1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
//! A robust incremental encoder driver with support for multiple step-modes.
use core::marker::PhantomData;
use embedded_hal::digital::InputPin;
use num_traits::{One, SaturatingAdd, Zero};
use quadrature_decoder::{Change, FullStep, IncrementalDecoder, StepMode};
use crate::{
mode::{Movement, OperationMode},
Error, InputPinError, Linear, Rotary,
};
/// Rotary encoder.
pub type RotaryEncoder<Clk, Dt, Steps = FullStep, T = i32> =
IncrementalEncoder<Rotary, Clk, Dt, Steps, T>;
/// Linear encoder.
pub type LinearEncoder<Clk, Dt, Steps = FullStep, T = i32> =
IncrementalEncoder<Linear, Clk, Dt, Steps, T>;
/// A robust incremental encoder with support for multiple step-modes.
#[derive(Debug)]
pub struct IncrementalEncoder<Mode, Clk, Dt, Steps = FullStep, T = i32> {
decoder: IncrementalDecoder<Steps, T>,
pin_clk: Clk,
pin_dt: Dt,
is_reversed: bool,
_mode: PhantomData<Mode>,
}
impl<Mode, Clk, Dt, Steps, T> IncrementalEncoder<Mode, Clk, Dt, Steps, T>
where
Mode: OperationMode,
Clk: InputPin,
Dt: InputPin,
Steps: StepMode,
T: Zero,
{
/// Creates an incremental encoder driver for the given pins.
pub fn new(pin_clk: Clk, pin_dt: Dt) -> Self
where
IncrementalDecoder<Steps, T>: Default,
{
Self {
decoder: Default::default(),
pin_clk,
pin_dt,
is_reversed: false,
_mode: PhantomData,
}
}
}
impl<Mode, Clk, Dt, Steps, T> IncrementalEncoder<Mode, Clk, Dt, Steps, T>
where
Mode: OperationMode,
Clk: InputPin,
Dt: InputPin,
Steps: StepMode,
T: Copy + Zero + One + SaturatingAdd + From<i8>,
{
/// Sets the encoder's reversed mode, making it report flipped movements and positions.
pub fn reversed(mut self) -> Self {
self.is_reversed = true;
self
}
/// Returns `true` if the encoder is reversed, otherwise `false`.
pub fn is_reversed(&self) -> bool {
self.is_reversed
}
/// Returns mutable borrows for the signal channel pins.
pub fn pins_mut(&mut self) -> (&mut Clk, &mut Dt) {
(&mut self.pin_clk, &mut self.pin_dt)
}
/// Consumes self, returning the signal channel pins.
pub fn release(self) -> (Clk, Dt) {
(self.pin_clk, self.pin_dt)
}
/// Updates the encoder's state based on the given **clock** and **data** pins,
/// returning the direction if a movement was detected, `None` if no movement was detected,
/// or `Err(_)` if an invalid input (i.e. a positional "jump") was detected.
///
/// Depending on whether it matters why the encoder did not detect a movement
/// (e.g. due to actual lack of movement or an erroneous read)
/// you would either call `encoder.poll()` directly, or via `encoder.poll().unwrap_or_default()`
/// to fall back to `None` in case of `Err(_)`.
pub fn poll(&mut self) -> Result<Option<Mode::Movement>, Error> {
let a = self
.pin_clk
.is_high()
.map_err(|_| Error::InputPin(InputPinError::PinClk))?;
let b = self
.pin_dt
.is_high()
.map_err(|_| Error::InputPin(InputPinError::PinDt))?;
let change: Option<Change> = self.decoder.update(a, b).map_err(Error::Quadrature)?;
let movement: Option<Mode::Movement> = change.map(From::from);
Ok(movement.map(|movement| {
if self.is_reversed() {
movement.flipped()
} else {
movement
}
}))
}
/// Resets the encoder to its initial state.
pub fn reset(&mut self) {
self.decoder.reset();
}
/// Returns the encoder's position counter relative to its initial position in number of cycles.
pub fn position(&self) -> T {
self.decoder.counter()
}
/// Sets the encoder's position.
pub fn set_position(&mut self, position: T) {
self.decoder.set_counter(position);
}
}