pyo3 0.18.3

Bindings to Python interpreter
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
# Python classes

PyO3 exposes a group of attributes powered by Rust's proc macro system for defining Python classes as Rust structs.

The main attribute is `#[pyclass]`, which is placed upon a Rust `struct` or a fieldless `enum` (a.k.a. C-like enum) to generate a Python type for it. They will usually also have *one* `#[pymethods]`-annotated `impl` block for the struct, which is used to define Python methods and constants for the generated Python type. (If the [`multiple-pymethods`] feature is enabled, each `#[pyclass]` is allowed to have multiple `#[pymethods]` blocks.) `#[pymethods]` may also have implementations for Python magic methods such as `__str__`.

This chapter will discuss the functionality and configuration these attributes offer. Below is a list of links to the relevant section of this chapter for each:

- [`#[pyclass]`](#defining-a-new-class)
  - [`#[pyo3(get, set)]`](#object-properties-using-pyo3get-set)
- [`#[pymethods]`](#instance-methods)
  - [`#[new]`](#constructor)
  - [`#[getter]`](#object-properties-using-getter-and-setter)
  - [`#[setter]`](#object-properties-using-getter-and-setter)
  - [`#[staticmethod]`](#static-methods)
  - [`#[classmethod]`](#class-methods)
  - [`#[classattr]`](#class-attributes)
  - [`#[args]`](#method-arguments)
- [Magic methods and slots](class/protocols.html)

## Defining a new class

To define a custom Python class, add the `#[pyclass]` attribute to a Rust struct or a fieldless enum.
```rust
# #![allow(dead_code)]
use pyo3::prelude::*;

#[pyclass]
struct Integer {
    inner: i32,
}

// A "tuple" struct
#[pyclass]
struct Number(i32);

// PyO3 supports custom discriminants in enums
#[pyclass]
enum HttpResponse {
    Ok = 200,
    NotFound = 404,
    Teapot = 418,
    // ...
}

#[pyclass]
enum MyEnum {
    Variant,
    OtherVariant = 30, // PyO3 supports custom discriminants.
}
```

The above example generates implementations for [`PyTypeInfo`] and [`PyClass`] for `MyClass` and `MyEnum`. To see these generated implementations, refer to the [implementation details](#implementation-details) at the end of this chapter.

### Restrictions

To integrate Rust types with Python, PyO3 needs to place some restrictions on the types which can be annotated with `#[pyclass]`. In particular, they must have no lifetime parameters, no generic parameters, and must implement `Send`. The reason for each of these is explained below.

#### No lifetime parameters

Rust lifetimes are used by the Rust compiler to reason about a program's memory safety. They are a compile-time only concept; there is no way to access Rust lifetimes at runtime from a dynamic language like Python.

As soon as Rust data is exposed to Python, there is no guarantee which the Rust compiler can make on how long the data will live. Python is a reference-counted language and those references can be held for an arbitrarily long time which is untraceable by the Rust compiler. The only possible way to express this correctly is to require that any `#[pyclass]` does not borrow data for any lifetime shorter than the `'static` lifetime, i.e. the `#[pyclass]` cannot have any lifetime parameters.

When you need to share ownership of data between Python and Rust, instead of using borrowed references with lifetimes consider using reference-counted smart pointers such as [`Arc`] or [`Py`].

#### No generic parameters

A Rust `struct Foo<T>` with a generic parameter `T` generates new compiled implementations each time it is used with a different concrete type for `T`. These new implementations are generated by the compiler at each usage site. This is incompatible with wrapping `Foo` in Python, where there needs to be a single compiled implementation of `Foo` which is integrated with the Python interpreter.

#### Must be Send

Because Python objects are freely shared between threads by the Python interpreter, there is no guarantee which thread will eventually drop the object. Therefore all types annotated with `#[pyclass]` must implement `Send` (unless annotated with [`#[pyclass(unsendable)]`](#customizing-the-class)).

## Constructor

By default it is not possible to create an instance of a custom class from Python code.
To declare a constructor, you need to define a method and annotate it with the `#[new]`
attribute. Only Python's `__new__` method can be specified, `__init__` is not available.

```rust
# use pyo3::prelude::*;
# #[pyclass]
# struct Number(i32);
#
#[pymethods]
impl Number {
    #[new]
    fn new(value: i32) -> Self {
        Number(value)
    }
}
```

Alternatively, if your `new` method may fail you can return `PyResult<Self>`.

```rust
# use pyo3::prelude::*;
# use pyo3::exceptions::PyValueError;
# #[pyclass]
# struct Nonzero(i32);
#
#[pymethods]
impl Nonzero {
    #[new]
    fn py_new(value: i32) -> PyResult<Self> {
        if value == 0 {
            Err(PyValueError::new_err("cannot be zero"))
        } else {
            Ok(Nonzero(value))
        }
    }
}
```

As you can see, the Rust method name is not important here; this way you can
still use `new()` for a Rust-level constructor.

If no method marked with `#[new]` is declared, object instances can only be
created from Rust, but not from Python.

For arguments, see the [`Method arguments`](#method-arguments) section below.

## Adding the class to a module

The next step is to create the module initializer and add our class to it:

```rust
# use pyo3::prelude::*;
# #[pyclass]
# struct Number(i32);
#
#[pymodule]
fn my_module(_py: Python<'_>, m: &PyModule) -> PyResult<()> {
    m.add_class::<Number>()?;
    Ok(())
}
```

## PyCell and interior mutability

You sometimes need to convert your `pyclass` into a Python object and access it
from Rust code (e.g., for testing it).
[`PyCell`] is the primary interface for that.

`PyCell<T: PyClass>` is always allocated in the Python heap, so Rust doesn't have ownership of it.
In other words, Rust code can only extract a `&PyCell<T>`, not a `PyCell<T>`.

Thus, to mutate data behind `&PyCell` safely, PyO3 employs the
[Interior Mutability Pattern](https://doc.rust-lang.org/book/ch15-05-interior-mutability.html)
like [`RefCell`].

Users who are familiar with `RefCell` can use `PyCell` just like `RefCell`.

For users who are not very familiar with `RefCell`, here is a reminder of Rust's rules of borrowing:
- At any given time, you can have either (but not both of) one mutable reference or any number of immutable references.
- References must always be valid.

`PyCell`, like `RefCell`, ensures these borrowing rules by tracking references at runtime.

```rust
# use pyo3::prelude::*;
#[pyclass]
struct MyClass {
    #[pyo3(get)]
    num: i32,
}
Python::with_gil(|py| {
    let obj = PyCell::new(py, MyClass { num: 3 }).unwrap();
    {
        let obj_ref = obj.borrow(); // Get PyRef
        assert_eq!(obj_ref.num, 3);
        // You cannot get PyRefMut unless all PyRefs are dropped
        assert!(obj.try_borrow_mut().is_err());
    }
    {
        let mut obj_mut = obj.borrow_mut(); // Get PyRefMut
        obj_mut.num = 5;
        // You cannot get any other refs until the PyRefMut is dropped
        assert!(obj.try_borrow().is_err());
        assert!(obj.try_borrow_mut().is_err());
    }

    // You can convert `&PyCell` to a Python object
    pyo3::py_run!(py, obj, "assert obj.num == 5");
});
```

`&PyCell<T>` is bounded by the same lifetime as a [`GILGuard`].
To make the object longer lived (for example, to store it in a struct on the
Rust side), you can use `Py<T>`, which stores an object longer than the GIL
lifetime, and therefore needs a `Python<'_>` token to access.

```rust
# use pyo3::prelude::*;
#[pyclass]
struct MyClass {
    num: i32,
}

fn return_myclass() -> Py<MyClass> {
    Python::with_gil(|py| Py::new(py, MyClass { num: 1 }).unwrap())
}

let obj = return_myclass();

Python::with_gil(|py| {
    let cell = obj.as_ref(py); // Py<MyClass>::as_ref returns &PyCell<MyClass>
    let obj_ref = cell.borrow(); // Get PyRef<T>
    assert_eq!(obj_ref.num, 1);
});
```

## Customizing the class

{{#include ../pyclass_parameters.md}}

These parameters are covered in various sections of this guide.

### Return type

Generally, `#[new]` methods have to return `T: Into<PyClassInitializer<Self>>` or
`PyResult<T> where T: Into<PyClassInitializer<Self>>`.

For constructors that may fail, you should wrap the return type in a PyResult as well.
Consult the table below to determine which type your constructor should return:

|                             | **Cannot fail**           | **May fail**                      |
|-----------------------------|---------------------------|-----------------------------------|
|**No inheritance**           | `T`                       | `PyResult<T>`                     |
|**Inheritance(T Inherits U)**| `(T, U)`                  | `PyResult<(T, U)>`                |
|**Inheritance(General Case)**| [`PyClassInitializer<T>`] | `PyResult<PyClassInitializer<T>>` |

## Inheritance

By default, `object`, i.e. `PyAny` is used as the base class. To override this default,
use the `extends` parameter for `pyclass` with the full path to the base class.

For convenience, `(T, U)` implements `Into<PyClassInitializer<T>>` where `U` is the
base class of `T`.
But for more deeply nested inheritance, you have to return `PyClassInitializer<T>`
explicitly.

To get a parent class from a child, use [`PyRef`] instead of `&self` for methods,
or [`PyRefMut`] instead of `&mut self`.
Then you can access a parent class by `self_.as_ref()` as `&Self::BaseClass`,
or by `self_.into_super()` as `PyRef<Self::BaseClass>`.

```rust
# use pyo3::prelude::*;

#[pyclass(subclass)]
struct BaseClass {
    val1: usize,
}

#[pymethods]
impl BaseClass {
    #[new]
    fn new() -> Self {
        BaseClass { val1: 10 }
    }

    pub fn method(&self) -> PyResult<usize> {
        Ok(self.val1)
    }
}

#[pyclass(extends=BaseClass, subclass)]
struct SubClass {
    val2: usize,
}

#[pymethods]
impl SubClass {
    #[new]
    fn new() -> (Self, BaseClass) {
        (SubClass { val2: 15 }, BaseClass::new())
    }

    fn method2(self_: PyRef<'_, Self>) -> PyResult<usize> {
        let super_ = self_.as_ref(); // Get &BaseClass
        super_.method().map(|x| x * self_.val2)
    }
}

#[pyclass(extends=SubClass)]
struct SubSubClass {
    val3: usize,
}

#[pymethods]
impl SubSubClass {
    #[new]
    fn new() -> PyClassInitializer<Self> {
        PyClassInitializer::from(SubClass::new()).add_subclass(SubSubClass { val3: 20 })
    }

    fn method3(self_: PyRef<'_, Self>) -> PyResult<usize> {
        let v = self_.val3;
        let super_ = self_.into_super(); // Get PyRef<'_, SubClass>
        SubClass::method2(super_).map(|x| x * v)
    }
}
# Python::with_gil(|py| {
#     let subsub = pyo3::PyCell::new(py, SubSubClass::new()).unwrap();
#     pyo3::py_run!(py, subsub, "assert subsub.method3() == 3000")
# });
```

You can also inherit native types such as `PyDict`, if they implement
[`PySizedLayout`]({{#PYO3_DOCS_URL}}/pyo3/type_object/trait.PySizedLayout.html).
This is not supported when building for the Python limited API (aka the `abi3` feature of PyO3).

However, because of some technical problems, we don't currently provide safe upcasting methods for types
that inherit native types. Even in such cases, you can unsafely get a base class by raw pointer conversion.

```rust
# #[cfg(not(Py_LIMITED_API))] {
# use pyo3::prelude::*;
use pyo3::types::PyDict;
use pyo3::AsPyPointer;
use std::collections::HashMap;

#[pyclass(extends=PyDict)]
#[derive(Default)]
struct DictWithCounter {
    counter: HashMap<String, usize>,
}

#[pymethods]
impl DictWithCounter {
    #[new]
    fn new() -> Self {
        Self::default()
    }

    fn set(mut self_: PyRefMut<'_, Self>, key: String, value: &PyAny) -> PyResult<()> {
        self_.counter.entry(key.clone()).or_insert(0);
        let py = self_.py();
        let dict: &PyDict = unsafe { py.from_borrowed_ptr_or_err(self_.as_ptr())? };
        dict.set_item(key, value)
    }
}
# Python::with_gil(|py| {
#     let cnt = pyo3::PyCell::new(py, DictWithCounter::new()).unwrap();
#     pyo3::py_run!(py, cnt, "cnt.set('abc', 10); assert cnt['abc'] == 10")
# });
# }
```

If `SubClass` does not provide a base class initialization, the compilation fails.
```rust,compile_fail
# use pyo3::prelude::*;

#[pyclass]
struct BaseClass {
    val1: usize,
}

#[pyclass(extends=BaseClass)]
struct SubClass {
    val2: usize,
}

#[pymethods]
impl SubClass {
    #[new]
    fn new() -> Self {
        SubClass { val2: 15 }
    }
}
```

The `__new__` constructor of a native base class is called implicitly when
creating a new instance from Python.  Be sure to accept arguments in the
`#[new]` method that you want the base class to get, even if they are not used
in that `fn`:

```rust
# #[allow(dead_code)]
# #[cfg(not(Py_LIMITED_API))] {
# use pyo3::prelude::*;
use pyo3::types::PyDict;

#[pyclass(extends=PyDict)]
struct MyDict {
    private: i32,
}

#[pymethods]
impl MyDict {
    #[new]
    #[pyo3(signature = (*args, **kwargs))]
    fn new(args: &PyAny, kwargs: Option<&PyAny>) -> Self {
        Self { private: 0 }
    }

    // some custom methods that use `private` here...
}
# Python::with_gil(|py| {
#     let cls = py.get_type::<MyDict>();
#     pyo3::py_run!(py, cls, "cls(a=1, b=2)")
# });
# }
```

Here, the `args` and `kwargs` allow creating instances of the subclass passing
initial items, such as `MyDict(item_sequence)` or `MyDict(a=1, b=2)`.

## Object properties

PyO3 supports two ways to add properties to your `#[pyclass]`:
- For simple struct fields with no side effects, a `#[pyo3(get, set)]` attribute can be added directly to the field definition in the `#[pyclass]`.
- For properties which require computation you can define `#[getter]` and `#[setter]` functions in the [`#[pymethods]`](#instance-methods) block.

We'll cover each of these in the following sections.

### Object properties using `#[pyo3(get, set)]`

For simple cases where a member variable is just read and written with no side effects, you can declare getters and setters in your `#[pyclass]` field definition using the `pyo3` attribute, like in the example below:

```rust
# use pyo3::prelude::*;
#[pyclass]
struct MyClass {
    #[pyo3(get, set)]
    num: i32,
}
```

The above would make the `num` field available for reading and writing as a `self.num` Python property. To expose the property with a different name to the field, specify this alongside the rest of the options, e.g. `#[pyo3(get, set, name = "custom_name")]`.

Properties can be readonly or writeonly by using just `#[pyo3(get)]` or `#[pyo3(set)]` respectively.

To use these annotations, your field type must implement some conversion traits:
- For `get` the field type must implement both `IntoPy<PyObject>` and `Clone`.
- For `set` the field type must implement `FromPyObject`.

For example, implementations of those traits are provided for the `Cell` type, if the inner type also implements the trait. This means you can use `#[pyo3(get, set)]` on fields wrapped in a `Cell`.

### Object properties using `#[getter]` and `#[setter]`

For cases which don't satisfy the `#[pyo3(get, set)]` trait requirements, or need side effects, descriptor methods can be defined in a `#[pymethods]` `impl` block.

This is done using the `#[getter]` and `#[setter]` attributes, like in the example below:

```rust
# use pyo3::prelude::*;
#[pyclass]
struct MyClass {
    num: i32,
}

#[pymethods]
impl MyClass {
    #[getter]
    fn num(&self) -> PyResult<i32> {
        Ok(self.num)
    }
}
```

A getter or setter's function name is used as the property name by default. There are several
ways how to override the name.

If a function name starts with `get_` or `set_` for getter or setter respectively,
the descriptor name becomes the function name with this prefix removed. This is also useful in case of
Rust keywords like `type`
([raw identifiers](https://doc.rust-lang.org/edition-guide/rust-2018/module-system/raw-identifiers.html)
can be used since Rust 2018).

```rust
# use pyo3::prelude::*;
# #[pyclass]
# struct MyClass {
#     num: i32,
# }
#[pymethods]
impl MyClass {
    #[getter]
    fn get_num(&self) -> PyResult<i32> {
        Ok(self.num)
    }

    #[setter]
    fn set_num(&mut self, value: i32) -> PyResult<()> {
        self.num = value;
        Ok(())
    }
}
```

In this case, a property `num` is defined and available from Python code as `self.num`.

Both the `#[getter]` and `#[setter]` attributes accept one parameter.
If this parameter is specified, it is used as the property name, i.e.

```rust
# use pyo3::prelude::*;
# #[pyclass]
# struct MyClass {
#    num: i32,
# }
#[pymethods]
impl MyClass {
    #[getter(number)]
    fn num(&self) -> PyResult<i32> {
        Ok(self.num)
    }

    #[setter(number)]
    fn set_num(&mut self, value: i32) -> PyResult<()> {
        self.num = value;
        Ok(())
    }
}
```

In this case, the property `number` is defined and available from Python code as `self.number`.

Attributes defined by `#[setter]` or `#[pyo3(set)]` will always raise `AttributeError` on `del`
operations. Support for defining custom `del` behavior is tracked in
[#1778](https://github.com/PyO3/pyo3/issues/1778).

## Instance methods

To define a Python compatible method, an `impl` block for your struct has to be annotated with the
`#[pymethods]` attribute. PyO3 generates Python compatible wrappers for all functions in this
block with some variations, like descriptors, class method static methods, etc.

Since Rust allows any number of `impl` blocks, you can easily split methods
between those accessible to Python (and Rust) and those accessible only to Rust. However to have multiple
`#[pymethods]`-annotated `impl` blocks for the same struct you must enable the [`multiple-pymethods`] feature of PyO3.

```rust
# use pyo3::prelude::*;
# #[pyclass]
# struct MyClass {
#     num: i32,
# }
#[pymethods]
impl MyClass {
    fn method1(&self) -> PyResult<i32> {
        Ok(10)
    }

    fn set_method(&mut self, value: i32) -> PyResult<()> {
        self.num = value;
        Ok(())
    }
}
```

Calls to these methods are protected by the GIL, so both `&self` and `&mut self` can be used.
The return type must be `PyResult<T>` or `T` for some `T` that implements `IntoPy<PyObject>`;
the latter is allowed if the method cannot raise Python exceptions.

A `Python` parameter can be specified as part of method signature, in this case the `py` argument
gets injected by the method wrapper, e.g.

```rust
# use pyo3::prelude::*;
# #[pyclass]
# struct MyClass {
# #[allow(dead_code)]
#     num: i32,
# }
#[pymethods]
impl MyClass {
    fn method2(&self, py: Python<'_>) -> PyResult<i32> {
        Ok(10)
    }
}
```

From the Python perspective, the `method2` in this example does not accept any arguments.

## Class methods

To create a class method for a custom class, the method needs to be annotated
with the `#[classmethod]` attribute.
This is the equivalent of the Python decorator `@classmethod`.

```rust
# use pyo3::prelude::*;
# use pyo3::types::PyType;
# #[pyclass]
# struct MyClass {
#     #[allow(dead_code)]
#     num: i32,
# }
#[pymethods]
impl MyClass {
    #[classmethod]
    fn cls_method(cls: &PyType) -> PyResult<i32> {
        Ok(10)
    }
}
```

Declares a class method callable from Python.

* The first parameter is the type object of the class on which the method is called.
  This may be the type object of a derived class.
* The first parameter implicitly has type `&PyType`.
* For details on `parameter-list`, see the documentation of `Method arguments` section.
* The return type must be `PyResult<T>` or `T` for some `T` that implements `IntoPy<PyObject>`.

## Static methods

To create a static method for a custom class, the method needs to be annotated with the
`#[staticmethod]` attribute. The return type must be `T` or `PyResult<T>` for some `T` that implements
`IntoPy<PyObject>`.

```rust
# use pyo3::prelude::*;
# #[pyclass]
# struct MyClass {
#     #[allow(dead_code)]
#     num: i32,
# }
#[pymethods]
impl MyClass {
    #[staticmethod]
    fn static_method(param1: i32, param2: &str) -> PyResult<i32> {
        Ok(10)
    }
}
```

## Class attributes

To create a class attribute (also called [class variable][classattr]), a method without
any arguments can be annotated with the `#[classattr]` attribute.

```rust
# use pyo3::prelude::*;
# #[pyclass]
# struct MyClass {}
#[pymethods]
impl MyClass {
    #[classattr]
    fn my_attribute() -> String {
        "hello".to_string()
    }
}

Python::with_gil(|py| {
    let my_class = py.get_type::<MyClass>();
    pyo3::py_run!(py, my_class, "assert my_class.my_attribute == 'hello'")
});
```

> Note: if the method has a `Result` return type and returns an `Err`, PyO3 will panic during
class creation.

If the class attribute is defined with `const` code only, one can also annotate associated
constants:

```rust
# use pyo3::prelude::*;
# #[pyclass]
# struct MyClass {}
#[pymethods]
impl MyClass {
    #[classattr]
    const MY_CONST_ATTRIBUTE: &'static str = "foobar";
}
```

## Method arguments

Similar to `#[pyfunction]`, the `#[pyo3(signature = (...))]` attribute can be used to specify the way that `#[pymethods]` accept arguments. Consult the documentation for [`function signatures`](./function/signature.md) to see the parameters this attribute accepts.

The following example defines a class `MyClass` with a method `method`. This method has a signature which sets default values for `num` and `name`, and indicates that `py_args` should collect all extra positional arguments and `py_kwargs` all extra keyword arguments:

```rust
# use pyo3::prelude::*;
use pyo3::types::{PyDict, PyTuple};
#
# #[pyclass]
# struct MyClass {
#     num: i32,
# }
#[pymethods]
impl MyClass {
    #[new]
    #[pyo3(signature = (num=-1))]
    fn new(num: i32) -> Self {
        MyClass { num }
    }

    #[pyo3(signature = (num=10, *py_args, name="Hello", **py_kwargs))]
    fn method(
        &mut self,
        num: i32,
        py_args: &PyTuple,
        name: &str,
        py_kwargs: Option<&PyDict>,
    ) -> String {
        let num_before = self.num;
        self.num = num;
        format!(
            "num={} (was previously={}), py_args={:?}, name={}, py_kwargs={:?} ",
            num, num_before, py_args, name, py_kwargs,
        )
    }
}
```

In Python this might be used like:

```python
>>> import mymodule
>>> mc = mymodule.MyClass()
>>> print(mc.method(44, False, "World", 666, x=44, y=55))
py_args=('World', 666), py_kwargs=Some({'x': 44, 'y': 55}), name=Hello, num=44, num_before=-1
>>> print(mc.method(num=-1, name="World"))
py_args=(), py_kwargs=None, name=World, num=-1, num_before=44
```

## Making class method signatures available to Python

The [`text_signature = "..."`](./function.md#text_signature) option for `#[pyfunction]` also works for classes and methods:

```rust
# #![allow(dead_code)]
use pyo3::prelude::*;
use pyo3::types::PyType;

// it works even if the item is not documented:
#[pyclass(text_signature = "(c, d, /)")]
struct MyClass {}

#[pymethods]
impl MyClass {
    // the signature for the constructor is attached
    // to the struct definition instead.
    #[new]
    fn new(c: i32, d: &str) -> Self {
        Self {}
    }
    // the self argument should be written $self
    #[pyo3(text_signature = "($self, e, f)")]
    fn my_method(&self, e: i32, f: i32) -> i32 {
        e + f
    }
    #[classmethod]
    #[pyo3(text_signature = "(cls, e, f)")]
    fn my_class_method(cls: &PyType, e: i32, f: i32) -> i32 {
        e + f
    }
    #[staticmethod]
    #[pyo3(text_signature = "(e, f)")]
    fn my_static_method(e: i32, f: i32) -> i32 {
        e + f
    }
}
#
# fn main() -> PyResult<()> {
#     Python::with_gil(|py| {
#         let inspect = PyModule::import(py, "inspect")?.getattr("signature")?;
#         let module = PyModule::new(py, "my_module")?;
#         module.add_class::<MyClass>()?;
#         let class = module.getattr("MyClass")?;
#
#         if cfg!(not(Py_LIMITED_API)) || py.version_info() >= (3, 10)  {
#             let doc: String = class.getattr("__doc__")?.extract()?;
#             assert_eq!(doc, "");
#
#             let sig: String = inspect
#                 .call1((class,))?
#                 .call_method0("__str__")?
#                 .extract()?;
#             assert_eq!(sig, "(c, d, /)");
#         } else {
#             let doc: String = class.getattr("__doc__")?.extract()?;
#             assert_eq!(doc, "");
#
#             inspect.call1((class,)).expect_err("`text_signature` on classes is not compatible with compilation in `abi3` mode until Python 3.10 or greater");
#          }
#
#         {
#             let method = class.getattr("my_method")?;
#
#             assert!(method.getattr("__doc__")?.is_none());
#
#             let sig: String = inspect
#                 .call1((method,))?
#                 .call_method0("__str__")?
#                 .extract()?;
#             assert_eq!(sig, "(self, /, e, f)");
#         }
#
#         {
#             let method = class.getattr("my_class_method")?;
#
#             assert!(method.getattr("__doc__")?.is_none());
#
#             let sig: String = inspect
#                 .call1((method,))?
#                 .call_method0("__str__")?
#                 .extract()?;
#             assert_eq!(sig, "(cls, e, f)");
#         }
#
#         {
#             let method = class.getattr("my_static_method")?;
#
#             assert!(method.getattr("__doc__")?.is_none());
#
#             let sig: String = inspect
#                 .call1((method,))?
#                 .call_method0("__str__")?
#                 .extract()?;
#             assert_eq!(sig, "(e, f)");
#         }
#
#         Ok(())
#     })
# }
```

Note that `text_signature` on classes is not compatible with compilation in
`abi3` mode until Python 3.10 or greater.

## #[pyclass] enums

Currently PyO3 only supports fieldless enums. PyO3 adds a class attribute for each variant, so you can access them in Python without defining `#[new]`. PyO3 also provides default implementations of `__richcmp__` and `__int__`, so they can be compared using `==`:

```rust
# use pyo3::prelude::*;
#[pyclass]
enum MyEnum {
    Variant,
    OtherVariant,
}

Python::with_gil(|py| {
    let x = Py::new(py, MyEnum::Variant).unwrap();
    let y = Py::new(py, MyEnum::OtherVariant).unwrap();
    let cls = py.get_type::<MyEnum>();
    pyo3::py_run!(py, x y cls, r#"
        assert x == cls.Variant
        assert y == cls.OtherVariant
        assert x != y
    "#)
})
```

You can also convert your enums into `int`:

```rust
# use pyo3::prelude::*;
#[pyclass]
enum MyEnum {
    Variant,
    OtherVariant = 10,
}

Python::with_gil(|py| {
    let cls = py.get_type::<MyEnum>();
    let x = MyEnum::Variant as i32; // The exact value is assigned by the compiler.
    pyo3::py_run!(py, cls x, r#"
        assert int(cls.Variant) == x
        assert int(cls.OtherVariant) == 10
        assert cls.OtherVariant == 10  # You can also compare against int.
        assert 10 == cls.OtherVariant
    "#)
})
```

PyO3 also provides `__repr__` for enums:

```rust
# use pyo3::prelude::*;
#[pyclass]
enum MyEnum{
    Variant,
    OtherVariant,
}

Python::with_gil(|py| {
    let cls = py.get_type::<MyEnum>();
    let x = Py::new(py, MyEnum::Variant).unwrap();
    pyo3::py_run!(py, cls x, r#"
        assert repr(x) == 'MyEnum.Variant'
        assert repr(cls.OtherVariant) == 'MyEnum.OtherVariant'
    "#)
})
```

All methods defined by PyO3 can be overridden. For example here's how you override `__repr__`:

```rust
# use pyo3::prelude::*;
#[pyclass]
enum MyEnum {
    Answer = 42,
}

#[pymethods]
impl MyEnum {
    fn __repr__(&self) -> &'static str {
        "42"
    }
}

Python::with_gil(|py| {
    let cls = py.get_type::<MyEnum>();
    pyo3::py_run!(py, cls, "assert repr(cls.Answer) == '42'")
})
```

Enums and their variants can also be renamed using `#[pyo3(name)]`.

```rust
# use pyo3::prelude::*;
#[pyclass(name = "RenamedEnum")]
enum MyEnum {
    #[pyo3(name = "UPPERCASE")]
    Variant,
}

Python::with_gil(|py| {
    let x = Py::new(py, MyEnum::Variant).unwrap();
    let cls = py.get_type::<MyEnum>();
    pyo3::py_run!(py, x cls, r#"
        assert repr(x) == 'RenamedEnum.UPPERCASE'
        assert x == cls.UPPERCASE
    "#)
})
```

You may not use enums as a base class or let enums inherit from other classes.

```rust,compile_fail
# use pyo3::prelude::*;
#[pyclass(subclass)]
enum BadBase {
    Var1,
}
```

```rust,compile_fail
# use pyo3::prelude::*;

#[pyclass(subclass)]
struct Base;

#[pyclass(extends=Base)]
enum BadSubclass {
    Var1,
}
```

`#[pyclass]` enums are currently not interoperable with `IntEnum` in Python.

## Implementation details

The `#[pyclass]` macros rely on a lot of conditional code generation: each `#[pyclass]` can optionally have a `#[pymethods]` block.

To support this flexibility the `#[pyclass]` macro expands to a blob of boilerplate code which sets up the structure for ["dtolnay specialization"](https://github.com/dtolnay/case-studies/blob/master/autoref-specialization/README.md). This implementation pattern enables the Rust compiler to use `#[pymethods]` implementations when they are present, and fall back to default (empty) definitions when they are not.

This simple technique works for the case when there is zero or one implementations. To support multiple `#[pymethods]` for a `#[pyclass]` (in the [`multiple-pymethods`] feature), a registry mechanism provided by the [`inventory`](https://github.com/dtolnay/inventory) crate is used instead. This collects `impl`s at library load time, but isn't supported on all platforms. See [inventory: how it works](https://github.com/dtolnay/inventory#how-it-works) for more details.

The `#[pyclass]` macro expands to roughly the code seen below. The `PyClassImplCollector` is the type used internally by PyO3 for dtolnay specialization:

```rust
# #[cfg(not(feature = "multiple-pymethods"))] {
# use pyo3::prelude::*;
// Note: the implementation differs slightly with the `multiple-pymethods` feature enabled.
struct MyClass {
    # #[allow(dead_code)]
    num: i32,
}
unsafe impl pyo3::type_object::PyTypeInfo for MyClass {
    type AsRefTarget = pyo3::PyCell<Self>;
    const NAME: &'static str = "MyClass";
    const MODULE: ::std::option::Option<&'static str> = ::std::option::Option::None;
    #[inline]
    fn type_object_raw(py: pyo3::Python<'_>) -> *mut pyo3::ffi::PyTypeObject {
        <Self as pyo3::impl_::pyclass::PyClassImpl>::lazy_type_object()
            .get_or_init(py)
            .as_type_ptr()
    }
}

impl pyo3::PyClass for MyClass {
    type Frozen = pyo3::pyclass::boolean_struct::False;
}

impl<'a, 'py> pyo3::impl_::extract_argument::PyFunctionArgument<'a, 'py> for &'a MyClass
{
    type Holder = ::std::option::Option<pyo3::PyRef<'py, MyClass>>;

    #[inline]
    fn extract(obj: &'py pyo3::PyAny, holder: &'a mut Self::Holder) -> pyo3::PyResult<Self> {
        pyo3::impl_::extract_argument::extract_pyclass_ref(obj, holder)
    }
}

impl<'a, 'py> pyo3::impl_::extract_argument::PyFunctionArgument<'a, 'py> for &'a mut MyClass
{
    type Holder = ::std::option::Option<pyo3::PyRefMut<'py, MyClass>>;

    #[inline]
    fn extract(obj: &'py pyo3::PyAny, holder: &'a mut Self::Holder) -> pyo3::PyResult<Self> {
        pyo3::impl_::extract_argument::extract_pyclass_ref_mut(obj, holder)
    }
}

impl pyo3::IntoPy<PyObject> for MyClass {
    fn into_py(self, py: pyo3::Python<'_>) -> pyo3::PyObject {
        pyo3::IntoPy::into_py(pyo3::Py::new(py, self).unwrap(), py)
    }
}

impl pyo3::impl_::pyclass::PyClassImpl for MyClass {
    const DOC: &'static str = "Class for demonstration\u{0}";
    const IS_BASETYPE: bool = false;
    const IS_SUBCLASS: bool = false;
    type Layout = PyCell<MyClass>;
    type BaseType = PyAny;
    type ThreadChecker = pyo3::impl_::pyclass::ThreadCheckerStub<MyClass>;
    type PyClassMutability = <<pyo3::PyAny as pyo3::impl_::pyclass::PyClassBaseType>::PyClassMutability as pyo3::impl_::pycell::PyClassMutability>::MutableChild;
    type Dict = pyo3::impl_::pyclass::PyClassDummySlot;
    type WeakRef = pyo3::impl_::pyclass::PyClassDummySlot;
    type BaseNativeType = pyo3::PyAny;

    fn items_iter() -> pyo3::impl_::pyclass::PyClassItemsIter {
        use pyo3::impl_::pyclass::*;
        let collector = PyClassImplCollector::<MyClass>::new();
        static INTRINSIC_ITEMS: PyClassItems = PyClassItems { slots: &[], methods: &[] };
        PyClassItemsIter::new(&INTRINSIC_ITEMS, collector.py_methods())
    }

    fn lazy_type_object() -> &'static pyo3::impl_::pyclass::LazyTypeObject<MyClass> {
        use pyo3::impl_::pyclass::LazyTypeObject;
        static TYPE_OBJECT: LazyTypeObject<MyClass> = LazyTypeObject::new();
        &TYPE_OBJECT
    }
}

# Python::with_gil(|py| {
#     let cls = py.get_type::<MyClass>();
#     pyo3::py_run!(py, cls, "assert cls.__name__ == 'MyClass'")
# });
# }
```


[`GILGuard`]: {{#PYO3_DOCS_URL}}/pyo3/struct.GILGuard.html
[`PyTypeInfo`]: {{#PYO3_DOCS_URL}}/pyo3/type_object/trait.PyTypeInfo.html

[`Py`]: {{#PYO3_DOCS_URL}}/pyo3/struct.Py.html
[`PyCell`]: {{#PYO3_DOCS_URL}}/pyo3/pycell/struct.PyCell.html
[`PyClass`]: {{#PYO3_DOCS_URL}}/pyo3/pyclass/trait.PyClass.html
[`PyRef`]: {{#PYO3_DOCS_URL}}/pyo3/pycell/struct.PyRef.html
[`PyRefMut`]: {{#PYO3_DOCS_URL}}/pyo3/pycell/struct.PyRefMut.html
[`PyClassInitializer<T>`]: {{#PYO3_DOCS_URL}}/pyo3/pyclass_init/struct.PyClassInitializer.html

[`Arc`]: https://doc.rust-lang.org/std/sync/struct.Arc.html
[`RefCell`]: https://doc.rust-lang.org/std/cell/struct.RefCell.html

[classattr]: https://docs.python.org/3/tutorial/classes.html#class-and-instance-variables

[`multiple-pymethods`]: features.md#multiple-pymethods