pyo3 0.8.2

Bindings to Python interpreter
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
# Python Classes

## Define new class

To define a custom Python class, a Rust struct needs to be annotated with the
`#[pyclass]` attribute.

```rust
# use pyo3::prelude::*;

#[pyclass]
struct MyClass {
   num: i32,
   debug: bool,
}
```

The above example generates implementations for `PyTypeInfo` and `PyTypeObject` for `MyClass`.

## Get Python objects from `pyclass`

You can use `pyclass`es like normal rust structs.

However, if instantiated normally, you can't treat `pyclass`es as Python objects.

To get a Python object which includes `pyclass`, we have to use some special methods.

### `PyRef`

`PyRef` is a special reference, which ensures that the referred struct is a part of
a Python object, and you are also holding the GIL.

You can get an instance of `PyRef` by `PyRef::new`, which does 3 things:
1. Allocates a Python object in the Python heap
2. Copies the Rust struct into the Python object
3. Returns a reference to it

You can use `PyRef` just like `&T`, because it implements `Deref<Target=T>`.
```rust
# use pyo3::prelude::*;
# use pyo3::types::PyDict;
#[pyclass]
struct MyClass {
   num: i32,
   debug: bool,
}
let gil = Python::acquire_gil();
let py = gil.python();
let obj = PyRef::new(py, MyClass { num: 3, debug: true }).unwrap();
assert_eq!(obj.num, 3);
let dict = PyDict::new(py);
// You can treat a `PyRef` as a Python object
dict.set_item("obj", obj).unwrap();
```

### `PyRefMut`

`PyRefMut` is a mutable version of `PyRef`.
```rust
# use pyo3::prelude::*;
#[pyclass]
struct MyClass {
   num: i32,
   debug: bool,
}
let gil = Python::acquire_gil();
let py = gil.python();
let mut obj = PyRefMut::new(py, MyClass { num: 3, debug: true }).unwrap();
obj.num = 5;
```

### `Py`

`Py` is an object wrapper which stores an object longer than the GIL lifetime.

You can use it to avoid lifetime problems.
```rust
# use pyo3::prelude::*;
#[pyclass]
struct MyClass {
   num: i32,
}
fn return_myclass() -> Py<MyClass> {
    let gil = Python::acquire_gil();
    let py = gil.python();
    Py::new(py, MyClass { num: 1 }).unwrap()
}
let gil = Python::acquire_gil();
let obj = return_myclass();
assert_eq!(obj.as_ref(gil.python()).num, 1);
```

## Customizing the class

The `#[pyclass]` macro accepts the following parameters:

* `name=XXX` - Set the class name shown in Python code. By default, the struct name is used as the class name.
* `freelist=XXX` - The `freelist` parameter adds support of free allocation list to custom class.
The performance improvement applies to types that are often created and deleted in a row,
so that they can benefit from a freelist. `XXX` is a number of items for the free list.
* `gc` - Classes with the `gc` parameter participate in Python garbage collection.
If a custom class contains references to other Python objects that can be collected, the `PyGCProtocol` trait has to be implemented.
* `weakref` - Adds support for Python weak references.
* `extends=BaseType` - Use a custom base class. The base `BaseType` must implement `PyTypeInfo`.
* `dict` - Adds `__dict__` support, so that the instances of this type have a dictionary containing arbitrary instance variables.
* `module="XXX"` - Set the name of the module the class will be shown as defined in. If not given, the class
  will be a virtual member of the `builtins` module.
* `subclass` - Allows Python classes to inherit from this class. This feature is hidden behind a `unsound-subclass` feature because it is currently causing segmentation faults

## Constructor

By default it is not possible to create an instance of a custom class from Python code.
To declare a constructor, you need to define a method and annotate it with the `#[new]`
attribute. Only Python's `__new__` method can be specified, `__init__` is not available.

```rust
# use pyo3::prelude::*;
# use pyo3::PyRawObject;
#[pyclass]
struct MyClass {
   num: i32,
}

#[pymethods]
impl MyClass {

     #[new]
     fn new(obj: &PyRawObject, num: i32) {
         obj.init({
             MyClass {
                 num,
             }
         });
     }
}
```

Rules for the `new` method:

* If no method marked with `#[new]` is declared, object instances can only be created
  from Rust, but not from Python.
* The first parameter is the raw object and the custom `new` method must initialize the object
  with an instance of the struct using the `init` method. The type of the object may be the type object of
  a derived class declared in Python.
* The first parameter must have type `&PyRawObject`.
* For details on the parameter list, see the `Method arguments` section below.
* The return value must be `T` or `PyResult<T>` where `T` is ignored, so it can
  be just `()` as in the example above.


## Inheritance

By default, `PyObject` is used as the base class. To override this default,
use the `extends` parameter for `pyclass` with the full path to the base class.
The `new` method of subclasses must call their parent's `new` method.

```rust,ignore
# use pyo3::prelude::*;
# use pyo3::PyRawObject;
#[pyclass]
struct BaseClass {
   val1: usize,
}

#[pymethods]
impl BaseClass {
   #[new]
   fn new(obj: &PyRawObject) {
       obj.init(BaseClass { val1: 10 });
   }

   pub fn method(&self) -> PyResult<()> {
      Ok(())
   }
}

#[pyclass(extends=BaseClass)]
struct SubClass {
   val2: usize,
}

#[pymethods]
impl SubClass {
   #[new]
   fn new(obj: &PyRawObject) {
       obj.init(SubClass { val2: 10 });
       BaseClass::new(obj);
   }

   fn method2(&self) -> PyResult<()> {
      self.get_base().method()
   }
}
```

The `ObjectProtocol` trait provides a `get_base()` method, which returns a reference
to the instance of the base struct.


## Object properties

Property descriptor methods can be defined in a `#[pymethods]` `impl` block only and have to be
annotated with `#[getter]` and `#[setter]` attributes. For example:

```rust
# use pyo3::prelude::*;
# #[pyclass]
# struct MyClass {
#    num: i32,
# }
#
#[pymethods]
impl MyClass {

     #[getter]
     fn num(&self) -> PyResult<i32> {
        Ok(self.num)
     }
}
```

A getter or setter's function name is used as the property name by default. There are several
ways how to override the name.

If a function name starts with `get_` or `set_` for getter or setter respectively,
the descriptor name becomes the function name with this prefix removed. This is also useful in case of
Rust keywords like `type`
([raw identifiers](https://doc.rust-lang.org/edition-guide/rust-2018/module-system/raw-identifiers.html)
can be used since Rust 2018).

```rust
# use pyo3::prelude::*;
# #[pyclass]
# struct MyClass {
#    num: i32,
# }
#
#[pymethods]
impl MyClass {

     #[getter]
     fn get_num(&self) -> PyResult<i32> {
        Ok(self.num)
     }

     #[setter]
     fn set_num(&mut self, value: i32) -> PyResult<()> {
        self.num = value;
        Ok(())
     }
}
```

In this case, a property `num` is defined and available from Python code as `self.num`.

Both the `#[getter]` and `#[setter]` attributes accept one parameter.
If this parameter is specified, it is used as the property name, i.e.

```rust
# use pyo3::prelude::*;
# #[pyclass]
# struct MyClass {
#    num: i32,
# }
#
#[pymethods]
impl MyClass {

     #[getter(number)]
     fn num(&self) -> PyResult<i32> {
        Ok(self.num)
     }

     #[setter(number)]
     fn set_num(&mut self, value: i32) -> PyResult<()> {
        self.num = value;
        Ok(())
     }
}
```

In this case, the property `number` is defined and available from Python code as `self.number`.

For simple cases where a member variable is just read and written with no side effects, you
can also declare getters and setters in your Rust struct field definition, for example:

```rust
# use pyo3::prelude::*;
#[pyclass]
struct MyClass {
  #[pyo3(get, set)]
  num: i32
}
```

Then it is available from Python code as `self.num`.

## Instance methods

To define a Python compatible method, an `impl` block for your struct has to be annotated with the
`#[pymethods]` attribute. PyO3 generates Python compatible wrappers for all functions in this
block with some variations, like descriptors, class method static methods, etc.

```rust
# use pyo3::prelude::*;
# #[pyclass]
# struct MyClass {
#    num: i32,
# }
#
#[pymethods]
impl MyClass {

     fn method1(&self) -> PyResult<i32> {
        Ok(10)
     }

     fn set_method(&mut self, value: i32) -> PyResult<()> {
        self.num = value;
        Ok(())
     }
}
```

Calls to these methods are protected by the GIL, so both `&self` and `&mut self` can be used.
The return type must be `PyResult<T>` or `T` for some `T` that implements `IntoPy<PyObject>`;
the latter is allowed if the method cannot raise Python exceptions.

A `Python` parameter can be specified as part of method signature, in this case the `py` argument
gets injected by the method wrapper, e.g.

```rust
# use pyo3::prelude::*;
# #[pyclass]
# struct MyClass {
#    num: i32,
#    debug: bool,
# }

#[pymethods]
impl MyClass {
     fn method2(&self, py: Python) -> PyResult<i32> {
        Ok(10)
     }
}
```

From the Python perspective, the `method2` in this example does not accept any arguments.

## Class methods

To create a class method for a custom class, the method needs to be annotated
with the `#[classmethod]` attribute.

```rust
# use pyo3::prelude::*;
# use pyo3::types::PyType;
# #[pyclass]
# struct MyClass {
#    num: i32,
#    debug: bool,
# }

#[pymethods]
impl MyClass {
     #[classmethod]
     fn cls_method(cls: &PyType) -> PyResult<i32> {
        Ok(10)
     }
}
```

Declares a class method callable from Python.

* The first parameter is the type object of the class on which the method is called.
  This may be the type object of a derived class.
* The first parameter implicitly has type `&PyType`.
* For details on `parameter-list`, see the documentation of `Method arguments` section.
* The return type must be `PyResult<T>` or `T` for some `T` that implements `IntoPy<PyObject>`.

## Static methods

To create a static method for a custom class, the method needs to be annotated with the
`#[staticmethod]` attribute. The return type must be `T` or `PyResult<T>` for some `T` that implements
`IntoPy<PyObject>`.

```rust
# use pyo3::prelude::*;
# #[pyclass]
# struct MyClass {
#    num: i32,
#    debug: bool,
# }

#[pymethods]
impl MyClass {
     #[staticmethod]
     fn static_method(param1: i32, param2: &str) -> PyResult<i32> {
        Ok(10)
     }
}
```

## Callable objects

To specify a custom `__call__` method for a custom class, the method needs to be annotated with
the `#[call]` attribute. Arguments of the method are specified as for instance methods.

```rust
# use pyo3::prelude::*;
use pyo3::types::PyTuple;
# #[pyclass]
# struct MyClass {
#    num: i32,
#    debug: bool,
# }

#[pymethods]
impl MyClass {
     #[call]
     #[args(args="*")]
     fn __call__(&self, args: &PyTuple) -> PyResult<i32> {
        println!("MyClass has been called");
        Ok(self.num)
     }
}
```

## Method arguments

By default, PyO3 uses function signatures to determine which arguments are required. Then it scans
the incoming `args` and `kwargs` parameters. If it can not find all required
parameters, it raises a `TypeError` exception. It is possible to override the default behavior
with the `#[args(...)]` attribute. This attribute accepts a comma separated list of parameters in
the form of `attr_name="default value"`. Each parameter has to match the method parameter by name.

Each parameter can be one of the following types:

 * `"*"`: var arguments separator, each parameter defined after `"*"` is a keyword-only parameter.
   Corresponds to python's `def meth(*, arg1.., arg2=..)`.
 * `args="*"`: "args" is var args, corresponds to Python's `def meth(*args)`. Type of the `args`
   parameter has to be `&PyTuple`.
 * `kwargs="**"`: "kwargs" receives keyword arguments, corresponds to Python's `def meth(**kwargs)`.
   The type of the `kwargs` parameter has to be `Option<&PyDict>`.
 * `arg="Value"`: arguments with default value. Corresponds to Python's `def meth(arg=Value)`.
   If the `arg` argument is defined after var arguments, it is treated as a keyword-only argument.
   Note that `Value` has to be valid rust code, PyO3 just inserts it into the generated
   code unmodified.

Example:
```rust
# use pyo3::prelude::*;
use pyo3::types::{PyDict, PyTuple};
#
# #[pyclass]
# struct MyClass {
#    num: i32,
#    debug: bool,
# }
#
#[pymethods]
impl MyClass {
    #[args(arg1=true, args="*", arg2=10, args3="\"Hello\"", kwargs="**")]
    fn method(&self, arg1: bool, args: &PyTuple, arg2: i32, arg3: &str, kwargs: Option<&PyDict>) -> PyResult<i32> {
        Ok(1)
    }
}
```


## Class customizations

Python's object model defines several protocols for different object behavior, like sequence,
mapping or number protocols. PyO3 defines separate traits for each of them. To provide specific
Python object behavior, you need to implement the specific trait for your struct. Important note,
each protocol implementation block has to be annotated with the `#[pyproto]` attribute.

### Basic object customization

The [`PyObjectProtocol`](https://docs.rs/pyo3/latest/pyo3/class/basic/trait.PyObjectProtocol.html) trait provides several basic customizations.

#### Attribute access

To customize object attribute access, define the following methods:

  * `fn __getattr__(&self, name: FromPyObject) -> PyResult<impl IntoPy<PyObject>>`
  * `fn __setattr__(&mut self, name: FromPyObject, value: FromPyObject) -> PyResult<()>`
  * `fn __delattr__(&mut self, name: FromPyObject) -> PyResult<()>`

Each method corresponds to Python's `self.attr`, `self.attr = value` and `del self.attr` code.

#### String Conversions

  * `fn __repr__(&self) -> PyResult<impl ToPyObject<ObjectType=PyString>>`
  * `fn __str__(&self) -> PyResult<impl ToPyObject<ObjectType=PyString>>`

    Possible return types for `__str__` and `__repr__` are `PyResult<String>` or `PyResult<PyString>`.

  * `fn __bytes__(&self) -> PyResult<PyBytes>`

    Provides the conversion to `bytes`.

  * `fn __format__(&self, format_spec: &str) -> PyResult<impl ToPyObject<ObjectType=PyString>>`

    Special method that is used by the `format()` builtin and the `str.format()` method.
    Possible return types are `PyResult<String>` or `PyResult<PyString>`.

#### Comparison operators

  * `fn __richcmp__(&self, other: impl FromPyObject, op: CompareOp) -> PyResult<impl ToPyObject>`

    Overloads Python comparison operations (`==`, `!=`, `<`, `<=`, `>`, and `>=`).
    The `op` argument indicates the comparison operation being performed.
    The return type will normally be `PyResult<bool>`, but any Python object can be returned.
    If `other` is not of the type specified in the signature, the generated code will
    automatically `return NotImplemented`.

  * `fn __hash__(&self) -> PyResult<impl PrimInt>`

    Objects that compare equal must have the same hash value.
    The return type must be `PyResult<T>` where `T` is one of Rust's primitive integer types.

#### Other methods

  * `fn __bool__(&self) -> PyResult<bool>`

    Determines the "truthyness" of the object.

### Garbage Collector Integration

If your type owns references to other Python objects, you will need to
integrate with Python's garbage collector so that the GC is aware of
those references.
To do this, implement the [`PyGCProtocol`](https://docs.rs/pyo3/latest/pyo3/class/gc/trait.PyGCProtocol.html) trait for your struct.
It includes two methods `__traverse__` and `__clear__`.
These correspond to the slots `tp_traverse` and `tp_clear` in the Python C API.
`__traverse__` must call `visit.call()` for each reference to another Python object.
`__clear__` must clear out any mutable references to other Python objects
(thus breaking reference cycles). Immutable references do not have to be cleared,
as every cycle must contain at least one mutable reference.
Example:
```rust
extern crate pyo3;

use pyo3::prelude::*;
use pyo3::PyTraverseError;
use pyo3::gc::{PyGCProtocol, PyVisit};

#[pyclass]
struct ClassWithGCSupport {
    obj: Option<PyObject>,
}

#[pyproto]
impl PyGCProtocol for ClassWithGCSupport {
    fn __traverse__(&self, visit: PyVisit) -> Result<(), PyTraverseError> {
        if let Some(ref obj) = self.obj {
            visit.call(obj)?
        }
        Ok(())
    }

    fn __clear__(&mut self) {
        if let Some(obj) = self.obj.take() {
            // Release reference, this decrements ref counter.
            let gil = GILGuard::acquire();
            let py = gil.python();
            py.release(obj);
        }
    }
}
```

Special protocol trait implementations have to be annotated with the `#[pyproto]` attribute.

It is also possible to enable GC for custom classes using the `gc` parameter of the `pyclass` attribute.
i.e. `#[pyclass(gc)]`. In that case instances of custom class participate in Python garbage
collection, and it is possible to track them with `gc` module methods. When using the `gc` parameter,
it is *required* to implement the `PyGCProtocol` trait, failure to do so will result in an error
at compile time:

```compile_fail
#[pyclass(gc)]
struct GCTracked {} // Fails because it does not implement PyGCProtocol
```

### Iterator Types

Iterators can be defined using the
[`PyIterProtocol`](https://docs.rs/pyo3/latest/pyo3/class/iter/trait.PyIterProtocol.html) trait.
It includes two methods `__iter__` and `__next__`:
  * `fn __iter__(slf: PyRefMut<Self>) -> PyResult<impl IntoPy<PyObject>>`
  * `fn __next__(slf: PyRefMut<Self>) -> PyResult<Option<impl IntoPy<PyObject>>>`

  Returning `Ok(None)` from `__next__` indicates that that there are no further items.

Example:

```rust
extern crate pyo3;

use pyo3::prelude::*;
use pyo3::PyIterProtocol;

#[pyclass]
struct MyIterator {
    iter: Box<Iterator<Item = PyObject> + Send>,
}

#[pyproto]
impl PyIterProtocol for MyIterator {
    fn __iter__(slf: PyRefMut<Self>) -> PyResult<Py<MyIterator>> {
        Ok(slf.into())
    }
    fn __next__(mut slf: PyRefMut<Self>) -> PyResult<Option<PyObject>> {
        Ok(slf.iter.next())
    }
}
```

## Manually implementing pyclass

TODO: Which traits to implement (basically `PyTypeCreate: PyObjectAlloc + PyTypeInfo + PyMethodsProtocol + Sized`) and what they mean.

## How methods are implemented

Users should be able to define a `#[pyclass]` with or without `#[pymethods]`, while PyO3 needs a
trait with a function that returns all methods. Since it's impossible to make the code generation in
pyclass dependent on whether there is an impl block, we'd need to implement the trait on
`#[pyclass]` and override the implementation in `#[pymethods]`, which is to the best of my knowledge
only possible with the specialization feature, which can't be used on stable.

To escape this we use [inventory](https://github.com/dtolnay/inventory), which allows us to collect `impl`s from arbitrary source code by exploiting some binary trick. See [inventory: how it works](https://github.com/dtolnay/inventory#how-it-works) and `pyo3_derive_backend::py_class::impl_inventory` for more details.