bibd/bibd.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
//! A model for the balanced incomplete block design problem. For a formal definition of the
//! problem, see:
//! - https://w.wiki/9F4h
//! - https://mathworld.wolfram.com/BlockDesign.html
//!
//! Informally, the `BIBD(v, b, r, k, l)` problem looks for a binary `v * b` matrix such that all
//! rows sum to `r`, all columns sum to `k`, and the dot product between any two distinct rows is at
//! most `l` (any two pairs of rows have at most `l` overlapping 1s in their columns).
//!
//! The parameters are not independent, but satisfy the following conditions:
//! - `bk = vr`
//! - `l(v - 1) = r(k - 1)`
//!
//! Hence, the problem is defined in terms of v, k, and l.
use pumpkin_solver::constraints;
use pumpkin_solver::results::ProblemSolution;
use pumpkin_solver::results::SatisfactionResult;
use pumpkin_solver::termination::Indefinite;
use pumpkin_solver::variables::DomainId;
use pumpkin_solver::Solver;
#[allow(clippy::upper_case_acronyms)]
struct BIBD {
/// The number of rows in the matrix.
rows: u32,
/// The number of columns in the matrix.
columns: u32,
/// The sum each row should equal.
row_sum: u32,
/// The sum each column should equal.
column_sum: u32,
/// The maximum dot product between any distinct pair of rows.
max_dot_product: u32,
}
impl BIBD {
fn from_args() -> Option<BIBD> {
let args = std::env::args()
.skip(1)
.map(|arg| arg.parse::<u32>())
.collect::<Result<Vec<u32>, _>>()
.ok()?;
if args.len() != 3 {
return None;
}
let v = args[0];
let k = args[1];
let l = args[2];
let r = l * (v - 1) / (k - 1);
let b = v * r / k;
Some(Self {
rows: v,
columns: b,
row_sum: r,
column_sum: k,
max_dot_product: l,
})
}
}
fn create_matrix(solver: &mut Solver, bibd: &BIBD) -> Vec<Vec<DomainId>> {
(0..bibd.rows)
.map(|_| {
(0..bibd.columns)
.map(|_| solver.new_bounded_integer(0, 1))
.collect::<Vec<_>>()
})
.collect::<Vec<_>>()
}
fn main() {
env_logger::init();
let Some(bibd) = BIBD::from_args() else {
eprintln!("Usage: {} <v> <k> <l>", std::env::args().next().unwrap());
return;
};
println!(
"bibd: (v = {}, b = {}, r = {}, k = {}, l = {})",
bibd.rows, bibd.columns, bibd.row_sum, bibd.column_sum, bibd.max_dot_product
);
let mut solver = Solver::default();
// Create 0-1 integer variables that make up the matrix.
let matrix = create_matrix(&mut solver, &bibd);
// Enforce the row sum.
for row in matrix.iter() {
let _ = solver
.add_constraint(constraints::equals(row.clone(), bibd.row_sum as i32))
.post();
}
// Enforce the column sum.
for row in transpose(&matrix) {
let _ = solver
.add_constraint(constraints::equals(row, bibd.column_sum as i32))
.post();
}
// Enforce the dot product constraint.
// pairwise_product[r1][r2][col] = matrix[r1][col] * matrix[r2][col]
let pairwise_product = (0..bibd.rows)
.map(|_| create_matrix(&mut solver, &bibd))
.collect::<Vec<_>>();
for r1 in 0..bibd.rows as usize {
for r2 in r1 + 1..bibd.rows as usize {
for col in 0..bibd.columns as usize {
let _ = solver
.add_constraint(constraints::times(
matrix[r1][col],
matrix[r2][col],
pairwise_product[r1][r2][col],
))
.post();
}
let _ = solver
.add_constraint(constraints::less_than_or_equals(
pairwise_product[r1][r2].clone(),
bibd.max_dot_product as i32,
))
.post();
}
}
let mut brancher = solver.default_brancher_over_all_propositional_variables();
match solver.satisfy(&mut brancher, &mut Indefinite) {
SatisfactionResult::Satisfiable(solution) => {
let row_separator = format!("{}+", "+---".repeat(bibd.columns as usize));
for row in matrix.iter() {
let line = row
.iter()
.map(|var| {
if solution.get_integer_value(*var) == 1 {
String::from("| * ")
} else {
String::from("| ")
}
})
.collect::<String>();
println!("{row_separator}\n{line}|");
}
println!("{row_separator}");
}
SatisfactionResult::Unsatisfiable => {
println!("UNSATISFIABLE")
}
SatisfactionResult::Unknown => {
println!("UNKNOWN")
}
}
}
fn transpose<T: Clone, Inner: AsRef<[T]>>(matrix: &[Inner]) -> Vec<Vec<T>> {
let rows = matrix.len();
let cols = matrix[0].as_ref().len();
(0..cols)
.map(|col| {
(0..rows)
.map(|row| matrix[row].as_ref()[col].clone())
.collect()
})
.collect()
}