1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
#[macro_export]
macro_rules! parse_unit_impl {
($enum_name:ident {
$($string:literal -> $var:ident,)*
}) => {
#[cfg(feature = "parse")]
impl terl::ParseUnit<$crate::Token> for $enum_name {
type Target = $enum_name;
fn parse(p: &mut terl::Parser<$crate::Token>) -> terl::ParseResult<Self, $crate::Token> {
use std::collections::HashMap;
use terl::WithSpanExt;
thread_local! {
static MAP: HashMap<&'static str, $enum_name> = {
let mut map = HashMap::new();
$(
if let Some(previous) = map.get($string) {
panic!("conflicting: both `{}` and `{}` are `{}`",
$enum_name::$var, previous, $string
);
}
map.insert($string, $enum_name::$var);
)*
map
};
}
// use peek here to avoid mutable borrow
let Some(next) = p.peek() else {
let msg = format!("expect a `{}`, but there are no token left", stringify!($enum_name));
return p.unmatch(msg)
};
match MAP.with(|map| map.get(&**next).copied()) {
Some(item) => {
// and use next here to actually use a token
p.next();
Ok(item)
},
None => {
p.unmatch(
format!("{} matched non of {}", &**next , stringify!($enum_name)),
)
}
}
}
}
};
}
macro_rules! operators {
(
$(#[$metas:meta])*
$(
symbols $sub_class:ident {
$($string:literal -> $var:ident : $ass:ident $priority:expr),*
}
)*
) => {
$(#[$metas])*
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum OperatorAssociativity {
Binary,
Unary,
None,
}
impl OperatorAssociativity {
pub fn cost(&self) -> usize {
match self {
Self::Binary => 2,
Self::Unary => 1,
Self::None => 0
}
}
}
$(#[$metas])*
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum OperatorTypes {
$($sub_class,)*
}
$crate::reverse_parse_keywords! {
$(#[$metas])*
keywords Operators {
$(
$($string -> $var,)*
)*
}
}
parse_unit_impl!{
Operators {
$(
$($string -> $var,)*
)*
}
}
impl Operators {
pub fn op_ty(&self) -> OperatorTypes {
match *self {
$(
$(Self::$var => OperatorTypes::$sub_class,)*
)*
}
}
pub fn associativity(&self) -> OperatorAssociativity {
match *self {
$(
$(Self::$var => OperatorAssociativity::$ass,)*
)*
}
}
pub fn cost(&self) -> usize {
self.associativity().cost()
}
/// return the priority of the symbol
///
/// samller number means higher priority
pub fn priority(&self) -> usize {
match *self {
$(
$(Self::$var => $priority,)*
)*
}
}
}
pub mod sub_classes {
use super::*;
$crate::reverse_parse_keywords! {
$(
keywords $sub_class {
$($string -> $var,)*
}
)*
}
$(
impl From<$sub_class> for Operators {
fn from(value: $sub_class) -> Operators {
match value {
$($sub_class::$var => Operators::$var,)*
}
}
}
impl TryFrom<Operators> for $sub_class {
type Error = ();
fn try_from(value: Operators) -> Result<Self, Self::Error> {
match value {
$(Operators::$var => Ok(Self::$var),)*
_ => Err(())
}
}
}
impl $sub_class {
pub fn associativity(&self) -> OperatorAssociativity {
match self {
$(Self::$var => OperatorAssociativity::$ass,)*
}
}
pub fn priority(&self) -> usize {
match self {
$(Self::$var => $priority,)*
}
}
}
)*
}
};
}
operators! {
#[derive(serde::Serialize,serde::Deserialize)]
symbols AlgebraOperator {
"jia1" -> Add : Binary 6,
"jian3" -> Sub : Binary 6,
"cheng2" -> Mul : Binary 5,
"chu2" -> Div : Binary 5,
"mo2" -> Mod : Binary 5,
"mi4" -> Pow : Binary 4,
"dui4" -> Log : Binary 4
}
symbols CompareOperator {
"tong2" -> Eq : Binary 10,
"fei1tong2" -> Neq : Binary 10,
"da4" -> Gt : Binary 8,
"xiao3" -> Lt : Binary 8,
"da4deng3" -> Ge : Binary 8,
"xiao3deng3" -> Le : Binary 8
}
symbols LogicalOperator {
"yu3" -> And : Binary 14,
"huo4" -> Or : Binary 15,
"fei1" -> Not : Unary 3
}
symbols ArithmeticOperator {
"wei4yu3" -> Band : Binary 11,
"wei4huo4" -> Bor : Binary 13,
"wei4fei1" -> Bnot : Unary 3,
"wei4yi4huo4" -> Xor : Binary 12,
"zuo3yi2" -> Shl : Binary 7,
"you4yi2" -> Shr : Binary 7
}
symbols SpecialOperator {
"qu3zhi3" -> AddrOf : Unary 3,
"fang3zhi3" -> Deref : Unary 3,
"fang3su4" -> GetElement : Binary 2,
"zhuan3" -> Cast : Unary 2,
"chang2du4" -> SizeOf : Unary 3
}
symbols StructOperator {
"jie2" -> BracketL : None 0,
"he2" -> BracketR : None 0
}
}