pysentry 0.1.4

Security vulnerability auditing for Python packages
Documentation

🐍 PySentry

A fast, reliable security vulnerability scanner for Python projects, written in Rust.

Overview

PySentry audits Python projects for known security vulnerabilities by analyzing dependency files (uv.lock, pyproject.toml) and cross-referencing them against multiple vulnerability databases. It provides comprehensive reporting with support for various output formats and filtering options.

Key Features

  • Multiple Project Formats: Supports both uv.lock files (with exact versions) and pyproject.toml files
  • Multiple Data Sources:
    • PyPA Advisory Database (default)
    • PyPI JSON API
    • OSV.dev (Open Source Vulnerabilities)
  • Flexible Output: Human-readable, JSON, and SARIF formats
  • Performance Focused:
    • Written in Rust for speed
    • Async/concurrent processing
    • Intelligent caching system
  • Comprehensive Filtering:
    • Severity levels (low, medium, high, critical)
    • Dependency types (production, development, optional)
    • Direct vs. transitive dependencies
  • Enterprise Ready: SARIF output for IDE/CI integration

Installation

Choose the installation method that works best for you:

⚡ Via uvx (Recommended for occasional use)

Run directly without installing (requires uv):

uvx pysentry-rs /path/to/project

This method:

  • Runs the latest version without installation
  • Automatically manages Python environment
  • Perfect for CI/CD or occasional security audits
  • No need to manage package versions or updates

📦 From PyPI (Python Package)

For Python 3.8+ on Linux and macOS:

pip install pysentry-rs

Then use it with Python:

python -m pysentry /path/to/project
# or directly if scripts are in PATH
pysentry-rs /path/to/project

⚡ From Crates.io (Rust Package)

If you have Rust installed:

cargo install pysentry

💾 From GitHub Releases (Pre-built Binaries)

Download the latest release for your platform:

  • Linux x64: pysentry-linux-x64.tar.gz
  • Linux x64 (musl): pysentry-linux-x64-musl.tar.gz
  • Linux ARM64: pysentry-linux-arm64.tar.gz
  • macOS x64: pysentry-macos-x64.tar.gz
  • macOS ARM64: pysentry-macos-arm64.tar.gz
  • Windows x64: pysentry-windows-x64.zip
# Example for Linux x64
curl -L https://github.com/nyudenkov/pysentry/releases/latest/download/pysentry-linux-x64.tar.gz | tar -xz
./pysentry-linux-x64/pysentry --help

🔧 From Source

git clone https://github.com/nyudenkov/pysentry
cd pysentry
cargo build --release

The binary will be available at target/release/pysentry.

Requirements

  • For uvx: Python 3.8+ and uv installed (Linux/macOS only)
  • For binaries: No additional dependencies
  • For Python package: Python 3.8+ (Linux/macOS only)
  • For Rust package and source: Rust 1.79+

Platform Support

Installation Method Linux macOS Windows
uvx
PyPI (pip)
Crates.io (cargo)
GitHub Releases
From Source

Note: Windows Python wheels are not available due to compilation complexity. Windows users should use the pre-built binary from GitHub releases, install via cargo and build from source.

Quick Start

Basic Usage

# Using uvx (recommended for occasional use)
uvx pysentry-rs
uvx pysentry-rs /path/to/python/project

# Using installed binary
pysentry
pysentry /path/to/python/project

# Include development dependencies
pysentry --dev

# Filter by severity (only show high and critical)
pysentry --severity high

# Output to JSON file
pysentry --format json --output audit-results.json

Advanced Usage

# Using uvx for comprehensive audit
uvx pysentry-rs --dev --optional --format sarif --output security-report.sarif

# Check only direct dependencies using OSV database
uvx pysentry-rs --direct-only --source osv

# Or with installed binary
pysentry --dev --optional --format sarif --output security-report.sarif
pysentry --direct-only --source osv

# Ignore specific vulnerabilities
pysentry --ignore CVE-2023-12345 --ignore GHSA-xxxx-yyyy-zzzz

# Disable caching for CI environments
pysentry --no-cache

# Verbose output for debugging
pysentry --verbose

Configuration

Command Line Options

Option Description Default
--format Output format: human, json, sarif human
--severity Minimum severity: low, medium, high, critical low
--source Vulnerability source: pypa, pypi, osv pypa
--dev Include development dependencies false
--optional Include optional dependencies false
--direct-only Check only direct dependencies false
--ignore Vulnerability IDs to ignore (repeatable) []
--output Output file path stdout
--no-cache Disable caching false
--cache-dir Custom cache directory ~/.cache/pysentry
--verbose Enable verbose output false
--quiet Suppress non-error output false

Cache Management

PySentry uses an intelligent caching system to avoid redundant API calls:

  • Default Location: ~/.cache/pysentry/ (or system temp directory)
  • TTL-based Expiration: Separate expiration for each vulnerability source
  • Atomic Updates: Prevents cache corruption during concurrent access
  • Custom Location: Use --cache-dir to specify alternative location

To clear the cache:

rm -rf ~/.cache/pysentry/

Supported Project Formats

uv.lock Files (Recommended)

PySentry has support for uv.lock files, providing:

  • Exact version resolution
  • Complete dependency graph analysis
  • Source tracking
  • Dependency classification (main, dev, optional) including transitioning dependencies

pyproject.toml Files

Fallback support for projects without lock files:

  • Parses version constraints from pyproject.toml
  • Limited dependency graph information

Vulnerability Data Sources

PyPA Advisory Database (Default)

  • Comprehensive coverage of Python ecosystem
  • Community-maintained vulnerability database
  • Regular updates from security researchers

PyPI JSON API

  • Official PyPI vulnerability data
  • Real-time information
  • Limited to packages hosted on PyPI

OSV.dev

  • Cross-ecosystem vulnerability database
  • Google-maintained infrastructure

Output Formats

Human-Readable (Default)

Most comfortable to read.

JSON

{
  "summary": {
    "total_dependencies": 245,
    "vulnerable_packages": 2,
    "total_vulnerabilities": 3,
    "by_severity": {
      "critical": 1,
      "high": 1,
      "medium": 1,
      "low": 0
    }
  },
  "vulnerabilities": [...]
}

SARIF (Static Analysis Results Interchange Format)

Compatible with GitHub Security tab, VS Code, and other security tools.

Performance

PySentry is designed for speed and efficiency:

  • Concurrent Processing: Vulnerability data fetched in parallel
  • Smart Caching: Reduces API calls and parsing overhead
  • Efficient Matching: In-memory indexing for fast vulnerability lookups
  • Streaming: Large databases processed without excessive memory usage

Benchmarks

Typical performance on a project with 100+ dependencies:

  • Cold cache: 15-30 seconds
  • Warm cache: 2-5 seconds
  • Memory usage: ~50MB peak

Development

Building from Source

git clone https://github.com/nyudenkov/pysentry
cd pysentry
cargo build --release

Running Tests

cargo test

Project Structure

src/
├── main.rs           # CLI interface
├── lib.rs            # Library API
├── cache/            # Caching system
├── dependency/       # Dependency scanning
├── output/           # Report generation
├── parsers/          # Project file parsers
├── providers/        # Vulnerability data sources
├── types.rs          # Core type definitions
└── vulnerability/    # Vulnerability matching

Troubleshooting

Common Issues

Error: "No lock file or pyproject.toml found"

# Ensure you're in a Python project directory
ls pyproject.toml uv.lock

# Or specify the path explicitly
pysentry /path/to/python/project

Error: "Failed to fetch vulnerability data"

# Check network connectivity
curl -I https://osv-vulnerabilities.storage.googleapis.com/

# Try with different source
pysentry --source pypi

Performance Issues

# Clear cache and retry
rm -rf ~/.cache/pysentry
pysentry

# Use verbose mode to identify bottlenecks
pysentry --verbose

Acknowledgments