quantity 0.6.0

Representation of quantites, i.e. of unit valued scalars and arrays.
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
//! Implementation of SI units.
//!
//! ## SI Base Units and Associated Constants
//!
//! The module contains the seven SI base units and their associated, exact-valued constants.
//!
//! Unit | Unit symbol | Quantity | Associated constant | Associated constant name | Associated constant value
//! -|-|-|-|-|-
//! [SECOND] | $\text{s}$ | time | [DVCS] | Hyperfine transition frequency of Cs | $\Delta\\nu_\text{Cs}=9192631770\\,\text{Hz}$
//! [METER] | $\text{m}$ | length | [CLIGHT] | Speed of light | $c=299792458\\,\\frac{\text{m}}{\text{s}}$
//! [KILOGRAM] | $\text{kg}$ | mass | [PLANCK] | Planck constant | $h=6.62607015\times 10^{-34}\\,\text{J}\\cdot\text{s}$
//! [AMPERE] | $\text{A}$ | electric current | [QE] | Elementary charge | $e=1.602176634\\times 10^{-19}\\,\text{C}$
//! [KELVIN] | $\text{K}$ | thermodynamic temperature | [KB] | Boltzmann constant | $k_\text{B}=1.380649\times 10^{-23}\\,\\frac{\text{J}}{\text{K}}$
//! [MOL] | $\text{mol}$ | amount of substance | [NAV] | Avogadro constant | $N_\text{A}=6.02214076\times 10^{23}\\,\text{mol}^{-1}$
//! [CANDELA] | $\text{cd}$ | luminous intensity | [KCD] | Luminous efficacy of $540\\,\text{THz}$ radiation | $K_\text{cd}=683\\,\\frac{\text{lm}}{\text{W}}$
//!
//! ## Derived Units
//!
//! Additionally, it contains the following derived units.
//!
//! Unit | Unit symbol | Quantity | Definition
//! -|-|-|-
//! [HERTZ] | $\text{Hz}$ | frequency | $\text{s}^{-1}$
//! [NEWTON] | $\text{N}$ | force, weight | $\text{kg}\\frac{\text{m}}{\text{s}^2}$
//! [PASCAL] | $\text{Pa}$ | pressure, stress | $\\frac{\text{N}}{\text{m}^2}$
//! [JOULE] | $\text{J}$ | energy, work, heat | $\text{N}\text{m}$
//! [WATT] | $\text{W}$ | power, radiant flux | $\\frac{\text{J}}{\text{s}}$
//! [COULOMB] | $\text{C}$ | electric charge | $\text{A}\text{s}$
//! [VOLT] | $\text{V}$ | electrical potential difference | $\\frac{\text{W}}{\text{A}}$
//! [FARAD] | $\text{F}$ | capacitance | $\\frac{\text{C}}{\text{V}}$
//! [OHM] | $\text{Ω}$ | resistance, impedance, reactance | $\\frac{\text{V}}{\text{A}}$
//! [SIEMENS] | $\text{S}$ | electrical conductance | $\text{Ω}^{-1}$
//! [WEBER] | $\text{Wb}$ | magnetic flux | $\text{V}\text{s}$
//! [TESLA] | $\text{T}$ | magnetic flux density | $\\frac{\text{Wb}}{\text{m}^2}$
//! [HENRY] | $\text{H}$ | inductance | $\\frac{\text{Wb}}{\text{A}}$
//!
//! ## Additional units
//!
//! For convenience, a number of commonly used units that are not directly combinations of SI base units is also included.
//! These constants simplify the specification of properties, that are not given in SI units. However, as the representation
//! of quantities is unique, they do not appear in formatted outputs.
//!
//! Unit | Unit symbol | Quantity | Definition
//! -|-|-|-
//! [ANGSTROM] | $\text{\\AA}$ | length | $10^{-10}\\,\text{m}$
//! [AMU] | $\text{u}$ | mass | $1.6605390671738466\times 10^{-27}\\,\text{kg}$
//! [AU] | $\text{au}$ | length | $149597870700\\,\text{m}$
//! [BAR] | $\text{bar}$ | pressure | $10^5\\,\text{Pa}$
//! [CALORIE] | $\text{cal}$ | energy | $4.184\\,\text{J}$
//! [CELSIUS] | $^\\circ\text{C}$ | temperature | $t\\,^\\circ\text{C}=\\left(t+273.15\\right)\\,\text{K}$
//! [DAY] | $\text{d}$ | time | $86400\\,\text{s}$
//! [DEBYE] | $\text{De}$ | dipole moment | $\sqrt{10^{-19}\\,\text{J\\AA}^3}$
//! [DEGREES] | $^\\circ$ | angle | $\\frac{\pi}{180}\\,\text{rad}$
//! [GRAM] | $\text{g}$ | mass | $10^{-3}\\,\text{kg}$
//! [HOUR] | $\text{h}$ | time | $3600\\,\text{s}$
//! [LITER] | $\text{l}$ | volume | $10^{-3}\\,\text{m}^3$
//! [MINUTE] | $\text{min}$ | time | $60\\,\text{s}$
//! [RADIANS] | $\text{rad}$ | angle |
//!
//! ## Additional constants
//!
//! Constant | Name | Symbol | Value
//! -|-|-|-
//! [G] | Gravitational constant | $G$ | $6.6743\\times 10^{-11}\\,\\frac{\text{m}^3}{\text{kg}\cdot\text{s}^2}$
//! [RGAS] | Ideal gas constant | $R=N_\text{Av}k_\text{B}$ | $8.31446261815324\\,\\frac{\text{J}}{\text{mol}\\cdot\text{K}}$
//!
//! ## Prefixes
//!
//! All units can be combined with the following prefixes:
//!
//! Prefix | Prefix symbol | value | | Prefix | Prefix symbol | value
//! -|-|-|-|-|-|-
//! [DECI] | $\text{d}$ | $10^{-1}$ | | [DECA] | $\text{da}$ | $10^{1}$
//! [CENTI] | $\text{c}$ | $10^{-2}$ | | [HECTO] | $\text{h}$ | $10^{2}$
//! [MILLI] | $\text{m}$ | $10^{-3}$ | | [KILO] | $\text{k}$ | $10^{3}$
//! [MICRO] | $\text{µ}$ | $10^{-6}$ | | [MEGA] | $\text{M}$ | $10^{6}$
//! [NANO] | $\text{n}$ | $10^{-9}$ | | [GIGA] | $\text{G}$ | $10^{9}$
//! [PICO] | $\text{p}$ | $10^{-12}$ | | [TERA] | $\text{T}$ | $10^{12}$
//! [FEMTO] | $\text{f}$ | $10^{-15}$ | | [PETA] | $\text{P}$ | $10^{15}$
//! [ATTO] | $\text{a}$ | $10^{-18}$ | | [EXA] | $\text{E}$ | $10^{18}$
//! [ZEPTO] | $\text{z}$ | $10^{-21}$ | | [ZETTA] | $\text{Z}$ | $10^{21}$
//! [YOCTO] | $\text{y}$ | $10^{-24}$ | | [YOTTA] | $\text{Y}$ | $10^{24}$
//! [RONTO] | $\text{r}$ | $10^{-27}$ | | [RONNA] | $\text{R}$ | $10^{27}$
//! [QUECTO] | $\text{q}$ | $10^{-30}$ | | [QUETTA] | $\text{Q}$ | $10^{30}$
use super::{Quantity, QuantityError, Unit};
use ang::{Angle, Degrees, Radians};
use ndarray::*;
use serde::{Deserialize, Serialize};
use std::cmp::PartialEq;
use std::hash::Hash;
use std::ops::Rem;
use std::ops::{Div, DivAssign, Mul, MulAssign};

/// Representation of a unit as a combination of SI base units.
#[derive(Hash, PartialEq, Eq, Debug, Clone, Copy, Serialize, Deserialize)]
pub struct SIUnit(pub(crate) [i8; 7]);

pub type SINumber = Quantity<f64, SIUnit>;
pub type SIArray<D> = Quantity<Array<f64, D>, SIUnit>;
pub type SIArray0 = SIArray<Ix0>;
pub type SIArray1 = SIArray<Ix1>;
pub type SIArray2 = SIArray<Ix2>;
pub type SIArray3 = SIArray<Ix3>;
pub type SIArray4 = SIArray<Ix4>;
pub type SIArray5 = SIArray<Ix5>;
pub type SIArray6 = SIArray<Ix6>;

impl Unit for SIUnit {
    const DIMENSIONLESS: Self = SIUnit([0; 7]);

    fn powi(&self, i: i32) -> Self {
        let i8 = i as i8;
        Self([
            self.0[0] * i8,
            self.0[1] * i8,
            self.0[2] * i8,
            self.0[3] * i8,
            self.0[4] * i8,
            self.0[5] * i8,
            self.0[6] * i8,
        ])
    }

    fn sqrt(&self) -> Result<Self, QuantityError> {
        self.root(2)
    }

    fn cbrt(&self) -> Result<Self, QuantityError> {
        self.root(3)
    }

    fn root(&self, i: i32) -> Result<Self, QuantityError> {
        let i8 = i as i8;
        if self.0.iter().all(|u| u.rem(i8) == 0) {
            Ok(Self([
                self.0[0] / i8,
                self.0[1] / i8,
                self.0[2] / i8,
                self.0[3] / i8,
                self.0[4] / i8,
                self.0[5] / i8,
                self.0[6] / i8,
            ]))
        } else {
            Err(QuantityError::SINumberError {
                op: String::from("root"),
                cause: String::from("Unit exponents are not multiples of index"),
            })
        }
    }
}

impl Mul for SIUnit {
    type Output = Self;
    #[allow(clippy::suspicious_arithmetic_impl)]
    fn mul(self, other: Self) -> Self {
        Self([
            self.0[0] + other.0[0],
            self.0[1] + other.0[1],
            self.0[2] + other.0[2],
            self.0[3] + other.0[3],
            self.0[4] + other.0[4],
            self.0[5] + other.0[5],
            self.0[6] + other.0[6],
        ])
    }
}

impl Div for SIUnit {
    type Output = Self;
    #[allow(clippy::suspicious_arithmetic_impl)]
    fn div(self, other: Self) -> Self {
        Self([
            self.0[0] - other.0[0],
            self.0[1] - other.0[1],
            self.0[2] - other.0[2],
            self.0[3] - other.0[3],
            self.0[4] - other.0[4],
            self.0[5] - other.0[5],
            self.0[6] - other.0[6],
        ])
    }
}

impl MulAssign for SIUnit {
    #[allow(clippy::suspicious_op_assign_impl)]
    fn mul_assign(&mut self, rhs: Self) {
        self.0[0] += rhs.0[0];
        self.0[1] += rhs.0[1];
        self.0[2] += rhs.0[2];
        self.0[3] += rhs.0[3];
        self.0[4] += rhs.0[4];
        self.0[5] += rhs.0[5];
        self.0[6] += rhs.0[6];
    }
}

impl DivAssign for SIUnit {
    #[allow(clippy::suspicious_op_assign_impl)]
    fn div_assign(&mut self, rhs: Self) {
        self.0[0] -= rhs.0[0];
        self.0[1] -= rhs.0[1];
        self.0[2] -= rhs.0[2];
        self.0[3] -= rhs.0[3];
        self.0[4] -= rhs.0[4];
        self.0[5] -= rhs.0[5];
        self.0[6] -= rhs.0[6];
    }
}

const _METER: SIUnit = SIUnit([1, 0, 0, 0, 0, 0, 0]);
const _KILOGRAM: SIUnit = SIUnit([0, 1, 0, 0, 0, 0, 0]);
const _SECOND: SIUnit = SIUnit([0, 0, 1, 0, 0, 0, 0]);
const _AMPERE: SIUnit = SIUnit([0, 0, 0, 1, 0, 0, 0]);
const _MOL: SIUnit = SIUnit([0, 0, 0, 0, 1, 0, 0]);
const _KELVIN: SIUnit = SIUnit([0, 0, 0, 0, 0, 1, 0]);
const _CANDELA: SIUnit = SIUnit([0, 0, 0, 0, 0, 0, 1]);

const _HERTZ: SIUnit = SIUnit([0, 0, -1, 0, 0, 0, 0]);
const _NEWTON: SIUnit = SIUnit([1, 1, -2, 0, 0, 0, 0]);
const _JOULE: SIUnit = SIUnit([2, 1, -2, 0, 0, 0, 0]);
const _PASCAL: SIUnit = SIUnit([-1, 1, -2, 0, 0, 0, 0]);
const _WATT: SIUnit = SIUnit([2, 1, -3, 0, 0, 0, 0]);
const _CUBIC_METER: SIUnit = SIUnit([3, 0, 0, 0, 0, 0, 0]);
const _JOULE_PER_KELVIN: SIUnit = SIUnit([2, 1, -2, 0, 0, -1, 0]);
const _PER_MOL: SIUnit = SIUnit([0, 0, 0, 0, -1, 0, 0]);
const _JOULE_SECOND: SIUnit = SIUnit([2, 1, -1, 0, 0, 0, 0]);
const _JOULE_PER_MOL_AND_KELVIN: SIUnit = SIUnit([2, 1, -2, 0, -1, -1, 0]);
const _AMPERE_SECOND: SIUnit = SIUnit([0, 0, 1, 1, 0, 0, 0]);
const _VOLT: SIUnit = SIUnit([2, 1, -3, -1, 0, 0, 0]);
const _FARAD: SIUnit = SIUnit([-2, -1, 4, 2, 0, 0, 0]);
const _OHM: SIUnit = SIUnit([2, 1, -3, -2, 0, 0, 0]);
const _SIEMENS: SIUnit = SIUnit([-2, -1, 3, 2, 0, 0, 0]);
const _WEBER: SIUnit = SIUnit([2, 1, -2, -1, 0, 0, 0]);
const _TESLA: SIUnit = SIUnit([0, 1, -2, -1, 0, 0, 0]);
const _HENRY: SIUnit = SIUnit([2, 1, -2, -2, 0, 0, 0]);
const _METER_PER_SECOND: SIUnit = SIUnit([1, 0, -1, 0, 0, 0, 0]);
const _LUMEN_PER_WATT: SIUnit = SIUnit([-2, -1, 3, 0, 0, 0, 1]);

/// SI base unit meter $\\left(\text{m}\\right)$
pub const METER: SINumber = SINumber {
    unit: _METER,
    value: 1.0,
};
/// SI base unit kilogram $\\left(\text{kg}\\right)$
pub const KILOGRAM: SINumber = SINumber {
    unit: _KILOGRAM,
    value: 1.0,
};
/// SI base unit second $\\left(\text{s}\\right)$
pub const SECOND: SINumber = SINumber {
    unit: _SECOND,
    value: 1.0,
};
/// SI base unit ampere $\\left(\text{A}\\right)$
pub const AMPERE: SINumber = SINumber {
    unit: _AMPERE,
    value: 1.0,
};
/// SI base unit mol $\\left(\text{mol}\\right)$
pub const MOL: SINumber = SINumber {
    unit: _MOL,
    value: 1.0,
};
/// SI base unit kelvin $\\left(\text{K}\\right)$
pub const KELVIN: SINumber = SINumber {
    unit: _KELVIN,
    value: 1.0,
};
/// SI base unit candela $\\left(\text{cd}\\right)$
pub const CANDELA: SINumber = SINumber {
    unit: _CANDELA,
    value: 1.0,
};
/// Additional unit angstrom $\\left(1\\,\text{\\AA}=10^{-10}\\,\text{m}\\right)$
pub const ANGSTROM: SINumber = SINumber {
    unit: _METER,
    value: 1e-10,
};
/// Additional unit astronomical unit $\\left(1\\,\text{au}=149597870700\\,\text{m}\\right)$
pub const AU: SINumber = SINumber {
    unit: _METER,
    value: 149597870700.0,
};
/// Additional unit gram $\\left(1\\,\text{g}=10^{-3}\\,\text{kg}\\right)$
pub const GRAM: SINumber = SINumber {
    unit: _KILOGRAM,
    value: 1e-3,
};
/// Additional unit unified atomic mass $\\left(1\\,\text{u}\\approx 1.660539\\times 10^{-27}\\,\text{kg}\\right)$
pub const AMU: SINumber = SINumber {
    unit: _KILOGRAM,
    value: 1.6605390671738466e-27,
};
/// Derived unit hertz $\\left(1\\,\text{Hz}=1\\,\text{s}^{-1}\\right)$
pub const HERTZ: SINumber = SINumber {
    unit: _HERTZ,
    value: 1.0,
};
/// Derived unit newton $\\left(1\\,\text{N}=1\\,\text{kg}\\frac{\text{m}}{\text{s}^2}\\right)$
pub const NEWTON: SINumber = SINumber {
    unit: _NEWTON,
    value: 1.0,
};
/// Derived unit joule $\\left(1\\,\text{J}=1\\,\text{kg}\\frac{\text{m}^2}{\text{s}^2}\\right)$
pub const JOULE: SINumber = SINumber {
    unit: _JOULE,
    value: 1.0,
};
/// Derived unit pascal $\\left(1\\,\text{Pa}=1\\,\\frac{\text{kg}}{\text{m}\\cdot\text{s}^2}\\right)$
pub const PASCAL: SINumber = SINumber {
    unit: _PASCAL,
    value: 1.0,
};
/// Derived unit watt $\\left(1\\,\text{J}=1\\,\text{kg}\\frac{\text{m}^2}{\text{s}^3}\\right)$
pub const WATT: SINumber = SINumber {
    unit: _WATT,
    value: 1.0,
};
/// Additional unit bar $\\left(1\\,\text{bar}=10^5\\,\text{Pa}\\right)$
pub const BAR: SINumber = SINumber {
    unit: _PASCAL,
    value: 1e5,
};
/// Additional unit calorie $\\left(1\\,\text{cal}=4.184\\,\text{J}\\right)$
pub const CALORIE: SINumber = SINumber {
    unit: _JOULE,
    value: 4.184,
};
/// Additional unit liter $\\left(1\\,\text{l}=10^{-3}\\,\text{m}^3\\right)$
pub const LITER: SINumber = SINumber {
    unit: _CUBIC_METER,
    value: 1e-3,
};
/// Additional unit minute $\\left(1\\,\text{min}=60,\text{s}\\right)$
pub const MINUTE: SINumber = SINumber {
    unit: _SECOND,
    value: 60.0,
};
/// Additional unit hour $\\left(1\\,\text{h}=3600,\text{s}\\right)$
pub const HOUR: SINumber = SINumber {
    unit: _SECOND,
    value: 3600.0,
};
/// Additional unit day $\\left(1\\,\text{d}=86400,\text{s}\\right)$
pub const DAY: SINumber = SINumber {
    unit: _SECOND,
    value: 86400.0,
};
/// Derived unit coulomb $\\left(1\\,\text{C}=1\\,\text{A}\cdot\text{s}\\right)$
pub const COULOMB: SINumber = SINumber {
    unit: _AMPERE_SECOND,
    value: 1.0,
};
/// Derived unit volt $\\left(1\\,\text{V}=1\\,\\frac{\text{W}}{\text{A}}\\right)$
pub const VOLT: SINumber = SINumber {
    unit: _VOLT,
    value: 1.0,
};
/// Derived unit farad $\\left(1\\,\text{F}=1\\,\\frac{\text{C}}{\text{V}}\\right)$
pub const FARAD: SINumber = SINumber {
    unit: _FARAD,
    value: 1.0,
};
/// Derived unit ohm $\\left(1\\,\text{Ω}=1\\,\\frac{\text{V}}{\text{A}}\\right)$
pub const OHM: SINumber = SINumber {
    unit: _OHM,
    value: 1.0,
};
/// Derived unit siemens $\\left(1\\,\text{S}=1\\,\text{Ω}^{-1}\\right)$
pub const SIEMENS: SINumber = SINumber {
    unit: _SIEMENS,
    value: 1.0,
};
/// Derived unit weber $\\left(1\\,\text{Wb}=1\\,\text{V}\\cdot\text{s}\\right)$
pub const WEBER: SINumber = SINumber {
    unit: _WEBER,
    value: 1.0,
};
/// Derived unit tesla $\\left(1\\,\text{T}=1\\,\\frac{\text{Wb}}{\text{m}^2}\\right)$
pub const TESLA: SINumber = SINumber {
    unit: _TESLA,
    value: 1.0,
};
/// Derived unit henry $\\left(1\\,\text{T}=1\\,\\frac{\text{Wb}}{\text{A}}\\right)$
pub const HENRY: SINumber = SINumber {
    unit: _HENRY,
    value: 1.0,
};
/// Additional unit debye $\\left(1\\,\text{De}^2=10^{-19}\\,\text{J\\AA}^3\\right)$
pub const DEBYE: Debye = Debye(1.0);

/// Boltzmann constant $\\left(k_\text{B}=1.380649\times 10^{-23}\\,\\frac{\text{J}}{\text{K}}\\right)$
pub const KB: SINumber = SINumber {
    unit: _JOULE_PER_KELVIN,
    value: 1.380649e-23,
};
/// Avogadro constant $\\left(N_\text{A}=6.02214076\times 10^{23}\\,\text{mol}^{-1}\\right)$
pub const NAV: SINumber = SINumber {
    unit: _PER_MOL,
    value: 6.02214076e23,
};
/// Planck constant $\\left(h=6.62607015\times 10^{-34}\\,\text{J}\\cdot\text{s}\\right)$
pub const PLANCK: SINumber = SINumber {
    unit: _JOULE_SECOND,
    value: 6.62607015e-34,
};
/// Ideal gas constant $\\left(R=8.31446261815324\\,\\frac{\text{J}}{\text{mol}\\cdot\text{K}}\\right)$
pub const RGAS: SINumber = SINumber {
    unit: _JOULE_PER_MOL_AND_KELVIN,
    value: 1.380649e-23 * 6.02214076e23,
};
/// Hyperfine transition frequency of Cs $\\left(\Delta\\nu_\text{Cs}=9192631770\\,\text{Hz}\\right)$
pub const DVCS: SINumber = SINumber {
    unit: _HERTZ,
    value: 9192631770.0,
};
/// Elementary charge $\\left(e=1.602176634\\times 10^{-19}\\,\text{C}\\right)$
pub const QE: SINumber = SINumber {
    unit: _AMPERE_SECOND,
    value: 1.602176634e-19,
};
/// Speed of light $\\left(c=299792458\\,\\frac{\text{m}}{\text{s}}\\right)$
pub const CLIGHT: SINumber = SINumber {
    unit: _METER_PER_SECOND,
    value: 299792458.0,
};
/// Luminous efficacy of $540\\,\text{THz}$ radiation $\\left(K_\text{cd}=683\\,\\frac{\text{lm}}{\text{W}}\\right)$
pub const KCD: SINumber = SINumber {
    unit: _LUMEN_PER_WATT,
    value: 683.0,
};
/// Gravitational constant $\\left(G=6.6743\\times 10^{-11}\\,\\frac{\text{m}^3}{\text{kg}\cdot\text{s}^2}\\right)$
pub const G: SINumber = SINumber {
    unit: SIUnit([3, -1, -2, 0, 0, 0, 0]),
    value: 6.6743e-11,
};

/// Angle unit radian $\\left(\text{rad}\\right)$
pub const RADIANS: Angle = Radians(1.0);
/// Angle unit degree $\\left(1^\\circ=\frac{\pi}{180}\\,\text{rad}\\approx 0.0174532925\\,\text{rad}\\right)$
pub const DEGREES: Angle = Degrees(1.0);

/// Prefix quecto $\\left(\text{q}=10^{-30}\\right)$
pub const QUECTO: f64 = 1e-30;
/// Prefix ronto $\\left(\text{r}=10^{-27}\\right)$
pub const RONTO: f64 = 1e-27;
/// Prefix yocto $\\left(\text{y}=10^{-24}\\right)$
pub const YOCTO: f64 = 1e-24;
/// Prefix zepto $\\left(\text{z}=10^{-21}\\right)$
pub const ZEPTO: f64 = 1e-21;
/// Prefix atto $\\left(\text{a}=10^{-18}\\right)$
pub const ATTO: f64 = 1e-18;
/// Prefix femto $\\left(\text{f}=10^{-15}\\right)$
pub const FEMTO: f64 = 1e-15;
/// Prefix pico $\\left(\text{p}=10^{-12}\\right)$
pub const PICO: f64 = 1e-12;
/// Prefix nano $\\left(\text{n}=10^{-9}\\right)$
pub const NANO: f64 = 1e-9;
/// Prefix micro $\\left(\text{µ}=10^{-6}\\right)$
pub const MICRO: f64 = 1e-6;
/// Prefix milli $\\left(\text{m}=10^{-3}\\right)$
pub const MILLI: f64 = 1e-3;
/// Prefix centi $\\left(\text{c}=10^{-2}\\right)$
pub const CENTI: f64 = 1e-2;
/// Prefix deci $\\left(\text{d}=10^{-1}\\right)$
pub const DECI: f64 = 1e-1;
/// Prefix deca $\\left(\text{da}=10^{1}\\right)$
pub const DECA: f64 = 1e1;
/// Prefix hecto $\\left(\text{h}=10^{2}\\right)$
pub const HECTO: f64 = 1e2;
/// Prefix kilo $\\left(\text{k}=10^{3}\\right)$
pub const KILO: f64 = 1e3;
/// Prefix mega $\\left(\text{M}=10^{6}\\right)$
pub const MEGA: f64 = 1e6;
/// Prefix giga $\\left(\text{G}=10^{9}\\right)$
pub const GIGA: f64 = 1e9;
/// Prefix tera $\\left(\text{T}=10^{12}\\right)$
pub const TERA: f64 = 1e12;
/// Prefix peta $\\left(\text{P}=10^{15}\\right)$
pub const PETA: f64 = 1e15;
/// Prefix exa $\\left(\text{E}=10^{18}\\right)$
pub const EXA: f64 = 1e18;
/// Prefix zetta $\\left(\text{Z}=10^{21}\\right)$
pub const ZETTA: f64 = 1e21;
/// Prefix yotta $\\left(\text{Y}=10^{24}\\right)$
pub const YOTTA: f64 = 1e24;
/// Prefix ronna $\\left(\text{R}=10^{27}\\right)$
pub const RONNA: f64 = 1e27;
/// Prefix quetta $\\left(\text{Q}=10^{30}\\right)$
pub const QUETTA: f64 = 1e30;

/// Additional unit celsius
pub struct CELSIUS;

impl Mul<CELSIUS> for f64 {
    type Output = SINumber;
    #[allow(clippy::suspicious_arithmetic_impl)]
    fn mul(self, _: CELSIUS) -> SINumber {
        SINumber {
            value: self + 273.15,
            unit: _KELVIN,
        }
    }
}

impl<S: Data<Elem = f64>, D: Dimension> Mul<CELSIUS> for ArrayBase<S, D> {
    type Output = SIArray<D>;
    #[allow(clippy::suspicious_arithmetic_impl)]
    fn mul(self, _: CELSIUS) -> SIArray<D> {
        SIArray {
            value: &self + 273.15,
            unit: _KELVIN,
        }
    }
}

impl Div<CELSIUS> for SINumber {
    type Output = f64;
    #[allow(clippy::suspicious_arithmetic_impl)]
    fn div(self, _: CELSIUS) -> f64 {
        self.to_reduced(KELVIN).unwrap() - 273.15
    }
}

impl<D: Dimension> Div<CELSIUS> for SIArray<D> {
    type Output = Array<f64, D>;
    #[allow(clippy::suspicious_arithmetic_impl)]
    fn div(self, _: CELSIUS) -> Array<f64, D> {
        self.to_reduced(KELVIN).unwrap() - 273.15
    }
}

/// Additional unit Debye
#[derive(Clone, Copy)]
pub struct Debye(pub(crate) f64);

impl Mul<Debye> for f64 {
    type Output = Debye;
    fn mul(self, other: Debye) -> Debye {
        Debye(self * other.0)
    }
}

impl Debye {
    pub fn powi(&self, n: i32) -> SINumber {
        if n % 2 == 1 {
            panic!("Debye can only be raised to even powers!");
        }
        (self.0.powi(2) * 1e-19 * JOULE * ANGSTROM.powi(3)).powi(n / 2)
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use std::fmt;

    #[test]
    fn test_mul_si_si() {
        let mass = 1000.0 * KILOGRAM;
        let acc = 9.81 * METER / SECOND.powi(2);
        let force = mass * acc;
        assert_eq!(force.value, 1000.0 * 9.81);
        assert!(force.has_unit(&NEWTON))
    }

    #[test]
    fn test_mul_si_number() {
        let mass = 1000.0 * KILOGRAM;
        let acc = 9.81 * METER / SECOND.powi(2);
        let force = mass * acc / 1000.0;
        assert_eq!(force.value, 9.81);
        assert!(force.has_unit(&NEWTON))
    }

    #[test]
    fn test_add_si_si() {
        let p1 = 5.0 * BAR;
        let p2 = 1e5 * PASCAL;
        assert!((p1 + p2).has_unit(&BAR));
        assert_eq!((p1 + p2).value, 6e5)
    }

    #[test]
    #[should_panic]
    fn test_add_si_different_units() {
        let p = 5.0 * BAR;
        let t = 300.0 * KELVIN;
        let _r = p + t;
    }

    #[test]
    fn test_fmt() {
        let mass = 1000.0 * KILOGRAM;
        let acc = 9.81 * METER / SECOND.powi(2);
        let force = mass * acc;
        let format = fmt::format(format_args!("{}", force));
        let target = fmt::format(format_args!("{} kN", force.value / 1000.0));
        assert_eq!(format, target);
    }

    #[test]
    fn test_fmt_electro() {
        assert_eq!((2500. * WATT / AMPERE).to_string(), "2.5 kV".to_string());
        assert_eq!((2500. * COULOMB / VOLT).to_string(), "2.5 kF".to_string());
        assert_eq!((2500. * VOLT / AMPERE).to_string(), "2.5 kΩ".to_string());
        assert_eq!((2500. / OHM).to_string(), "2.5 kS".to_string());
        assert_eq!((2500. * VOLT * SECOND).to_string(), "2.5 kWb".to_string());
        assert_eq!(
            (2500. * WEBER / METER.powi(2)).to_string(),
            "2.5 kT".to_string()
        );
        assert_eq!((2500. * WEBER / AMPERE).to_string(), "2.5 kH".to_string());
    }

    #[test]
    fn test_celsius() {
        assert_eq!(25.0 * CELSIUS, 298.15 * KELVIN);
        assert_eq!(298.15 * KELVIN / CELSIUS, 25.0);
    }

    #[test]
    fn test_debye() {
        assert_eq!((4.0 * DEBYE).powi(2), 16e-19 * JOULE * ANGSTROM.powi(3));
    }

    #[test]
    fn test_from_shape_fn() {
        let arr = SIArray1::from_shape_fn(3, |i| i as f64 * KELVIN);
        assert_eq!(arr.to_reduced(KELVIN).unwrap(), arr1(&[0.0, 1.0, 2.0]));
    }

    #[test]
    #[should_panic(expected = "Inconsistent units Pa and K")]
    fn test_from_vec() {
        let vec = vec![3.0 * PASCAL, 0.04 * BAR, 7.0 * JOULE / METER.powi(3)];
        let arr = SIArray1::from_vec(vec);
        assert_eq!(arr.to_reduced(PASCAL).unwrap(), arr1(&[3.0, 4000.0, 7.0]));
        SIArray1::from_vec(vec![BAR, KELVIN]);
    }
}