pub struct Solver { /* private fields */ }Expand description
The main interaction point which allows the creation of variables, the addition of constraints, and solving problems.
§Creating Variables
As stated in crate::variables, we can create two types of variables: propositional variables
and integer variables.
let mut solver = Solver::default();
// Integer Variables
// We can create an integer variable with a domain in the range [0, 10]
let integer_between_bounds = solver.new_bounded_integer(0, 10);
// We can also create such a variable with a name
let named_integer_between_bounds = solver.new_named_bounded_integer(0, 10, "x");
// We can also create an integer variable with a non-continuous domain in the follow way
let mut sparse_integer = solver.new_sparse_integer(vec![0, 3, 5]);
// We can also create such a variable with a name
let named_sparse_integer = solver.new_named_sparse_integer(vec![0, 3, 5], "y");
// Additionally, we can also create an affine view over a variable with both a scale and an offset (or either)
let view_over_integer = integer_between_bounds.scaled(-1).offset(15);
// Propositional Variable
// We can create a literal
let literal = solver.new_literal();
// We can also create such a variable with a name
let named_literal = solver.new_named_literal("z");
// We can also get the predicate from the literal
let true_predicate = literal.get_true_predicate();
// We can also create an iterator of new literals and get a number of them at once
let list_of_5_literals = solver.new_literals().take(5).collect::<Vec<_>>();
assert_eq!(list_of_5_literals.len(), 5);§Using the Solver
For examples on how to use the solver, see the root-level crate documentation or one of these examples.
Implementations§
Source§impl Solver
impl Solver
Sourcepub fn with_options(solver_options: SatisfactionSolverOptions) -> Solver
pub fn with_options(solver_options: SatisfactionSolverOptions) -> Solver
Creates a solver with the provided SolverOptions.
Examples found in repository?
25fn main() {
26 let Cli {
27 n,
28 proof: proof_path,
29 } = Cli::parse();
30
31 if n < 2 {
32 println!("Please provide an 'n > 1'");
33 return;
34 }
35
36 let Ok(proof_log) = proof_path
37 .as_ref()
38 .map(|path| ProofLog::cp(path, true))
39 .transpose()
40 .map(|proof| proof.unwrap_or_default())
41 else {
42 eprintln!(
43 "Failed to create proof file at {}",
44 proof_path.unwrap().display()
45 );
46 return;
47 };
48
49 let mut solver = Solver::with_options(SolverOptions {
50 proof_log,
51 ..Default::default()
52 });
53
54 // Create the constraint tags for the three all_different constraints.
55 let c1_tag = solver.new_constraint_tag();
56 let c2_tag = solver.new_constraint_tag();
57 let c3_tag = solver.new_constraint_tag();
58
59 let variables = (0..n)
60 .map(|i| solver.new_named_bounded_integer(0, n as i32 - 1, format!("q{i}")))
61 .collect::<Vec<_>>();
62
63 let _ = solver
64 .add_constraint(constraints::all_different(variables.clone(), c1_tag))
65 .post();
66
67 let diag1 = variables
68 .iter()
69 .cloned()
70 .enumerate()
71 .map(|(i, var)| var.offset(i as i32))
72 .collect::<Vec<_>>();
73 let diag2 = variables
74 .iter()
75 .cloned()
76 .enumerate()
77 .map(|(i, var)| var.offset(-(i as i32)))
78 .collect::<Vec<_>>();
79
80 let _ = solver
81 .add_constraint(constraints::all_different(diag1, c2_tag))
82 .post();
83 let _ = solver
84 .add_constraint(constraints::all_different(diag2, c3_tag))
85 .post();
86
87 let mut brancher = solver.default_brancher();
88 match solver.satisfy(&mut brancher, &mut Indefinite) {
89 SatisfactionResult::Satisfiable(satisfiable) => {
90 let solution = satisfiable.solution();
91
92 let row_separator = format!("{}+", "+---".repeat(n as usize));
93
94 for row in 0..n {
95 println!("{row_separator}");
96
97 let queen_col = solution.get_integer_value(variables[row as usize]) as u32;
98
99 for col in 0..n {
100 let string = if queen_col == col { "| * " } else { "| " };
101
102 print!("{string}");
103 }
104
105 println!("|");
106 }
107
108 println!("{row_separator}");
109 }
110 SatisfactionResult::Unsatisfiable(_, _) => {
111 println!("{n}-queens is unsatisfiable.");
112 }
113 SatisfactionResult::Unknown(_, _) => {
114 println!("Timeout.");
115 }
116 };
117}Sourcepub fn log_statistics_with_objective(
&self,
brancher: Option<&impl Brancher>,
objective_value: i64,
verbose: bool,
)
pub fn log_statistics_with_objective( &self, brancher: Option<&impl Brancher>, objective_value: i64, verbose: bool, )
Logs the statistics currently present in the solver with the provided objective value.
Sourcepub fn log_statistics(&self, brancher: Option<&impl Brancher>, verbose: bool)
pub fn log_statistics(&self, brancher: Option<&impl Brancher>, verbose: bool)
Logs the statistics currently present in the solver.
pub fn get_solution_reference(&self) -> SolutionReference<'_>
Source§impl Solver
Methods to retrieve information about variables
impl Solver
Methods to retrieve information about variables
Sourcepub fn get_literal_value(&self, literal: Literal) -> Option<bool>
pub fn get_literal_value(&self, literal: Literal) -> Option<bool>
Get the value of the given Literal at the root level (after propagation), which could be
unassigned.
Sourcepub fn lower_bound(&self, variable: &impl IntegerVariable) -> i32
pub fn lower_bound(&self, variable: &impl IntegerVariable) -> i32
Get the lower-bound of the given IntegerVariable at the root level (after propagation).
Sourcepub fn upper_bound(&self, variable: &impl IntegerVariable) -> i32
pub fn upper_bound(&self, variable: &impl IntegerVariable) -> i32
Get the upper-bound of the given IntegerVariable at the root level (after propagation).
Source§impl Solver
Functions to create and retrieve integer and propositional variables.
impl Solver
Functions to create and retrieve integer and propositional variables.
Sourcepub fn new_literals(&mut self) -> impl Iterator<Item = Literal>
pub fn new_literals(&mut self) -> impl Iterator<Item = Literal>
Returns an infinite iterator of positive literals of new variables. The new variables will be unnamed.
§Example
let mut solver = Solver::default();
let literals: Vec<Literal> = solver.new_literals().take(5).collect();
// `literals` contains 5 positive literals of newly created propositional variables.
assert_eq!(literals.len(), 5);Note that this method captures the lifetime of the immutable reference to self.
Sourcepub fn new_literal(&mut self) -> Literal
pub fn new_literal(&mut self) -> Literal
Create a fresh propositional variable and return the literal with positive polarity.
§Example
let mut solver = Solver::default();
// We can create a literal
let literal = solver.new_literal();Examples found in repository?
20fn main() {
21 let mut args = std::env::args();
22
23 let n_tasks = args
24 .nth(1)
25 .expect("Please provide a number of tasks")
26 .parse::<usize>()
27 .expect("Not a valid usized");
28 let processing_times = args
29 .take(n_tasks)
30 .map(|arg| arg.parse::<usize>())
31 .collect::<Result<Vec<_>, _>>()
32 .expect("The provided processing times are not valid unsigned integers");
33 assert_eq!(
34 processing_times.len(),
35 n_tasks,
36 "Provided fewer than `n_tasks` processing times."
37 );
38
39 let horizon = processing_times.iter().sum::<usize>();
40
41 let mut solver = Solver::default();
42
43 // Creates a dummy constraint tag; since this example does not support proof logging the
44 // constraint tag does not matter.
45 let constraint_tag = solver.new_constraint_tag();
46
47 let start_variables = (0..n_tasks)
48 .map(|i| solver.new_bounded_integer(0, (horizon - processing_times[i]) as i32))
49 .collect::<Vec<_>>();
50
51 // Literal which indicates precedence (i.e. precedence_literals[x][y] <=> x ends before y
52 // starts)
53 let precedence_literals = (0..n_tasks)
54 .map(|_| {
55 (0..n_tasks)
56 .map(|_| solver.new_literal())
57 .collect::<Vec<_>>()
58 })
59 .collect::<Vec<_>>();
60
61 for x in 0..n_tasks {
62 for y in 0..n_tasks {
63 if x == y {
64 continue;
65 }
66 // precedence_literals[x][y] <=> x ends before y starts
67 let literal = precedence_literals[x][y];
68 // literal <=> (s_x + p_x <= s_y)
69 // equivelent to literal <=> (s_x - s_y <= -p_x)
70 // So the variables are -s_y and s_x, and the rhs is -p_x
71 let variables = vec![start_variables[y].scaled(-1), start_variables[x].scaled(1)];
72 let _ = constraints::less_than_or_equals(
73 variables,
74 -(processing_times[x] as i32),
75 constraint_tag,
76 )
77 .reify(&mut solver, literal);
78
79 // Either x starts before y or y start before x
80 let _ = solver.add_clause(
81 [
82 literal.get_true_predicate(),
83 precedence_literals[y][x].get_true_predicate(),
84 ],
85 constraint_tag,
86 );
87 }
88 }
89
90 let mut brancher = solver.default_brancher();
91 if matches!(
92 solver.satisfy(&mut brancher, &mut Indefinite),
93 SatisfactionResult::Unsatisfiable(_, _),
94 ) {
95 panic!("Infeasibility Detected")
96 }
97 match solver.satisfy(&mut brancher, &mut Indefinite) {
98 SatisfactionResult::Satisfiable(satisfiable) => {
99 let solution = satisfiable.solution();
100
101 let mut start_variables_and_processing_times = start_variables
102 .iter()
103 .zip(processing_times)
104 .collect::<Vec<_>>();
105 start_variables_and_processing_times.sort_by(|(s1, _), (s2, _)| {
106 solution
107 .get_integer_value(**s1)
108 .cmp(&solution.get_integer_value(**s2))
109 });
110
111 println!(
112 "{}",
113 start_variables_and_processing_times
114 .iter()
115 .map(|(var, processing_time)| format!(
116 "[{}, {}]",
117 solution.get_integer_value(**var),
118 solution.get_integer_value(**var) + *processing_time as i32
119 ))
120 .collect::<Vec<_>>()
121 .join(" - ")
122 );
123 }
124 SatisfactionResult::Unsatisfiable(_, _) => panic!("Infeasibility Detected"),
125 SatisfactionResult::Unknown(_, _) => println!("Timeout."),
126 };
127}pub fn new_literal_for_predicate( &mut self, predicate: Predicate, constraint_tag: ConstraintTag, ) -> Literal
Sourcepub fn new_named_literal(&mut self, name: impl Into<String>) -> Literal
pub fn new_named_literal(&mut self, name: impl Into<String>) -> Literal
Create a fresh propositional variable with a given name and return the literal with positive polarity.
§Example
let mut solver = Solver::default();
// We can also create such a variable with a name
let named_literal = solver.new_named_literal("z");Sourcepub fn get_true_literal(&self) -> Literal
pub fn get_true_literal(&self) -> Literal
Get a literal which is always true.
Sourcepub fn get_false_literal(&self) -> Literal
pub fn get_false_literal(&self) -> Literal
Get a literal which is always false.
Sourcepub fn new_bounded_integer(
&mut self,
lower_bound: i32,
upper_bound: i32,
) -> DomainId
pub fn new_bounded_integer( &mut self, lower_bound: i32, upper_bound: i32, ) -> DomainId
Create a new integer variable with the given bounds.
§Example
let mut solver = Solver::default();
// We can create an integer variable with a domain in the range [0, 10]
let integer_between_bounds = solver.new_bounded_integer(0, 10);Examples found in repository?
More examples
20fn main() {
21 let mut args = std::env::args();
22
23 let n_tasks = args
24 .nth(1)
25 .expect("Please provide a number of tasks")
26 .parse::<usize>()
27 .expect("Not a valid usized");
28 let processing_times = args
29 .take(n_tasks)
30 .map(|arg| arg.parse::<usize>())
31 .collect::<Result<Vec<_>, _>>()
32 .expect("The provided processing times are not valid unsigned integers");
33 assert_eq!(
34 processing_times.len(),
35 n_tasks,
36 "Provided fewer than `n_tasks` processing times."
37 );
38
39 let horizon = processing_times.iter().sum::<usize>();
40
41 let mut solver = Solver::default();
42
43 // Creates a dummy constraint tag; since this example does not support proof logging the
44 // constraint tag does not matter.
45 let constraint_tag = solver.new_constraint_tag();
46
47 let start_variables = (0..n_tasks)
48 .map(|i| solver.new_bounded_integer(0, (horizon - processing_times[i]) as i32))
49 .collect::<Vec<_>>();
50
51 // Literal which indicates precedence (i.e. precedence_literals[x][y] <=> x ends before y
52 // starts)
53 let precedence_literals = (0..n_tasks)
54 .map(|_| {
55 (0..n_tasks)
56 .map(|_| solver.new_literal())
57 .collect::<Vec<_>>()
58 })
59 .collect::<Vec<_>>();
60
61 for x in 0..n_tasks {
62 for y in 0..n_tasks {
63 if x == y {
64 continue;
65 }
66 // precedence_literals[x][y] <=> x ends before y starts
67 let literal = precedence_literals[x][y];
68 // literal <=> (s_x + p_x <= s_y)
69 // equivelent to literal <=> (s_x - s_y <= -p_x)
70 // So the variables are -s_y and s_x, and the rhs is -p_x
71 let variables = vec![start_variables[y].scaled(-1), start_variables[x].scaled(1)];
72 let _ = constraints::less_than_or_equals(
73 variables,
74 -(processing_times[x] as i32),
75 constraint_tag,
76 )
77 .reify(&mut solver, literal);
78
79 // Either x starts before y or y start before x
80 let _ = solver.add_clause(
81 [
82 literal.get_true_predicate(),
83 precedence_literals[y][x].get_true_predicate(),
84 ],
85 constraint_tag,
86 );
87 }
88 }
89
90 let mut brancher = solver.default_brancher();
91 if matches!(
92 solver.satisfy(&mut brancher, &mut Indefinite),
93 SatisfactionResult::Unsatisfiable(_, _),
94 ) {
95 panic!("Infeasibility Detected")
96 }
97 match solver.satisfy(&mut brancher, &mut Indefinite) {
98 SatisfactionResult::Satisfiable(satisfiable) => {
99 let solution = satisfiable.solution();
100
101 let mut start_variables_and_processing_times = start_variables
102 .iter()
103 .zip(processing_times)
104 .collect::<Vec<_>>();
105 start_variables_and_processing_times.sort_by(|(s1, _), (s2, _)| {
106 solution
107 .get_integer_value(**s1)
108 .cmp(&solution.get_integer_value(**s2))
109 });
110
111 println!(
112 "{}",
113 start_variables_and_processing_times
114 .iter()
115 .map(|(var, processing_time)| format!(
116 "[{}, {}]",
117 solution.get_integer_value(**var),
118 solution.get_integer_value(**var) + *processing_time as i32
119 ))
120 .collect::<Vec<_>>()
121 .join(" - ")
122 );
123 }
124 SatisfactionResult::Unsatisfiable(_, _) => panic!("Infeasibility Detected"),
125 SatisfactionResult::Unknown(_, _) => println!("Timeout."),
126 };
127}Sourcepub fn new_named_bounded_integer(
&mut self,
lower_bound: i32,
upper_bound: i32,
name: impl Into<String>,
) -> DomainId
pub fn new_named_bounded_integer( &mut self, lower_bound: i32, upper_bound: i32, name: impl Into<String>, ) -> DomainId
Create a new named integer variable with the given bounds.
§Example
let mut solver = Solver::default();
// We can also create such a variable with a name
let named_integer_between_bounds = solver.new_named_bounded_integer(0, 10, "x");Examples found in repository?
25fn main() {
26 let Cli {
27 n,
28 proof: proof_path,
29 } = Cli::parse();
30
31 if n < 2 {
32 println!("Please provide an 'n > 1'");
33 return;
34 }
35
36 let Ok(proof_log) = proof_path
37 .as_ref()
38 .map(|path| ProofLog::cp(path, true))
39 .transpose()
40 .map(|proof| proof.unwrap_or_default())
41 else {
42 eprintln!(
43 "Failed to create proof file at {}",
44 proof_path.unwrap().display()
45 );
46 return;
47 };
48
49 let mut solver = Solver::with_options(SolverOptions {
50 proof_log,
51 ..Default::default()
52 });
53
54 // Create the constraint tags for the three all_different constraints.
55 let c1_tag = solver.new_constraint_tag();
56 let c2_tag = solver.new_constraint_tag();
57 let c3_tag = solver.new_constraint_tag();
58
59 let variables = (0..n)
60 .map(|i| solver.new_named_bounded_integer(0, n as i32 - 1, format!("q{i}")))
61 .collect::<Vec<_>>();
62
63 let _ = solver
64 .add_constraint(constraints::all_different(variables.clone(), c1_tag))
65 .post();
66
67 let diag1 = variables
68 .iter()
69 .cloned()
70 .enumerate()
71 .map(|(i, var)| var.offset(i as i32))
72 .collect::<Vec<_>>();
73 let diag2 = variables
74 .iter()
75 .cloned()
76 .enumerate()
77 .map(|(i, var)| var.offset(-(i as i32)))
78 .collect::<Vec<_>>();
79
80 let _ = solver
81 .add_constraint(constraints::all_different(diag1, c2_tag))
82 .post();
83 let _ = solver
84 .add_constraint(constraints::all_different(diag2, c3_tag))
85 .post();
86
87 let mut brancher = solver.default_brancher();
88 match solver.satisfy(&mut brancher, &mut Indefinite) {
89 SatisfactionResult::Satisfiable(satisfiable) => {
90 let solution = satisfiable.solution();
91
92 let row_separator = format!("{}+", "+---".repeat(n as usize));
93
94 for row in 0..n {
95 println!("{row_separator}");
96
97 let queen_col = solution.get_integer_value(variables[row as usize]) as u32;
98
99 for col in 0..n {
100 let string = if queen_col == col { "| * " } else { "| " };
101
102 print!("{string}");
103 }
104
105 println!("|");
106 }
107
108 println!("{row_separator}");
109 }
110 SatisfactionResult::Unsatisfiable(_, _) => {
111 println!("{n}-queens is unsatisfiable.");
112 }
113 SatisfactionResult::Unknown(_, _) => {
114 println!("Timeout.");
115 }
116 };
117}Sourcepub fn new_sparse_integer(&mut self, values: impl Into<Vec<i32>>) -> DomainId
pub fn new_sparse_integer(&mut self, values: impl Into<Vec<i32>>) -> DomainId
Create a new integer variable which has a domain of predefined values. We remove duplicates by converting to a hash set
§Example
let mut solver = Solver::default();
// We can also create an integer variable with a non-continuous domain in the follow way
let mut sparse_integer = solver.new_sparse_integer(vec![0, 3, 5]);Sourcepub fn new_named_sparse_integer(
&mut self,
values: impl Into<Vec<i32>>,
name: impl Into<String>,
) -> DomainId
pub fn new_named_sparse_integer( &mut self, values: impl Into<Vec<i32>>, name: impl Into<String>, ) -> DomainId
Create a new named integer variable which has a domain of predefined values.
§Example
let mut solver = Solver::default();
// We can also create such a variable with a name
let named_sparse_integer = solver.new_named_sparse_integer(vec![0, 3, 5], "y");Source§impl Solver
Functions for solving with the constraints that have been added to the Solver.
impl Solver
Functions for solving with the constraints that have been added to the Solver.
Sourcepub fn satisfy<'this, 'brancher, B, T>(
&'this mut self,
brancher: &'brancher mut B,
termination: &mut T,
) -> SatisfactionResult<'this, 'brancher, B>where
B: Brancher,
T: TerminationCondition,
pub fn satisfy<'this, 'brancher, B, T>(
&'this mut self,
brancher: &'brancher mut B,
termination: &mut T,
) -> SatisfactionResult<'this, 'brancher, B>where
B: Brancher,
T: TerminationCondition,
Solves the current model in the Solver until it finds a solution (or is indicated to
terminate by the provided TerminationCondition) and returns a SatisfactionResult
which can be used to obtain the found solution or find other solutions.
Examples found in repository?
25fn main() {
26 let Cli {
27 n,
28 proof: proof_path,
29 } = Cli::parse();
30
31 if n < 2 {
32 println!("Please provide an 'n > 1'");
33 return;
34 }
35
36 let Ok(proof_log) = proof_path
37 .as_ref()
38 .map(|path| ProofLog::cp(path, true))
39 .transpose()
40 .map(|proof| proof.unwrap_or_default())
41 else {
42 eprintln!(
43 "Failed to create proof file at {}",
44 proof_path.unwrap().display()
45 );
46 return;
47 };
48
49 let mut solver = Solver::with_options(SolverOptions {
50 proof_log,
51 ..Default::default()
52 });
53
54 // Create the constraint tags for the three all_different constraints.
55 let c1_tag = solver.new_constraint_tag();
56 let c2_tag = solver.new_constraint_tag();
57 let c3_tag = solver.new_constraint_tag();
58
59 let variables = (0..n)
60 .map(|i| solver.new_named_bounded_integer(0, n as i32 - 1, format!("q{i}")))
61 .collect::<Vec<_>>();
62
63 let _ = solver
64 .add_constraint(constraints::all_different(variables.clone(), c1_tag))
65 .post();
66
67 let diag1 = variables
68 .iter()
69 .cloned()
70 .enumerate()
71 .map(|(i, var)| var.offset(i as i32))
72 .collect::<Vec<_>>();
73 let diag2 = variables
74 .iter()
75 .cloned()
76 .enumerate()
77 .map(|(i, var)| var.offset(-(i as i32)))
78 .collect::<Vec<_>>();
79
80 let _ = solver
81 .add_constraint(constraints::all_different(diag1, c2_tag))
82 .post();
83 let _ = solver
84 .add_constraint(constraints::all_different(diag2, c3_tag))
85 .post();
86
87 let mut brancher = solver.default_brancher();
88 match solver.satisfy(&mut brancher, &mut Indefinite) {
89 SatisfactionResult::Satisfiable(satisfiable) => {
90 let solution = satisfiable.solution();
91
92 let row_separator = format!("{}+", "+---".repeat(n as usize));
93
94 for row in 0..n {
95 println!("{row_separator}");
96
97 let queen_col = solution.get_integer_value(variables[row as usize]) as u32;
98
99 for col in 0..n {
100 let string = if queen_col == col { "| * " } else { "| " };
101
102 print!("{string}");
103 }
104
105 println!("|");
106 }
107
108 println!("{row_separator}");
109 }
110 SatisfactionResult::Unsatisfiable(_, _) => {
111 println!("{n}-queens is unsatisfiable.");
112 }
113 SatisfactionResult::Unknown(_, _) => {
114 println!("Timeout.");
115 }
116 };
117}More examples
75fn main() {
76 env_logger::init();
77
78 let Some(bibd) = Bibd::from_args() else {
79 eprintln!("Usage: {} <v> <k> <l>", std::env::args().next().unwrap());
80 return;
81 };
82
83 println!(
84 "bibd: (v = {}, b = {}, r = {}, k = {}, l = {})",
85 bibd.rows, bibd.columns, bibd.row_sum, bibd.column_sum, bibd.max_dot_product
86 );
87
88 let mut solver = Solver::default();
89
90 // Creates a dummy constraint tag; since this example does not support proof logging the
91 // constraint tag does not matter.
92 let constraint_tag = solver.new_constraint_tag();
93
94 // Create 0-1 integer variables that make up the matrix.
95 let matrix = create_matrix(&mut solver, &bibd);
96
97 // Enforce the row sum.
98 for row in matrix.iter() {
99 let _ = solver
100 .add_constraint(constraints::equals(
101 row.clone(),
102 bibd.row_sum as i32,
103 constraint_tag,
104 ))
105 .post();
106 }
107
108 // Enforce the column sum.
109 for row in transpose(&matrix) {
110 let _ = solver
111 .add_constraint(constraints::equals(
112 row,
113 bibd.column_sum as i32,
114 constraint_tag,
115 ))
116 .post();
117 }
118
119 // Enforce the dot product constraint.
120 // pairwise_product[r1][r2][col] = matrix[r1][col] * matrix[r2][col]
121 let pairwise_product = (0..bibd.rows)
122 .map(|_| create_matrix(&mut solver, &bibd))
123 .collect::<Vec<_>>();
124
125 for r1 in 0..bibd.rows as usize {
126 for r2 in r1 + 1..bibd.rows as usize {
127 for col in 0..bibd.columns as usize {
128 let _ = solver
129 .add_constraint(constraints::times(
130 matrix[r1][col],
131 matrix[r2][col],
132 pairwise_product[r1][r2][col],
133 constraint_tag,
134 ))
135 .post();
136 }
137
138 let _ = solver
139 .add_constraint(constraints::less_than_or_equals(
140 pairwise_product[r1][r2].clone(),
141 bibd.max_dot_product as i32,
142 constraint_tag,
143 ))
144 .post();
145 }
146 }
147
148 let mut brancher = solver.default_brancher();
149 match solver.satisfy(&mut brancher, &mut Indefinite) {
150 SatisfactionResult::Satisfiable(satisfiable) => {
151 let solution = satisfiable.solution();
152
153 let row_separator = format!("{}+", "+---".repeat(bibd.columns as usize));
154
155 for row in matrix.iter() {
156 let line = row
157 .iter()
158 .map(|var| {
159 if solution.get_integer_value(*var) == 1 {
160 String::from("| * ")
161 } else {
162 String::from("| ")
163 }
164 })
165 .collect::<String>();
166
167 println!("{row_separator}\n{line}|");
168 }
169
170 println!("{row_separator}");
171 }
172 SatisfactionResult::Unsatisfiable(_, _) => {
173 println!("UNSATISFIABLE")
174 }
175 SatisfactionResult::Unknown(_, _) => {
176 println!("UNKNOWN")
177 }
178 };
179}20fn main() {
21 let mut args = std::env::args();
22
23 let n_tasks = args
24 .nth(1)
25 .expect("Please provide a number of tasks")
26 .parse::<usize>()
27 .expect("Not a valid usized");
28 let processing_times = args
29 .take(n_tasks)
30 .map(|arg| arg.parse::<usize>())
31 .collect::<Result<Vec<_>, _>>()
32 .expect("The provided processing times are not valid unsigned integers");
33 assert_eq!(
34 processing_times.len(),
35 n_tasks,
36 "Provided fewer than `n_tasks` processing times."
37 );
38
39 let horizon = processing_times.iter().sum::<usize>();
40
41 let mut solver = Solver::default();
42
43 // Creates a dummy constraint tag; since this example does not support proof logging the
44 // constraint tag does not matter.
45 let constraint_tag = solver.new_constraint_tag();
46
47 let start_variables = (0..n_tasks)
48 .map(|i| solver.new_bounded_integer(0, (horizon - processing_times[i]) as i32))
49 .collect::<Vec<_>>();
50
51 // Literal which indicates precedence (i.e. precedence_literals[x][y] <=> x ends before y
52 // starts)
53 let precedence_literals = (0..n_tasks)
54 .map(|_| {
55 (0..n_tasks)
56 .map(|_| solver.new_literal())
57 .collect::<Vec<_>>()
58 })
59 .collect::<Vec<_>>();
60
61 for x in 0..n_tasks {
62 for y in 0..n_tasks {
63 if x == y {
64 continue;
65 }
66 // precedence_literals[x][y] <=> x ends before y starts
67 let literal = precedence_literals[x][y];
68 // literal <=> (s_x + p_x <= s_y)
69 // equivelent to literal <=> (s_x - s_y <= -p_x)
70 // So the variables are -s_y and s_x, and the rhs is -p_x
71 let variables = vec![start_variables[y].scaled(-1), start_variables[x].scaled(1)];
72 let _ = constraints::less_than_or_equals(
73 variables,
74 -(processing_times[x] as i32),
75 constraint_tag,
76 )
77 .reify(&mut solver, literal);
78
79 // Either x starts before y or y start before x
80 let _ = solver.add_clause(
81 [
82 literal.get_true_predicate(),
83 precedence_literals[y][x].get_true_predicate(),
84 ],
85 constraint_tag,
86 );
87 }
88 }
89
90 let mut brancher = solver.default_brancher();
91 if matches!(
92 solver.satisfy(&mut brancher, &mut Indefinite),
93 SatisfactionResult::Unsatisfiable(_, _),
94 ) {
95 panic!("Infeasibility Detected")
96 }
97 match solver.satisfy(&mut brancher, &mut Indefinite) {
98 SatisfactionResult::Satisfiable(satisfiable) => {
99 let solution = satisfiable.solution();
100
101 let mut start_variables_and_processing_times = start_variables
102 .iter()
103 .zip(processing_times)
104 .collect::<Vec<_>>();
105 start_variables_and_processing_times.sort_by(|(s1, _), (s2, _)| {
106 solution
107 .get_integer_value(**s1)
108 .cmp(&solution.get_integer_value(**s2))
109 });
110
111 println!(
112 "{}",
113 start_variables_and_processing_times
114 .iter()
115 .map(|(var, processing_time)| format!(
116 "[{}, {}]",
117 solution.get_integer_value(**var),
118 solution.get_integer_value(**var) + *processing_time as i32
119 ))
120 .collect::<Vec<_>>()
121 .join(" - ")
122 );
123 }
124 SatisfactionResult::Unsatisfiable(_, _) => panic!("Infeasibility Detected"),
125 SatisfactionResult::Unknown(_, _) => println!("Timeout."),
126 };
127}pub fn get_solution_iterator<'this, 'brancher, 'termination, B, T>(
&'this mut self,
brancher: &'brancher mut B,
termination: &'termination mut T,
) -> SolutionIterator<'this, 'brancher, 'termination, B, T>where
B: Brancher,
T: TerminationCondition,
Sourcepub fn satisfy_under_assumptions<'this, 'brancher, B, T>(
&'this mut self,
brancher: &'brancher mut B,
termination: &mut T,
assumptions: &[Predicate],
) -> SatisfactionResultUnderAssumptions<'this, 'brancher, B>where
B: Brancher,
T: TerminationCondition,
pub fn satisfy_under_assumptions<'this, 'brancher, B, T>(
&'this mut self,
brancher: &'brancher mut B,
termination: &mut T,
assumptions: &[Predicate],
) -> SatisfactionResultUnderAssumptions<'this, 'brancher, B>where
B: Brancher,
T: TerminationCondition,
Solves the current model in the Solver until it finds a solution (or is indicated to
terminate by the provided TerminationCondition) and returns a SatisfactionResult
which can be used to obtain the found solution or find other solutions.
This method takes as input a list of Predicates which represent so-called assumptions
(see [1] for a more detailed explanation). See the [predicates] documentation for how
to construct these predicates.
§Bibliography
[1] N. Eén and N. Sörensson, ‘Temporal induction by incremental SAT solving’, Electronic Notes in Theoretical Computer Science, vol. 89, no. 4, pp. 543–560, 2003.
Sourcepub fn optimise<B, Callback>(
&mut self,
brancher: &mut B,
termination: &mut impl TerminationCondition,
optimisation_procedure: impl OptimisationProcedure<B, Callback>,
) -> OptimisationResultwhere
B: Brancher,
Callback: SolutionCallback<B>,
pub fn optimise<B, Callback>(
&mut self,
brancher: &mut B,
termination: &mut impl TerminationCondition,
optimisation_procedure: impl OptimisationProcedure<B, Callback>,
) -> OptimisationResultwhere
B: Brancher,
Callback: SolutionCallback<B>,
Solves the model currently in the Solver to optimality where the provided
objective_variable is optimised as indicated by the direction (or is indicated to
terminate by the provided TerminationCondition). Uses a search strategy based on the
provided OptimisationProcedure, currently [LinearSatUnsat] and
[LinearUnsatSat] are supported.
It returns an OptimisationResult which can be used to retrieve the optimal solution if
it exists.
Source§impl Solver
Functions for adding new constraints to the solver.
impl Solver
Functions for adding new constraints to the solver.
Sourcepub fn new_constraint_tag(&mut self) -> ConstraintTag
pub fn new_constraint_tag(&mut self) -> ConstraintTag
Creates a new ConstraintTag that can be used to add constraints to the solver.
See the ConstraintTag documentation for information on how the tags are used.
Examples found in repository?
25fn main() {
26 let Cli {
27 n,
28 proof: proof_path,
29 } = Cli::parse();
30
31 if n < 2 {
32 println!("Please provide an 'n > 1'");
33 return;
34 }
35
36 let Ok(proof_log) = proof_path
37 .as_ref()
38 .map(|path| ProofLog::cp(path, true))
39 .transpose()
40 .map(|proof| proof.unwrap_or_default())
41 else {
42 eprintln!(
43 "Failed to create proof file at {}",
44 proof_path.unwrap().display()
45 );
46 return;
47 };
48
49 let mut solver = Solver::with_options(SolverOptions {
50 proof_log,
51 ..Default::default()
52 });
53
54 // Create the constraint tags for the three all_different constraints.
55 let c1_tag = solver.new_constraint_tag();
56 let c2_tag = solver.new_constraint_tag();
57 let c3_tag = solver.new_constraint_tag();
58
59 let variables = (0..n)
60 .map(|i| solver.new_named_bounded_integer(0, n as i32 - 1, format!("q{i}")))
61 .collect::<Vec<_>>();
62
63 let _ = solver
64 .add_constraint(constraints::all_different(variables.clone(), c1_tag))
65 .post();
66
67 let diag1 = variables
68 .iter()
69 .cloned()
70 .enumerate()
71 .map(|(i, var)| var.offset(i as i32))
72 .collect::<Vec<_>>();
73 let diag2 = variables
74 .iter()
75 .cloned()
76 .enumerate()
77 .map(|(i, var)| var.offset(-(i as i32)))
78 .collect::<Vec<_>>();
79
80 let _ = solver
81 .add_constraint(constraints::all_different(diag1, c2_tag))
82 .post();
83 let _ = solver
84 .add_constraint(constraints::all_different(diag2, c3_tag))
85 .post();
86
87 let mut brancher = solver.default_brancher();
88 match solver.satisfy(&mut brancher, &mut Indefinite) {
89 SatisfactionResult::Satisfiable(satisfiable) => {
90 let solution = satisfiable.solution();
91
92 let row_separator = format!("{}+", "+---".repeat(n as usize));
93
94 for row in 0..n {
95 println!("{row_separator}");
96
97 let queen_col = solution.get_integer_value(variables[row as usize]) as u32;
98
99 for col in 0..n {
100 let string = if queen_col == col { "| * " } else { "| " };
101
102 print!("{string}");
103 }
104
105 println!("|");
106 }
107
108 println!("{row_separator}");
109 }
110 SatisfactionResult::Unsatisfiable(_, _) => {
111 println!("{n}-queens is unsatisfiable.");
112 }
113 SatisfactionResult::Unknown(_, _) => {
114 println!("Timeout.");
115 }
116 };
117}More examples
75fn main() {
76 env_logger::init();
77
78 let Some(bibd) = Bibd::from_args() else {
79 eprintln!("Usage: {} <v> <k> <l>", std::env::args().next().unwrap());
80 return;
81 };
82
83 println!(
84 "bibd: (v = {}, b = {}, r = {}, k = {}, l = {})",
85 bibd.rows, bibd.columns, bibd.row_sum, bibd.column_sum, bibd.max_dot_product
86 );
87
88 let mut solver = Solver::default();
89
90 // Creates a dummy constraint tag; since this example does not support proof logging the
91 // constraint tag does not matter.
92 let constraint_tag = solver.new_constraint_tag();
93
94 // Create 0-1 integer variables that make up the matrix.
95 let matrix = create_matrix(&mut solver, &bibd);
96
97 // Enforce the row sum.
98 for row in matrix.iter() {
99 let _ = solver
100 .add_constraint(constraints::equals(
101 row.clone(),
102 bibd.row_sum as i32,
103 constraint_tag,
104 ))
105 .post();
106 }
107
108 // Enforce the column sum.
109 for row in transpose(&matrix) {
110 let _ = solver
111 .add_constraint(constraints::equals(
112 row,
113 bibd.column_sum as i32,
114 constraint_tag,
115 ))
116 .post();
117 }
118
119 // Enforce the dot product constraint.
120 // pairwise_product[r1][r2][col] = matrix[r1][col] * matrix[r2][col]
121 let pairwise_product = (0..bibd.rows)
122 .map(|_| create_matrix(&mut solver, &bibd))
123 .collect::<Vec<_>>();
124
125 for r1 in 0..bibd.rows as usize {
126 for r2 in r1 + 1..bibd.rows as usize {
127 for col in 0..bibd.columns as usize {
128 let _ = solver
129 .add_constraint(constraints::times(
130 matrix[r1][col],
131 matrix[r2][col],
132 pairwise_product[r1][r2][col],
133 constraint_tag,
134 ))
135 .post();
136 }
137
138 let _ = solver
139 .add_constraint(constraints::less_than_or_equals(
140 pairwise_product[r1][r2].clone(),
141 bibd.max_dot_product as i32,
142 constraint_tag,
143 ))
144 .post();
145 }
146 }
147
148 let mut brancher = solver.default_brancher();
149 match solver.satisfy(&mut brancher, &mut Indefinite) {
150 SatisfactionResult::Satisfiable(satisfiable) => {
151 let solution = satisfiable.solution();
152
153 let row_separator = format!("{}+", "+---".repeat(bibd.columns as usize));
154
155 for row in matrix.iter() {
156 let line = row
157 .iter()
158 .map(|var| {
159 if solution.get_integer_value(*var) == 1 {
160 String::from("| * ")
161 } else {
162 String::from("| ")
163 }
164 })
165 .collect::<String>();
166
167 println!("{row_separator}\n{line}|");
168 }
169
170 println!("{row_separator}");
171 }
172 SatisfactionResult::Unsatisfiable(_, _) => {
173 println!("UNSATISFIABLE")
174 }
175 SatisfactionResult::Unknown(_, _) => {
176 println!("UNKNOWN")
177 }
178 };
179}20fn main() {
21 let mut args = std::env::args();
22
23 let n_tasks = args
24 .nth(1)
25 .expect("Please provide a number of tasks")
26 .parse::<usize>()
27 .expect("Not a valid usized");
28 let processing_times = args
29 .take(n_tasks)
30 .map(|arg| arg.parse::<usize>())
31 .collect::<Result<Vec<_>, _>>()
32 .expect("The provided processing times are not valid unsigned integers");
33 assert_eq!(
34 processing_times.len(),
35 n_tasks,
36 "Provided fewer than `n_tasks` processing times."
37 );
38
39 let horizon = processing_times.iter().sum::<usize>();
40
41 let mut solver = Solver::default();
42
43 // Creates a dummy constraint tag; since this example does not support proof logging the
44 // constraint tag does not matter.
45 let constraint_tag = solver.new_constraint_tag();
46
47 let start_variables = (0..n_tasks)
48 .map(|i| solver.new_bounded_integer(0, (horizon - processing_times[i]) as i32))
49 .collect::<Vec<_>>();
50
51 // Literal which indicates precedence (i.e. precedence_literals[x][y] <=> x ends before y
52 // starts)
53 let precedence_literals = (0..n_tasks)
54 .map(|_| {
55 (0..n_tasks)
56 .map(|_| solver.new_literal())
57 .collect::<Vec<_>>()
58 })
59 .collect::<Vec<_>>();
60
61 for x in 0..n_tasks {
62 for y in 0..n_tasks {
63 if x == y {
64 continue;
65 }
66 // precedence_literals[x][y] <=> x ends before y starts
67 let literal = precedence_literals[x][y];
68 // literal <=> (s_x + p_x <= s_y)
69 // equivelent to literal <=> (s_x - s_y <= -p_x)
70 // So the variables are -s_y and s_x, and the rhs is -p_x
71 let variables = vec![start_variables[y].scaled(-1), start_variables[x].scaled(1)];
72 let _ = constraints::less_than_or_equals(
73 variables,
74 -(processing_times[x] as i32),
75 constraint_tag,
76 )
77 .reify(&mut solver, literal);
78
79 // Either x starts before y or y start before x
80 let _ = solver.add_clause(
81 [
82 literal.get_true_predicate(),
83 precedence_literals[y][x].get_true_predicate(),
84 ],
85 constraint_tag,
86 );
87 }
88 }
89
90 let mut brancher = solver.default_brancher();
91 if matches!(
92 solver.satisfy(&mut brancher, &mut Indefinite),
93 SatisfactionResult::Unsatisfiable(_, _),
94 ) {
95 panic!("Infeasibility Detected")
96 }
97 match solver.satisfy(&mut brancher, &mut Indefinite) {
98 SatisfactionResult::Satisfiable(satisfiable) => {
99 let solution = satisfiable.solution();
100
101 let mut start_variables_and_processing_times = start_variables
102 .iter()
103 .zip(processing_times)
104 .collect::<Vec<_>>();
105 start_variables_and_processing_times.sort_by(|(s1, _), (s2, _)| {
106 solution
107 .get_integer_value(**s1)
108 .cmp(&solution.get_integer_value(**s2))
109 });
110
111 println!(
112 "{}",
113 start_variables_and_processing_times
114 .iter()
115 .map(|(var, processing_time)| format!(
116 "[{}, {}]",
117 solution.get_integer_value(**var),
118 solution.get_integer_value(**var) + *processing_time as i32
119 ))
120 .collect::<Vec<_>>()
121 .join(" - ")
122 );
123 }
124 SatisfactionResult::Unsatisfiable(_, _) => panic!("Infeasibility Detected"),
125 SatisfactionResult::Unknown(_, _) => println!("Timeout."),
126 };
127}Sourcepub fn add_constraint<Constraint>(
&mut self,
constraint: Constraint,
) -> ConstraintPoster<'_, Constraint>
pub fn add_constraint<Constraint>( &mut self, constraint: Constraint, ) -> ConstraintPoster<'_, Constraint>
Add a constraint to the solver. This returns a ConstraintPoster which enables control
on whether to add the constraint as-is, or whether to (half) reify it.
All constraints require a ConstraintTag to be supplied. See its documentation for more
information.
If none of the methods on ConstraintPoster are used, the constraint is not actually
added to the solver. In this case, a warning is emitted.
§Example
let mut solver = Solver::default();
let a = solver.new_bounded_integer(0, 3);
let b = solver.new_bounded_integer(0, 3);
let constraint_tag = solver.new_constraint_tag();
solver
.add_constraint(constraints::equals([a, b], 0, constraint_tag))
.post();Examples found in repository?
25fn main() {
26 let Cli {
27 n,
28 proof: proof_path,
29 } = Cli::parse();
30
31 if n < 2 {
32 println!("Please provide an 'n > 1'");
33 return;
34 }
35
36 let Ok(proof_log) = proof_path
37 .as_ref()
38 .map(|path| ProofLog::cp(path, true))
39 .transpose()
40 .map(|proof| proof.unwrap_or_default())
41 else {
42 eprintln!(
43 "Failed to create proof file at {}",
44 proof_path.unwrap().display()
45 );
46 return;
47 };
48
49 let mut solver = Solver::with_options(SolverOptions {
50 proof_log,
51 ..Default::default()
52 });
53
54 // Create the constraint tags for the three all_different constraints.
55 let c1_tag = solver.new_constraint_tag();
56 let c2_tag = solver.new_constraint_tag();
57 let c3_tag = solver.new_constraint_tag();
58
59 let variables = (0..n)
60 .map(|i| solver.new_named_bounded_integer(0, n as i32 - 1, format!("q{i}")))
61 .collect::<Vec<_>>();
62
63 let _ = solver
64 .add_constraint(constraints::all_different(variables.clone(), c1_tag))
65 .post();
66
67 let diag1 = variables
68 .iter()
69 .cloned()
70 .enumerate()
71 .map(|(i, var)| var.offset(i as i32))
72 .collect::<Vec<_>>();
73 let diag2 = variables
74 .iter()
75 .cloned()
76 .enumerate()
77 .map(|(i, var)| var.offset(-(i as i32)))
78 .collect::<Vec<_>>();
79
80 let _ = solver
81 .add_constraint(constraints::all_different(diag1, c2_tag))
82 .post();
83 let _ = solver
84 .add_constraint(constraints::all_different(diag2, c3_tag))
85 .post();
86
87 let mut brancher = solver.default_brancher();
88 match solver.satisfy(&mut brancher, &mut Indefinite) {
89 SatisfactionResult::Satisfiable(satisfiable) => {
90 let solution = satisfiable.solution();
91
92 let row_separator = format!("{}+", "+---".repeat(n as usize));
93
94 for row in 0..n {
95 println!("{row_separator}");
96
97 let queen_col = solution.get_integer_value(variables[row as usize]) as u32;
98
99 for col in 0..n {
100 let string = if queen_col == col { "| * " } else { "| " };
101
102 print!("{string}");
103 }
104
105 println!("|");
106 }
107
108 println!("{row_separator}");
109 }
110 SatisfactionResult::Unsatisfiable(_, _) => {
111 println!("{n}-queens is unsatisfiable.");
112 }
113 SatisfactionResult::Unknown(_, _) => {
114 println!("Timeout.");
115 }
116 };
117}More examples
75fn main() {
76 env_logger::init();
77
78 let Some(bibd) = Bibd::from_args() else {
79 eprintln!("Usage: {} <v> <k> <l>", std::env::args().next().unwrap());
80 return;
81 };
82
83 println!(
84 "bibd: (v = {}, b = {}, r = {}, k = {}, l = {})",
85 bibd.rows, bibd.columns, bibd.row_sum, bibd.column_sum, bibd.max_dot_product
86 );
87
88 let mut solver = Solver::default();
89
90 // Creates a dummy constraint tag; since this example does not support proof logging the
91 // constraint tag does not matter.
92 let constraint_tag = solver.new_constraint_tag();
93
94 // Create 0-1 integer variables that make up the matrix.
95 let matrix = create_matrix(&mut solver, &bibd);
96
97 // Enforce the row sum.
98 for row in matrix.iter() {
99 let _ = solver
100 .add_constraint(constraints::equals(
101 row.clone(),
102 bibd.row_sum as i32,
103 constraint_tag,
104 ))
105 .post();
106 }
107
108 // Enforce the column sum.
109 for row in transpose(&matrix) {
110 let _ = solver
111 .add_constraint(constraints::equals(
112 row,
113 bibd.column_sum as i32,
114 constraint_tag,
115 ))
116 .post();
117 }
118
119 // Enforce the dot product constraint.
120 // pairwise_product[r1][r2][col] = matrix[r1][col] * matrix[r2][col]
121 let pairwise_product = (0..bibd.rows)
122 .map(|_| create_matrix(&mut solver, &bibd))
123 .collect::<Vec<_>>();
124
125 for r1 in 0..bibd.rows as usize {
126 for r2 in r1 + 1..bibd.rows as usize {
127 for col in 0..bibd.columns as usize {
128 let _ = solver
129 .add_constraint(constraints::times(
130 matrix[r1][col],
131 matrix[r2][col],
132 pairwise_product[r1][r2][col],
133 constraint_tag,
134 ))
135 .post();
136 }
137
138 let _ = solver
139 .add_constraint(constraints::less_than_or_equals(
140 pairwise_product[r1][r2].clone(),
141 bibd.max_dot_product as i32,
142 constraint_tag,
143 ))
144 .post();
145 }
146 }
147
148 let mut brancher = solver.default_brancher();
149 match solver.satisfy(&mut brancher, &mut Indefinite) {
150 SatisfactionResult::Satisfiable(satisfiable) => {
151 let solution = satisfiable.solution();
152
153 let row_separator = format!("{}+", "+---".repeat(bibd.columns as usize));
154
155 for row in matrix.iter() {
156 let line = row
157 .iter()
158 .map(|var| {
159 if solution.get_integer_value(*var) == 1 {
160 String::from("| * ")
161 } else {
162 String::from("| ")
163 }
164 })
165 .collect::<String>();
166
167 println!("{row_separator}\n{line}|");
168 }
169
170 println!("{row_separator}");
171 }
172 SatisfactionResult::Unsatisfiable(_, _) => {
173 println!("UNSATISFIABLE")
174 }
175 SatisfactionResult::Unknown(_, _) => {
176 println!("UNKNOWN")
177 }
178 };
179}Sourcepub fn add_clause(
&mut self,
clause: impl IntoIterator<Item = Predicate>,
constraint_tag: ConstraintTag,
) -> Result<(), ConstraintOperationError>
pub fn add_clause( &mut self, clause: impl IntoIterator<Item = Predicate>, constraint_tag: ConstraintTag, ) -> Result<(), ConstraintOperationError>
Creates a clause from literals and adds it to the current formula.
If the formula becomes trivially unsatisfiable, a ConstraintOperationError will be
returned. Subsequent calls to this method will always return an error, and no
modification of the solver will take place.
Examples found in repository?
20fn main() {
21 let mut args = std::env::args();
22
23 let n_tasks = args
24 .nth(1)
25 .expect("Please provide a number of tasks")
26 .parse::<usize>()
27 .expect("Not a valid usized");
28 let processing_times = args
29 .take(n_tasks)
30 .map(|arg| arg.parse::<usize>())
31 .collect::<Result<Vec<_>, _>>()
32 .expect("The provided processing times are not valid unsigned integers");
33 assert_eq!(
34 processing_times.len(),
35 n_tasks,
36 "Provided fewer than `n_tasks` processing times."
37 );
38
39 let horizon = processing_times.iter().sum::<usize>();
40
41 let mut solver = Solver::default();
42
43 // Creates a dummy constraint tag; since this example does not support proof logging the
44 // constraint tag does not matter.
45 let constraint_tag = solver.new_constraint_tag();
46
47 let start_variables = (0..n_tasks)
48 .map(|i| solver.new_bounded_integer(0, (horizon - processing_times[i]) as i32))
49 .collect::<Vec<_>>();
50
51 // Literal which indicates precedence (i.e. precedence_literals[x][y] <=> x ends before y
52 // starts)
53 let precedence_literals = (0..n_tasks)
54 .map(|_| {
55 (0..n_tasks)
56 .map(|_| solver.new_literal())
57 .collect::<Vec<_>>()
58 })
59 .collect::<Vec<_>>();
60
61 for x in 0..n_tasks {
62 for y in 0..n_tasks {
63 if x == y {
64 continue;
65 }
66 // precedence_literals[x][y] <=> x ends before y starts
67 let literal = precedence_literals[x][y];
68 // literal <=> (s_x + p_x <= s_y)
69 // equivelent to literal <=> (s_x - s_y <= -p_x)
70 // So the variables are -s_y and s_x, and the rhs is -p_x
71 let variables = vec![start_variables[y].scaled(-1), start_variables[x].scaled(1)];
72 let _ = constraints::less_than_or_equals(
73 variables,
74 -(processing_times[x] as i32),
75 constraint_tag,
76 )
77 .reify(&mut solver, literal);
78
79 // Either x starts before y or y start before x
80 let _ = solver.add_clause(
81 [
82 literal.get_true_predicate(),
83 precedence_literals[y][x].get_true_predicate(),
84 ],
85 constraint_tag,
86 );
87 }
88 }
89
90 let mut brancher = solver.default_brancher();
91 if matches!(
92 solver.satisfy(&mut brancher, &mut Indefinite),
93 SatisfactionResult::Unsatisfiable(_, _),
94 ) {
95 panic!("Infeasibility Detected")
96 }
97 match solver.satisfy(&mut brancher, &mut Indefinite) {
98 SatisfactionResult::Satisfiable(satisfiable) => {
99 let solution = satisfiable.solution();
100
101 let mut start_variables_and_processing_times = start_variables
102 .iter()
103 .zip(processing_times)
104 .collect::<Vec<_>>();
105 start_variables_and_processing_times.sort_by(|(s1, _), (s2, _)| {
106 solution
107 .get_integer_value(**s1)
108 .cmp(&solution.get_integer_value(**s2))
109 });
110
111 println!(
112 "{}",
113 start_variables_and_processing_times
114 .iter()
115 .map(|(var, processing_time)| format!(
116 "[{}, {}]",
117 solution.get_integer_value(**var),
118 solution.get_integer_value(**var) + *processing_time as i32
119 ))
120 .collect::<Vec<_>>()
121 .join(" - ")
122 );
123 }
124 SatisfactionResult::Unsatisfiable(_, _) => panic!("Infeasibility Detected"),
125 SatisfactionResult::Unknown(_, _) => println!("Timeout."),
126 };
127}Source§impl Solver
Default brancher implementation
impl Solver
Default brancher implementation
Sourcepub fn default_brancher(
&self,
) -> AutonomousSearch<IndependentVariableValueBrancher<DomainId, RandomSelector, RandomSplitter>>
pub fn default_brancher( &self, ) -> AutonomousSearch<IndependentVariableValueBrancher<DomainId, RandomSelector, RandomSplitter>>
Creates an instance of the DefaultBrancher.
Examples found in repository?
25fn main() {
26 let Cli {
27 n,
28 proof: proof_path,
29 } = Cli::parse();
30
31 if n < 2 {
32 println!("Please provide an 'n > 1'");
33 return;
34 }
35
36 let Ok(proof_log) = proof_path
37 .as_ref()
38 .map(|path| ProofLog::cp(path, true))
39 .transpose()
40 .map(|proof| proof.unwrap_or_default())
41 else {
42 eprintln!(
43 "Failed to create proof file at {}",
44 proof_path.unwrap().display()
45 );
46 return;
47 };
48
49 let mut solver = Solver::with_options(SolverOptions {
50 proof_log,
51 ..Default::default()
52 });
53
54 // Create the constraint tags for the three all_different constraints.
55 let c1_tag = solver.new_constraint_tag();
56 let c2_tag = solver.new_constraint_tag();
57 let c3_tag = solver.new_constraint_tag();
58
59 let variables = (0..n)
60 .map(|i| solver.new_named_bounded_integer(0, n as i32 - 1, format!("q{i}")))
61 .collect::<Vec<_>>();
62
63 let _ = solver
64 .add_constraint(constraints::all_different(variables.clone(), c1_tag))
65 .post();
66
67 let diag1 = variables
68 .iter()
69 .cloned()
70 .enumerate()
71 .map(|(i, var)| var.offset(i as i32))
72 .collect::<Vec<_>>();
73 let diag2 = variables
74 .iter()
75 .cloned()
76 .enumerate()
77 .map(|(i, var)| var.offset(-(i as i32)))
78 .collect::<Vec<_>>();
79
80 let _ = solver
81 .add_constraint(constraints::all_different(diag1, c2_tag))
82 .post();
83 let _ = solver
84 .add_constraint(constraints::all_different(diag2, c3_tag))
85 .post();
86
87 let mut brancher = solver.default_brancher();
88 match solver.satisfy(&mut brancher, &mut Indefinite) {
89 SatisfactionResult::Satisfiable(satisfiable) => {
90 let solution = satisfiable.solution();
91
92 let row_separator = format!("{}+", "+---".repeat(n as usize));
93
94 for row in 0..n {
95 println!("{row_separator}");
96
97 let queen_col = solution.get_integer_value(variables[row as usize]) as u32;
98
99 for col in 0..n {
100 let string = if queen_col == col { "| * " } else { "| " };
101
102 print!("{string}");
103 }
104
105 println!("|");
106 }
107
108 println!("{row_separator}");
109 }
110 SatisfactionResult::Unsatisfiable(_, _) => {
111 println!("{n}-queens is unsatisfiable.");
112 }
113 SatisfactionResult::Unknown(_, _) => {
114 println!("Timeout.");
115 }
116 };
117}More examples
75fn main() {
76 env_logger::init();
77
78 let Some(bibd) = Bibd::from_args() else {
79 eprintln!("Usage: {} <v> <k> <l>", std::env::args().next().unwrap());
80 return;
81 };
82
83 println!(
84 "bibd: (v = {}, b = {}, r = {}, k = {}, l = {})",
85 bibd.rows, bibd.columns, bibd.row_sum, bibd.column_sum, bibd.max_dot_product
86 );
87
88 let mut solver = Solver::default();
89
90 // Creates a dummy constraint tag; since this example does not support proof logging the
91 // constraint tag does not matter.
92 let constraint_tag = solver.new_constraint_tag();
93
94 // Create 0-1 integer variables that make up the matrix.
95 let matrix = create_matrix(&mut solver, &bibd);
96
97 // Enforce the row sum.
98 for row in matrix.iter() {
99 let _ = solver
100 .add_constraint(constraints::equals(
101 row.clone(),
102 bibd.row_sum as i32,
103 constraint_tag,
104 ))
105 .post();
106 }
107
108 // Enforce the column sum.
109 for row in transpose(&matrix) {
110 let _ = solver
111 .add_constraint(constraints::equals(
112 row,
113 bibd.column_sum as i32,
114 constraint_tag,
115 ))
116 .post();
117 }
118
119 // Enforce the dot product constraint.
120 // pairwise_product[r1][r2][col] = matrix[r1][col] * matrix[r2][col]
121 let pairwise_product = (0..bibd.rows)
122 .map(|_| create_matrix(&mut solver, &bibd))
123 .collect::<Vec<_>>();
124
125 for r1 in 0..bibd.rows as usize {
126 for r2 in r1 + 1..bibd.rows as usize {
127 for col in 0..bibd.columns as usize {
128 let _ = solver
129 .add_constraint(constraints::times(
130 matrix[r1][col],
131 matrix[r2][col],
132 pairwise_product[r1][r2][col],
133 constraint_tag,
134 ))
135 .post();
136 }
137
138 let _ = solver
139 .add_constraint(constraints::less_than_or_equals(
140 pairwise_product[r1][r2].clone(),
141 bibd.max_dot_product as i32,
142 constraint_tag,
143 ))
144 .post();
145 }
146 }
147
148 let mut brancher = solver.default_brancher();
149 match solver.satisfy(&mut brancher, &mut Indefinite) {
150 SatisfactionResult::Satisfiable(satisfiable) => {
151 let solution = satisfiable.solution();
152
153 let row_separator = format!("{}+", "+---".repeat(bibd.columns as usize));
154
155 for row in matrix.iter() {
156 let line = row
157 .iter()
158 .map(|var| {
159 if solution.get_integer_value(*var) == 1 {
160 String::from("| * ")
161 } else {
162 String::from("| ")
163 }
164 })
165 .collect::<String>();
166
167 println!("{row_separator}\n{line}|");
168 }
169
170 println!("{row_separator}");
171 }
172 SatisfactionResult::Unsatisfiable(_, _) => {
173 println!("UNSATISFIABLE")
174 }
175 SatisfactionResult::Unknown(_, _) => {
176 println!("UNKNOWN")
177 }
178 };
179}20fn main() {
21 let mut args = std::env::args();
22
23 let n_tasks = args
24 .nth(1)
25 .expect("Please provide a number of tasks")
26 .parse::<usize>()
27 .expect("Not a valid usized");
28 let processing_times = args
29 .take(n_tasks)
30 .map(|arg| arg.parse::<usize>())
31 .collect::<Result<Vec<_>, _>>()
32 .expect("The provided processing times are not valid unsigned integers");
33 assert_eq!(
34 processing_times.len(),
35 n_tasks,
36 "Provided fewer than `n_tasks` processing times."
37 );
38
39 let horizon = processing_times.iter().sum::<usize>();
40
41 let mut solver = Solver::default();
42
43 // Creates a dummy constraint tag; since this example does not support proof logging the
44 // constraint tag does not matter.
45 let constraint_tag = solver.new_constraint_tag();
46
47 let start_variables = (0..n_tasks)
48 .map(|i| solver.new_bounded_integer(0, (horizon - processing_times[i]) as i32))
49 .collect::<Vec<_>>();
50
51 // Literal which indicates precedence (i.e. precedence_literals[x][y] <=> x ends before y
52 // starts)
53 let precedence_literals = (0..n_tasks)
54 .map(|_| {
55 (0..n_tasks)
56 .map(|_| solver.new_literal())
57 .collect::<Vec<_>>()
58 })
59 .collect::<Vec<_>>();
60
61 for x in 0..n_tasks {
62 for y in 0..n_tasks {
63 if x == y {
64 continue;
65 }
66 // precedence_literals[x][y] <=> x ends before y starts
67 let literal = precedence_literals[x][y];
68 // literal <=> (s_x + p_x <= s_y)
69 // equivelent to literal <=> (s_x - s_y <= -p_x)
70 // So the variables are -s_y and s_x, and the rhs is -p_x
71 let variables = vec![start_variables[y].scaled(-1), start_variables[x].scaled(1)];
72 let _ = constraints::less_than_or_equals(
73 variables,
74 -(processing_times[x] as i32),
75 constraint_tag,
76 )
77 .reify(&mut solver, literal);
78
79 // Either x starts before y or y start before x
80 let _ = solver.add_clause(
81 [
82 literal.get_true_predicate(),
83 precedence_literals[y][x].get_true_predicate(),
84 ],
85 constraint_tag,
86 );
87 }
88 }
89
90 let mut brancher = solver.default_brancher();
91 if matches!(
92 solver.satisfy(&mut brancher, &mut Indefinite),
93 SatisfactionResult::Unsatisfiable(_, _),
94 ) {
95 panic!("Infeasibility Detected")
96 }
97 match solver.satisfy(&mut brancher, &mut Indefinite) {
98 SatisfactionResult::Satisfiable(satisfiable) => {
99 let solution = satisfiable.solution();
100
101 let mut start_variables_and_processing_times = start_variables
102 .iter()
103 .zip(processing_times)
104 .collect::<Vec<_>>();
105 start_variables_and_processing_times.sort_by(|(s1, _), (s2, _)| {
106 solution
107 .get_integer_value(**s1)
108 .cmp(&solution.get_integer_value(**s2))
109 });
110
111 println!(
112 "{}",
113 start_variables_and_processing_times
114 .iter()
115 .map(|(var, processing_time)| format!(
116 "[{}, {}]",
117 solution.get_integer_value(**var),
118 solution.get_integer_value(**var) + *processing_time as i32
119 ))
120 .collect::<Vec<_>>()
121 .join(" - ")
122 );
123 }
124 SatisfactionResult::Unsatisfiable(_, _) => panic!("Infeasibility Detected"),
125 SatisfactionResult::Unknown(_, _) => println!("Timeout."),
126 };
127}Trait Implementations§
Auto Trait Implementations§
impl Freeze for Solver
impl !RefUnwindSafe for Solver
impl !Send for Solver
impl !Sync for Solver
impl Unpin for Solver
impl !UnwindSafe for Solver
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T> Downcast for Twhere
T: Any,
impl<T> Downcast for Twhere
T: Any,
Source§fn into_any(self: Box<T>) -> Box<dyn Any>
fn into_any(self: Box<T>) -> Box<dyn Any>
Box<dyn Trait> (where Trait: Downcast) to Box<dyn Any>. Box<dyn Any> can
then be further downcast into Box<ConcreteType> where ConcreteType implements Trait.Source§fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>
fn into_any_rc(self: Rc<T>) -> Rc<dyn Any>
Rc<Trait> (where Trait: Downcast) to Rc<Any>. Rc<Any> can then be
further downcast into Rc<ConcreteType> where ConcreteType implements Trait.Source§fn as_any(&self) -> &(dyn Any + 'static)
fn as_any(&self) -> &(dyn Any + 'static)
&Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot
generate &Any’s vtable from &Trait’s.Source§fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
fn as_any_mut(&mut self) -> &mut (dyn Any + 'static)
&mut Trait (where Trait: Downcast) to &Any. This is needed since Rust cannot
generate &mut Any’s vtable from &mut Trait’s.Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read more