1use core::fmt::Debug;
2use core::ops::AddAssign;
3
4use ndarray::array;
5use num_traits::{cast::FromPrimitive, float::Float, identities::One, identities::Zero};
6use serde::{Deserialize, Serialize};
7
8#[derive(Clone, Debug, Serialize, Deserialize)]
11pub struct Stats<T: Float + Zero + One + AddAssign + FromPrimitive + PartialEq + Debug> {
12 pub min: T,
13 pub max: T,
14 pub mean: T,
16 pub std_dev: T,
18
19 #[serde(skip)]
21 count: usize,
22
23 #[serde(skip)]
25 mean2: T,
26}
27
28impl<T> Stats<T>
29 where
30 T: Float + Zero + One + AddAssign + FromPrimitive + PartialEq + Debug,
31{
32 pub fn new() -> Stats<T> {
34 Stats {
35 count: 0,
36 min: T::zero(),
37 max: T::zero(),
38 mean: T::zero(),
39 std_dev: T::zero(),
40 mean2: T::zero(),
41 }
42 }
43
44 pub fn update(&mut self, value: T) {
46 if value > self.max || self.count == 0 {
48 self.max = value;
49 }
50 if value < self.min || self.count == 0 {
51 self.min = value;
52 }
53
54 self.count += 1;
56 let count = T::from_usize(self.count).unwrap();
57
58 let delta: T = value - self.mean;
60 self.mean += delta / count;
61
62 let delta2: T = value - self.mean;
64 self.mean2 += delta * delta2;
65
66 if self.count > 1 {
68 self.std_dev = (self.mean2 / (count - T::one())).sqrt();
69 }
70 }
71}
72
73fn main() {
74 let mut s: Stats<f32> = Stats::new();
75
76 let vals: Vec<f32> = vec![1.0, 2.0, 3.0, 4.0, 5.0];
77 for v in &vals {
78 s.update(*v);
79
80 println!("{:?}", s.max);
81 println!("{:?}", s.mean);
82 }
83}