pyrudof 0.1.145

Python bindings for Rudof
docs.rs failed to build pyrudof-0.1.145
Please check the build logs for more information.
See Builds for ideas on how to fix a failed build, or Metadata for how to configure docs.rs builds.
If you believe this is docs.rs' fault, open an issue.
Visit the last successful build: pyrudof-0.1.137

Rudof Python bindings

The Python bindings for rudof are called pyrudof. They are available at pypi.

For more information, you can access the readthedocs documentation. We keep several tutorials about rudof as Jupyter notebooks in: [https://rudof-project.github.io/tutorials].

After compiling and installing this module, a Python library called pyrudof should be available.

Build the development version

This module is based on pyo3 and maturin.

To build and install the development version of pyrudof you need to clone this git repository, go to the python directory (the one this README is in) and run:

pip install maturin

followed by:

pip install .

If you are using .env, you can do the following:

python3 -m venv .venv

followed by:

source .venv/bin/activate

or

source .venv/bin/activate.fish

and once you do that, you can locally install que package as:

pip install -e .

Running the tests

Go to the tests folder:

cd tests

and run:

python3 -m unittest discover -vvv

Using rudof_generate

The pyrudof package includes bindings for rudof_generate, which allows you to generate synthetic RDF data from ShEx or SHACL schemas.

Basic Example

import pyrudof

# Create configuration
config = pyrudof.GeneratorConfig()
config.set_entity_count(100)
config.set_output_path("output.ttl")
config.set_output_format(pyrudof.OutputFormat.Turtle)

# Create generator
generator = pyrudof.DataGenerator(config)

# Load schema and generate data
generator.run("schema.shex")

Configuration Options

The GeneratorConfig class provides many configuration options:

config = pyrudof.GeneratorConfig()

# Generation parameters
config.set_entity_count(1000)           # Number of entities to generate
config.set_seed(42)                     # Random seed for reproducibility

# Schema format
config.set_schema_format(pyrudof.SchemaFormat.ShEx)  # or SchemaFormat.SHACL

# Output configuration
config.set_output_path("data.ttl")
config.set_output_format(pyrudof.OutputFormat.Turtle)  # or OutputFormat.NTriples
config.set_compress(False)              # Whether to compress output
config.set_write_stats(True)            # Write generation statistics

# Cardinality strategy
config.set_cardinality_strategy(pyrudof.CardinalityStrategy.Balanced)
# Options: Minimum, Maximum, Random, Balanced

# Parallel processing
config.set_worker_threads(4)            # Number of worker threads
config.set_batch_size(100)              # Batch size for processing
config.set_parallel_writing(True)       # Enable parallel file writing
config.set_parallel_file_count(4)       # Number of output files (when parallel)

Loading Schemas

You can load schemas in different ways:

# Load ShEx schema
generator.load_shex_schema("schema.shex")

# Load SHACL schema
generator.load_shacl_schema("shapes.ttl")

# Auto-detect schema format
generator.load_schema_auto("schema_file")

# Then generate data
generator.generate()

Complete Workflow

The run() method provides a convenient way to load a schema and generate data in one step:

# Auto-detect format
generator.run("schema.shex")

# Specify format explicitly
generator.run_with_format("shapes.ttl", pyrudof.SchemaFormat.SHACL)

Configuration Files

You can also load configuration from TOML or JSON files:

# Load from TOML
config = pyrudof.GeneratorConfig.from_toml_file("config.toml")

# Load from JSON
config = pyrudof.GeneratorConfig.from_json_file("config.json")

# Save configuration
config.to_toml_file("saved_config.toml")

Available Enums

  • SchemaFormat: ShEx, SHACL
  • OutputFormat: Turtle, NTriples
  • CardinalityStrategy: Minimum, Maximum, Random, Balanced

For more examples, see the examples/generate_example.py file.