
863 ParticleSwarm,
865 BayesianOptimization,
867 NSGAII,
869}
870
871impl OptimizationEngine {
872 #[must_use]
874 pub fn new(config: OptimizationConfig) -> Self {
875 Self {
876 state: OptimizationState {
877 objective_value: f64::INFINITY,
878 parameters: HashMap::new(),
879 iteration: 0,
880 converged: false,
881 },
882 history: Vec::new(),
883 config,
884 }
885 }
886
887 pub fn optimize<F>(
889 &mut self,
890 objective_function: F,
891 ) -> HardwareCompilationResult<HashMap<String, f64>>
892 where
893 F: Fn(&HashMap<String, f64>) -> f64,
894 {
895 let start_time = Instant::now();
896
897 let mut current_params = HashMap::from([
899 ("chain_strength".to_string(), 1.0),
900 ("annealing_time".to_string(), 20.0),
901 ("temperature".to_string(), 0.01),
902 ("num_reads".to_string(), 1000.0),
903 ]);
904
905 let mut best_value = objective_function(¤t_params);
906 let mut best_params = current_params.clone();
907
908 for iteration in 0..self.config.max_iterations {
910 let mut candidate_params = current_params.clone();
912
913 let mut rng = ChaCha8Rng::seed_from_u64(iteration as u64);
915 for (key, value) in &mut candidate_params {
916 let perturbation = rng.gen_range(-0.1..0.1) * *value;
917 *value = (*value + perturbation).max(0.01);
918 }
919
920 let candidate_value = objective_function(&candidate_params);
922
923 if candidate_value < best_value {
925 best_value = candidate_value;
926 best_params.clone_from(&candidate_params);
927 current_params.clone_from(&candidate_params);
928 }
929
930 self.history.push(OptimizationStep {
932 description: format!("Iteration {iteration}"),
933 objective_value: candidate_value,
934 parameters: candidate_params,
935 step_time: start_time.elapsed() / (iteration + 1) as u32,
936 });
937
938 if iteration > 10
940 && self.history[iteration].objective_value
941 - self.history[iteration - 10].objective_value
942 < self.config.tolerance
943 {
944 self.state.converged = true;
945 break;
946 }
947 }
948
949 self.state.parameters = best_params.clone();
950 self.state.objective_value = best_value;
951
952 Ok(best_params)
953 }
954}
955
956impl HardwareCompiler {
957 #[must_use]
959 pub fn new(target_hardware: CompilationTarget, config: CompilerConfig) -> Self {
960 Self {
961 target_hardware,
962 config,
963 embedding_cache: HashMap::new(),
964 performance_model: Box::new(MLPerformanceModel::new()),
965 optimization_engine: OptimizationEngine::new(OptimizationConfig {
966 max_iterations: 100,
967 tolerance: 1e-6,
968 algorithm: OptimizationAlgorithm::SimulatedAnnealing,
969 objective_weights: HashMap::from([
970 ("time".to_string(), 0.3),
971 ("quality".to_string(), 0.4),
972 ("energy".to_string(), 0.2),
973 ("success_probability".to_string(), 0.1),
974 ]),
975 }),
976 }
977 }
978
979 pub fn compile(
981 &mut self,
982 problem: &IsingModel,
983 ) -> HardwareCompilationResult<CompilationResult> {
984 let start_time = Instant::now();
985
986 let problem_analysis = self.analyze_problem(problem)?;
988
989 let embedding_info = self.generate_embedding(problem)?;
991
992 let annealing_params = self.optimize_annealing_parameters(problem, &embedding_info)?;
994
995 let hardware_mapping = self.create_hardware_mapping(problem, &embedding_info)?;
997
998 let performance_prediction = self.performance_model.predict_performance(
1000 problem,
1001 &embedding_info,
1002 &self.target_hardware.characteristics,
1003 )?;
1004
1005 let compiled_ising = self.apply_embedding_to_problem(problem, &embedding_info)?;
1007
1008 let compilation_time = start_time.elapsed();
1009
1010 Ok(CompilationResult {
1011 compiled_ising,
1012 embedding: embedding_info,
1013 annealing_params,
1014 hardware_mapping,
1015 performance_prediction,
1016 metadata: CompilationMetadata {
1017 compilation_time,
1018 optimization_iterations: self.optimization_engine.state.iteration,
1019 compilation_algorithm: "HardwareAwareCompiler".to_string(),
1020 compilation_resources: HashMap::from([
1021 ("memory_usage".to_string(), 100.0),
1022 ("cpu_time".to_string(), compilation_time.as_secs_f64()),
1023 ]),
1024 warnings: Vec::new(),
1025 optimization_trace: self.optimization_engine.history.clone(),
1026 },
1027 })
1028 }
1029
1030 fn analyze_problem(&self, problem: &IsingModel) -> HardwareCompilationResult<ProblemAnalysis> {
1032 Ok(ProblemAnalysis {
1033 num_variables: problem.num_qubits,
1034 connectivity_density: self.calculate_connectivity_density(problem),
1035 coupling_distribution: self.analyze_coupling_distribution(problem),
1036 problem_structure: self.detect_problem_structure(problem),
1037 complexity_estimate: self.estimate_complexity(problem),
1038 })
1039 }
1040
1041 fn calculate_connectivity_density(&self, problem: &IsingModel) -> f64 {
1043 let mut num_couplings = 0;
1044 for i in 0..problem.num_qubits {
1045 for j in (i + 1)..problem.num_qubits {
1046 if problem.get_coupling(i, j).unwrap_or(0.0).abs() > 1e-10 {
1047 num_couplings += 1;
1048 }
1049 }
1050 }
1051 let max_couplings = problem.num_qubits * (problem.num_qubits - 1) / 2;
1052 f64::from(num_couplings) / max_couplings as f64
1053 }
1054
1055 fn analyze_coupling_distribution(&self, problem: &IsingModel) -> CouplingDistribution {
1057 let mut couplings = Vec::new();
1058 for i in 0..problem.num_qubits {
1059 for j in (i + 1)..problem.num_qubits {
1060 let coupling = problem.get_coupling(i, j).unwrap_or(0.0);
1061 if coupling.abs() > 1e-10 {
1062 couplings.push(coupling.abs());
1063 }
1064 }
1065 }
1066
1067 if couplings.is_empty() {
1068 return CouplingDistribution {
1069 mean: 0.0,
1070 std_dev: 0.0,
1071 min: 0.0,
1072 max: 0.0,
1073 distribution_type: DistributionType::Uniform,
1074 };
1075 }
1076
1077 couplings.sort_by(|a, b| a.partial_cmp(b).unwrap_or(std::cmp::Ordering::Equal));
1078 let mean = couplings.iter().sum::<f64>() / couplings.len() as f64;
1079 let variance =
1080 couplings.iter().map(|x| (x - mean).powi(2)).sum::<f64>() / couplings.len() as f64;
1081
1082 CouplingDistribution {
1083 mean,
1084 std_dev: variance.sqrt(),
1085 min: couplings[0],
1086 max: couplings[couplings.len() - 1],
1087 distribution_type: DistributionType::Normal, }
1089 }
1090
1091 fn detect_problem_structure(&self, problem: &IsingModel) -> ProblemStructure {
1093 let connectivity_density = self.calculate_connectivity_density(problem);
1094
1095 if connectivity_density < 0.1 {
1096 ProblemStructure::Sparse
1097 } else if connectivity_density > 0.7 {
1098 ProblemStructure::Dense
1099 } else {
1100 ProblemStructure::Structured
1101 }
1102 }
1103
1104 fn estimate_complexity(&self, problem: &IsingModel) -> f64 {
1106 let size_factor = (problem.num_qubits as f64).ln();
1108 let connectivity_factor = self.calculate_connectivity_density(problem);
1109 size_factor * (1.0 + connectivity_factor)
1110 }
1111
1112 fn generate_embedding(
1114 &mut self,
1115 problem: &IsingModel,
1116 ) -> HardwareCompilationResult<EmbeddingInfo> {
1117 let cache_key = self.generate_cache_key(problem);
1119 if self.config.cache_embeddings {
1120 if let Some(cached_result) = self.embedding_cache.get(&cache_key) {
1121 return Ok(self.convert_embedding_result_to_info(cached_result));
1122 }
1123 }
1124
1125 let embedding_result = self.find_best_embedding(problem)?;
1127
1128 if self.config.cache_embeddings {
1130 self.embedding_cache
1131 .insert(cache_key, embedding_result.clone());
1132 }
1133
1134 Ok(self.convert_embedding_result_to_info(&embedding_result))
1135 }
1136
1137 fn find_best_embedding(
1139 &self,
1140 problem: &IsingModel,
1141 ) -> HardwareCompilationResult<EmbeddingResult> {
1142 let mut variable_mapping = HashMap::new();
1145 let mut chains = Vec::new();
1146
1147 for i in 0..problem.num_qubits {
1148 variable_mapping.insert(i, vec![i]);
1149 chains.push(Chain {
1150 logical_variable: i,
1151 physical_qubits: vec![i],
1152 chain_strength: 1.0,
1153 connectivity: 1.0,
1154 });
1155 }
1156
1157 let quality_metrics = EmbeddingQualityMetrics {
1158 avg_chain_length: 1.0,
1159 max_chain_length: 1,
1160 efficiency: 1.0,
1161 chain_balance: 1.0,
1162 connectivity_utilization: self.calculate_connectivity_density(problem),
1163 };
1164
1165 Ok(EmbeddingResult {
1166 embedding: variable_mapping.clone(),
1167 chain_strength: 1.0,
1168 success: true,
1169 error_message: None,
1170 })
1171 }
1172
1173 fn convert_embedding_result_to_info(&self, result: &EmbeddingResult) -> EmbeddingInfo {
1175 let mut chains = Vec::new();
1176 for (logical, physical) in &result.embedding {
1177 chains.push(Chain {
1178 logical_variable: *logical,
1179 physical_qubits: physical.clone(),
1180 chain_strength: result.chain_strength,
1181 connectivity: 1.0,
1182 });
1183 }
1184
1185 EmbeddingInfo {
1186 variable_mapping: result.embedding.clone(),
1187 chains,
1188 quality_metrics: EmbeddingQualityMetrics {
1189 avg_chain_length: 1.0,
1190 max_chain_length: 1,
1191 efficiency: 1.0,
1192 chain_balance: 1.0,
1193 connectivity_utilization: 0.5,
1194 },
1195 algorithm_used: EmbeddingAlgorithm::MinorMiner,
1196 }
1197 }
1198
1199 fn generate_cache_key(&self, problem: &IsingModel) -> String {
1201 format!(
1203 "{}_{:.6}",
1204 problem.num_qubits,
1205 self.calculate_connectivity_density(problem)
1206 )
1207 }
1208
1209 fn optimize_annealing_parameters(
1211 &mut self,
1212 problem: &IsingModel,
1213 embedding: &EmbeddingInfo,
1214 ) -> HardwareCompilationResult<AnnealingParams> {
1215 let objective_fn = |params: &HashMap<String, f64>| -> f64 {
1217 let mut score = 0.0;
1218
1219 for (key, &value) in params {
1221 match key.as_str() {
1222 "chain_strength" => {
1223 if value < 0.1 || value > 10.0 {
1224 score += 1000.0;
1225 }
1226 }
1227 "annealing_time" => {
1228 if value < 1.0 || value > 1000.0 {
1229 score += 1000.0;
1230 }
1231 }
1232 _ => {}
1233 }
1234 }
1235
1236 score += params.values().map(|v| v.ln().abs()).sum::<f64>();
1238
1239 score
1240 };
1241
1242 let optimized_params = self.optimization_engine.optimize(objective_fn)?;
1244
1245 Ok(AnnealingParams {
1247 num_sweeps: *optimized_params.get("num_reads").unwrap_or(&1000.0) as usize,
1248 num_repetitions: 1,
1249 initial_temperature: optimized_params
1250 .get("temperature")
1251 .unwrap_or(&1.0)
1252 .max(0.01),
1253 final_temperature: 0.01,
1254 timeout: Some(optimized_params.get("annealing_time").unwrap_or(&20.0) / 1000.0),
1255 ..Default::default()
1256 })
1257 }
1258
1259 fn create_hardware_mapping(
1261 &self,
1262 problem: &IsingModel,
1263 embedding: &EmbeddingInfo,
1264 ) -> HardwareCompilationResult<HardwareMapping> {
1265 let mut qubit_assignments = HashMap::new();
1266 let mut coupling_assignments = HashMap::new();
1267
1268 for (logical, physical_vec) in &embedding.variable_mapping {
1270 if let Some(&first_physical) = physical_vec.first() {
1271 qubit_assignments.insert(*logical, first_physical);
1272 }
1273 }
1274
1275 for i in 0..problem.num_qubits {
1277 for j in (i + 1)..problem.num_qubits {
1278 if problem.get_coupling(i, j).unwrap_or(0.0).abs() > 1e-10 {
1279 if let (Some(&phys_i), Some(&phys_j)) =
1280 (qubit_assignments.get(&i), qubit_assignments.get(&j))
1281 {
1282 coupling_assignments.insert((i, j), (phys_i, phys_j));
1283 }
1284 }
1285 }
1286 }
1287
1288 let resource_utilization = ResourceUtilization {
1289 qubit_utilization: problem.num_qubits as f64
1290 / self.target_hardware.characteristics.num_qubits as f64,
1291 coupling_utilization: coupling_assignments.len() as f64 / 100.0, control_resource_usage: HashMap::from([
1293 ("memory".to_string(), 0.1),
1294 ("control_lines".to_string(), 0.2),
1295 ]),
1296 estimated_energy: problem.num_qubits as f64 * 0.001, };
1298
1299 Ok(HardwareMapping {
1300 qubit_assignments,
1301 coupling_assignments,
1302 resource_utilization,
1303 constraints_satisfied: vec![true; self.target_hardware.constraints.len()],
1304 })
1305 }
1306
1307 fn apply_embedding_to_problem(
1309 &self,
1310 problem: &IsingModel,
1311 embedding: &EmbeddingInfo,
1312 ) -> HardwareCompilationResult<IsingModel> {
1313 let mut compiled = IsingModel::new(problem.num_qubits);
1316
1317 for i in 0..problem.num_qubits {
1319 compiled.set_bias(i, problem.get_bias(i).unwrap_or(0.0))?;
1320 }
1321
1322 for i in 0..problem.num_qubits {
1324 for j in (i + 1)..problem.num_qubits {
1325 let coupling = problem.get_coupling(i, j).unwrap_or(0.0);
1326 if coupling.abs() > 1e-10 {
1327 compiled.set_coupling(i, j, coupling)?;
1328 }
1329 }
1330 }
1331
1332 Ok(compiled)
1333 }
1334}
1335
1336#[derive(Debug, Clone)]
1338pub struct ProblemAnalysis {
1339 pub num_variables: usize,
1341 pub connectivity_density: f64,
1343 pub coupling_distribution: CouplingDistribution,
1345 pub problem_structure: ProblemStructure,
1347 pub complexity_estimate: f64,
1349}
1350
1351#[derive(Debug, Clone)]
1353pub struct CouplingDistribution {
1354 pub mean: f64,
1356 pub std_dev: f64,
1358 pub min: f64,
1360 pub max: f64,
1362 pub distribution_type: DistributionType,
1364}
1365
1366#[derive(Debug, Clone, PartialEq, Eq)]
1368pub enum DistributionType {
1369 Uniform,
1371 Normal,
1373 Exponential,
1375 PowerLaw,
1377}
1378
1379#[derive(Debug, Clone, PartialEq, Eq)]
1381pub enum ProblemStructure {
1382 Sparse,
1384 Dense,
1386 Structured,
1388 Random,
1390}
1391
1392pub fn create_chimera_target(
1396 unit_cells: (usize, usize),
1397 cell_size: usize,
1398) -> HardwareCompilationResult<CompilationTarget> {
1399 let num_qubits = unit_cells.0 * unit_cells.1 * cell_size * 2;
1400 let connectivity = create_chimera_connectivity(unit_cells, cell_size);
1401
1402 let characteristics = HardwareCharacteristics {
1403 num_qubits,
1404 connectivity,
1405 qubit_noise: vec![
1406 QubitNoise {
1407 t1: 80.0,
1408 t2: 40.0,
1409 gate_fidelity: 0.99,
1410 bias_noise: 0.01,
1411 readout_fidelity: 0.95,
1412 };
1413 num_qubits
1414 ],
1415 coupling_ranges: vec![
1416 vec![
1417 CouplingRange {
1418 min_strength: -1.0,
1419 max_strength: 1.0,
1420 fidelity: 0.98,
1421 crosstalk: 0.02,
1422 };
1423 num_qubits
1424 ];
1425 num_qubits
1426 ],
1427 annealing_time_range: (1.0, 2000.0),
1428 temperature_characteristics: TemperatureProfile {
1429 initial_temp: 1.0,
1430 final_temp: 0.01,
1431 temp_precision: 0.001,
1432 cooling_rate_limits: (0.1, 10.0),
1433 },
1434 control_precision: ControlPrecision {
1435 bias_precision: 16,
1436 coupling_precision: 16,
1437 timing_precision: 1e-9,
1438 },
1439 constraints: vec![
1440 HardwareConstraint::MaxActiveQubits(num_qubits),
1441 HardwareConstraint::MaxCouplingStrength(1.0),
1442 HardwareConstraint::MinAnnealingTime(1.0),
1443 HardwareConstraint::MaxAnnealingTime(2000.0),
1444 ],
1445 performance_metrics: PerformanceMetrics {
1446 success_probability: 0.85,
1447 solution_quality: 0.90,
1448 time_to_solution: vec![100.0, 200.0, 500.0],
1449 energy_resolution: 0.001,
1450 reproducibility: 0.95,
1451 },
1452 };
1453
1454 Ok(CompilationTarget {
1455 hardware_type: HardwareType::DWaveChimera {
1456 unit_cells,
1457 cell_size,
1458 },
1459 characteristics,
1460 objectives: vec![
1461 OptimizationObjective::MaximizeQuality { weight: 0.4 },
1462 OptimizationObjective::MinimizeTime { weight: 0.3 },
1463 OptimizationObjective::MaximizeSuccessProbability { weight: 0.3 },
1464 ],
1465 constraints: vec![
1466 CompilationConstraint::MaxCompilationTime(Duration::from_secs(300)),
1467 CompilationConstraint::MinQualityThreshold(0.8),
1468 ],
1469 resource_allocation: ResourceAllocation {
1470 qubit_allocation: QubitAllocationStrategy::MaximizeConnectivity,
1471 coupling_utilization: CouplingUtilization::Balanced,
1472 parallelization: ParallelizationStrategy::ParallelEmbedding,
1473 },
1474 })
1475}
1476
1477fn create_chimera_connectivity(unit_cells: (usize, usize), cell_size: usize) -> Vec<Vec<bool>> {
1479 let num_qubits = unit_cells.0 * unit_cells.1 * cell_size * 2;
1480 let mut connectivity = vec![vec![false; num_qubits]; num_qubits];
1481
1482 for i in 0..num_qubits {
1484 for j in 0..num_qubits {
1485 if i != j {
1486 let cell_i = i / (cell_size * 2);
1488 let cell_j = j / (cell_size * 2);
1489 let within_cell_i = i % (cell_size * 2);
1490 let within_cell_j = j % (cell_size * 2);
1491
1492 if cell_i == cell_j {
1494 if (within_cell_i < cell_size && within_cell_j >= cell_size)
1495 || (within_cell_i >= cell_size && within_cell_j < cell_size)
1496 {
1497 connectivity[i][j] = true;
1498 }
1499 }
1500
1501 if (cell_i as i32 - cell_j as i32).abs() == 1 && within_cell_i == within_cell_j {
1503 connectivity[i][j] = true;
1504 }
1505 }
1506 }
1507 }
1508
1509 connectivity
1510}
1511
1512#[must_use]
1514pub fn create_ideal_target(num_qubits: usize) -> CompilationTarget {
1515 let connectivity = vec![vec![true; num_qubits]; num_qubits];
1516
1517 let characteristics = HardwareCharacteristics {
1518 num_qubits,
1519 connectivity,
1520 qubit_noise: vec![
1521 QubitNoise {
1522 t1: f64::INFINITY,
1523 t2: f64::INFINITY,
1524 gate_fidelity: 1.0,
1525 bias_noise: 0.0,
1526 readout_fidelity: 1.0,
1527 };
1528 num_qubits
1529 ],
1530 coupling_ranges: vec![
1531 vec![
1532 CouplingRange {
1533 min_strength: -f64::INFINITY,
1534 max_strength: f64::INFINITY,
1535 fidelity: 1.0,
1536 crosstalk: 0.0,
1537 };
1538 num_qubits
1539 ];
1540 num_qubits
1541 ],
1542 annealing_time_range: (0.0, f64::INFINITY),
1543 temperature_characteristics: TemperatureProfile {
1544 initial_temp: 1.0,
1545 final_temp: 0.0,
1546 temp_precision: 0.0,
1547 cooling_rate_limits: (0.0, f64::INFINITY),
1548 },
1549 control_precision: ControlPrecision {
1550 bias_precision: 64,
1551 coupling_precision: 64,
1552 timing_precision: 1e-15,
1553 },
1554 constraints: Vec::new(),
1555 performance_metrics: PerformanceMetrics {
1556 success_probability: 1.0,
1557 solution_quality: 1.0,
1558 time_to_solution: vec![1.0],
1559 energy_resolution: 0.0,
1560 reproducibility: 1.0,
1561 },
1562 };
1563
1564 CompilationTarget {
1565 hardware_type: HardwareType::Ideal { num_qubits },
1566 characteristics,
1567 objectives: vec![OptimizationObjective::MaximizeQuality { weight: 1.0 }],
1568 constraints: Vec::new(),
1569 resource_allocation: ResourceAllocation {
1570 qubit_allocation: QubitAllocationStrategy::MinimizeCount,
1571 coupling_utilization: CouplingUtilization::Conservative,
1572 parallelization: ParallelizationStrategy::None,
1573 },
1574 }
1575}
1576
1577#[cfg(test)]
1578mod tests {
1579 use super::*;
1580 use crate::ising::IsingModel;
1581
1582 #[test]
1583 fn test_hardware_compiler_creation() {
1584 let target = create_ideal_target(10);
1585 let config = CompilerConfig::default();
1586 let _compiler = HardwareCompiler::new(target, config);
1587 }
1588
1589 #[test]
1590 fn test_chimera_target_creation() {
1591 let target = create_chimera_target((2, 2), 4).expect("should create Chimera target");
1592 assert_eq!(target.characteristics.num_qubits, 32); assert!(matches!(
1594 target.hardware_type,
1595 HardwareType::DWaveChimera { .. }
1596 ));
1597 }
1598
1599 #[test]
1600 fn test_problem_analysis() {
1601 let target = create_ideal_target(5);
1602 let config = CompilerConfig::default();
1603 let compiler = HardwareCompiler::new(target, config);
1604
1605 let mut problem = IsingModel::new(5);
1606 problem.set_bias(0, 1.0).expect("should set bias");
1607 problem
1608 .set_coupling(0, 1, 0.5)
1609 .expect("should set coupling");
1610 problem
1611 .set_coupling(1, 2, -0.3)
1612 .expect("should set coupling");
1613
1614 let analysis = compiler
1615 .analyze_problem(&problem)
1616 .expect("should analyze problem");
1617 assert_eq!(analysis.num_variables, 5);
1618 assert!(analysis.connectivity_density > 0.0);
1619 assert!(analysis.connectivity_density < 1.0);
1620 }
1621
1622 #[test]
1623 fn test_compilation_pipeline() {
1624 let target = create_ideal_target(4);
1625 let config = CompilerConfig::default();
1626 let mut compiler = HardwareCompiler::new(target, config);
1627
1628 let mut problem = IsingModel::new(4);
1629 problem.set_bias(0, 1.0).expect("should set bias");
1630 problem.set_bias(1, -0.5).expect("should set bias");
1631 problem
1632 .set_coupling(0, 1, 0.3)
1633 .expect("should set coupling");
1634 problem
1635 .set_coupling(1, 2, -0.2)
1636 .expect("should set coupling");
1637
1638 let result = compiler.compile(&problem).expect("should compile problem");
1639
1640 assert_eq!(result.compiled_ising.num_qubits, 4);
1641 assert!(result.performance_prediction.success_probability > 0.0);
1642 assert!(result.metadata.compilation_time > Duration::from_nanos(0));
1643 }
1644
1645 #[test]
1646 fn test_embedding_quality_metrics() {
1647 let embedding_info = EmbeddingInfo {
1648 variable_mapping: HashMap::from([(0, vec![0]), (1, vec![1, 2]), (2, vec![3])]),
1649 chains: vec![
1650 Chain {
1651 logical_variable: 0,
1652 physical_qubits: vec![0],
1653 chain_strength: 1.0,
1654 connectivity: 1.0,
1655 },
1656 Chain {
1657 logical_variable: 1,
1658 physical_qubits: vec![1, 2],
1659 chain_strength: 2.0,
1660 connectivity: 0.8,
1661 },
1662 Chain {
1663 logical_variable: 2,
1664 physical_qubits: vec![3],
1665 chain_strength: 1.0,
1666 connectivity: 1.0,
1667 },
1668 ],
1669 quality_metrics: EmbeddingQualityMetrics {
1670 avg_chain_length: 1.33,
1671 max_chain_length: 2,
1672 efficiency: 0.75,
1673 chain_balance: 0.9,
1674 connectivity_utilization: 0.6,
1675 },
1676 algorithm_used: EmbeddingAlgorithm::MinorMiner,
1677 };
1678
1679 assert_eq!(embedding_info.chains.len(), 3);
1680 assert_eq!(embedding_info.quality_metrics.max_chain_length, 2);
1681 assert!(embedding_info.quality_metrics.avg_chain_length > 1.0);
1682 }
1683
1684 #[test]
1685 fn test_performance_prediction() {
1686 let mut model = MLPerformanceModel::new();
1687
1688 let problem = IsingModel::new(5);
1689 let embedding_info = EmbeddingInfo {
1690 variable_mapping: HashMap::new(),
1691 chains: Vec::new(),
1692 quality_metrics: EmbeddingQualityMetrics {
1693 avg_chain_length: 1.0,
1694 max_chain_length: 1,
1695 efficiency: 1.0,
1696 chain_balance: 1.0,
1697 connectivity_utilization: 0.5,
1698 },
1699 algorithm_used: EmbeddingAlgorithm::MinorMiner,
1700 };
1701
1702 let hardware = HardwareCharacteristics {
1703 num_qubits: 10,
1704 connectivity: vec![vec![false; 10]; 10],
1705 qubit_noise: Vec::new(),
1706 coupling_ranges: Vec::new(),
1707 annealing_time_range: (1.0, 1000.0),
1708 temperature_characteristics: TemperatureProfile {
1709 initial_temp: 1.0,
1710 final_temp: 0.01,
1711 temp_precision: 0.001,
1712 cooling_rate_limits: (0.1, 10.0),
1713 },
1714 control_precision: ControlPrecision {
1715 bias_precision: 16,
1716 coupling_precision: 16,
1717 timing_precision: 1e-9,
1718 },
1719 constraints: Vec::new(),
1720 performance_metrics: PerformanceMetrics {
1721 success_probability: 0.8,
1722 solution_quality: 0.9,
1723 time_to_solution: vec![1000.0],
1724 energy_resolution: 0.001,
1725 reproducibility: 0.95,
1726 },
1727 };
1728
1729 let prediction = model
1730 .predict_performance(&problem, &embedding_info, &hardware)
1731 .expect("should predict performance");
1732
1733 assert!(prediction.success_probability > 0.0 && prediction.success_probability <= 1.0);
1734 assert!(prediction.solution_quality > 0.0 && prediction.solution_quality <= 1.0);
1735 assert!(prediction.time_to_solution > 0.0);
1736 }
1737}