1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
//! Contains the [`Parser`], which Transforms input `LaTeX` into a stream of `Result<Event, ParserError>`.
//!
//! The parser is used as an iterator, and the events it generates can be rendered by a renderer.
//! The `mahtml` renderer provided by this crate is available through [`push_mathml`] and [`write_mathml`].
//!
//! [`push_mathml`]: crate::mathml::push_mathml
//! [`write_mathml`]: crate::mathml::write_mathml
pub mod error;
mod lex;
mod macros;
mod primitives;
mod state;
pub mod storage;
mod tables;

use std::ops::Range;

use macros::MacroContext;

use crate::event::{Event, Grouping, ScriptPosition, ScriptType};

use self::{state::ParserState, storage::Storage};

pub(crate) use error::{ErrorKind, InnerResult, ParserError};

/// The parser completes the task of transforming the input `LaTeX` into a symbolic representation,
/// namely a stream of [`Event`]s.
///
/// Transforming the events into rendered math is a task for the
/// [`mahtml`](crate::mathml) renderer.
///
/// The algorithm of the [`Parser`] is driven by the [`Parser::next`] method.
/// This method is provided through the [`Iterator`] trait implementation, thus an end user should
/// only need to use the [`Parser`] as an iterator of `Result<Event, ParserError>`.
#[derive(Debug)]
pub struct Parser<'store> {
    /// The next thing that should be parsed or outputed.
    ///
    /// When this is a string/substring, we should parse it. Some commands output
    /// multiple events, so we need to keep track of them and ouput them in the next
    /// iteration before continuing parsing.
    ///
    /// Instructions are stored backward in this stack, in the sense that the next event to be popped
    /// is the next event to be outputed.
    instruction_stack: Vec<Instruction<'store>>,

    /// This buffer serves as a staging area when parsing a command.
    ///
    /// When a token is parsed, it is first pushed to this buffer, then scripts are checked
    /// (superscript, and subscript), and then the events are moved from the buffer to the instruction stack.
    buffer: Vec<Instruction<'store>>,

    /// Macro definitions.
    macro_context: MacroContext<'store>,

    /// Where Macros are expanded if ever needed.
    storage: &'store bumpalo::Bump,

    /// A stack that serves to provide context when an error occurs.
    span_stack: SpanStack<'store>,
}

impl<'store> Parser<'store> {
    pub fn new<'input>(input: &'input str, storage: &'store Storage) -> Self
    where
        'input: 'store,
    {
        let mut instruction_stack = Vec::with_capacity(32);
        instruction_stack.push(Instruction::SubGroup {
            content: input,
            allowed_alignment_count: None,
        });
        let buffer = Vec::with_capacity(16);
        Self {
            instruction_stack,
            buffer,
            macro_context: MacroContext::new(),
            storage: &storage.0,
            span_stack: SpanStack::from_input(input),
        }
    }
}

impl<'store> Iterator for Parser<'store> {
    type Item = Result<Event<'store>, ParserError>;

    fn next(&mut self) -> Option<Self::Item> {
        match self.instruction_stack.last_mut() {
            Some(Instruction::Event(_)) => {
                let event = self
                    .instruction_stack
                    .pop()
                    .expect("there is something in the stack");
                Some(Ok(match event {
                    Instruction::Event(event) => event,
                    _ => unreachable!(),
                }))
            }
            Some(Instruction::SubGroup { content, .. }) if content.trim_start().is_empty() => {
                self.instruction_stack.pop();
                self.next()
            }
            Some(Instruction::SubGroup {
                content,
                allowed_alignment_count,
                ..
            }) => {
                let state = ParserState {
                    allowed_alignment_count: allowed_alignment_count.as_mut(),
                    ..Default::default()
                };

                let inner = InnerParser {
                    content,
                    buffer: &mut self.buffer,
                    state,
                    macro_context: &mut self.macro_context,
                    storage: self.storage,
                    span_stack: &mut self.span_stack,
                };

                let (desc, rest) = inner.parse_next();
                *content = rest;

                let script_event = match desc {
                    Err(e) => {
                        let content_str = *content;
                        return Some(Err(ParserError::new(
                            e,
                            content_str.as_ptr(),
                            &mut self.span_stack,
                        )));
                    }
                    Ok(Some((e, desc))) => {
                        if desc.subscript_start > desc.superscript_start {
                            let content = self.buffer.drain(desc.superscript_start..).rev();
                            let added_len = content.len();

                            self.instruction_stack.reserve(added_len);
                            let spare =
                                &mut self.instruction_stack.spare_capacity_mut()[..added_len];
                            let mut idx = desc.subscript_start - desc.superscript_start;

                            for e in content {
                                if idx == added_len {
                                    idx = 0;
                                }
                                spare[idx].write(e);
                                idx += 1;
                            }

                            // Safety: The new length is less than the vector's capacity because we
                            // reserved `added_len` previously. Every element in the vector up to
                            // that new length is also initialized by the loop.
                            unsafe {
                                self.instruction_stack
                                    .set_len(self.instruction_stack.len() + added_len)
                            };
                        } else {
                            self.instruction_stack
                                .extend(self.buffer.drain(desc.subscript_start..).rev());
                        }
                        Some(e)
                    }
                    Ok(None) => None,
                };

                self.instruction_stack.extend(self.buffer.drain(..).rev());
                if let Some(e) = script_event {
                    self.instruction_stack.push(Instruction::Event(e));
                }
                self.next()
            }
            None => None,
        }
    }
}

struct InnerParser<'b, 'store> {
    content: &'store str,
    buffer: &'b mut Vec<Instruction<'store>>,
    state: ParserState<'b>,
    macro_context: &'b mut MacroContext<'store>,
    storage: &'store bumpalo::Bump,
    span_stack: &'b mut SpanStack<'store>,
}

impl<'b, 'store> InnerParser<'b, 'store> {
    /// Parse an arugment and pushes the argument to the stack surrounded by a
    /// group: [..., EndGroup, Argument, BeginGroup], when the argument is a subgroup.
    /// Otherwise, it pushes the argument to the stack ungrouped.
    fn handle_argument(&mut self, argument: Argument<'store>) -> InnerResult<()> {
        match argument {
            Argument::Token(token) => {
                self.state.handling_argument = true;
                match token {
                    Token::ControlSequence(cs) => self.handle_primitive(cs)?,
                    Token::Character(c) => self.handle_char_token(c)?,
                };
            }
            Argument::Group(group) => {
                self.buffer.extend([
                    Instruction::Event(Event::Begin(Grouping::Normal)),
                    Instruction::SubGroup {
                        content: group,
                        allowed_alignment_count: None,
                    },
                    Instruction::Event(Event::End),
                ]);
            }
        };
        Ok(())
    }

    /// ## Script parsing
    ///
    /// The script parser first checks for directives about script placement, i.e. `\limits` and `\nolimits`,
    /// if the `allow_script_modifiers` flag is set on the parser state. If the flag is set, and if more than one directive is found,
    /// the last one takes effect, as per the [`amsmath docs`][amsdocs] (section 7.3). If the flag is not set, and a limit modifying
    /// directive is found, the parser emits an error.
    ///
    /// [amsdocs]: https://mirror.its.dal.ca/ctan/macros/latex/required/amsmath/amsldoc.pdf
    fn parse(&mut self) -> InnerResult<Option<(Event<'store>, ScriptDescriptor)>> {
        // 1. Parse the next token and output everything to the staging stack.
        let original_content = self.content.trim_start();
        let token = lex::token(&mut self.content)?;
        match token {
            Token::ControlSequence(cs) => {
                if let Some(result) =
                    self.macro_context
                        .try_expand_in(cs, self.content, self.storage)
                {
                    // TODO: Some ptr arithmetic with original_content, new_content, to figure out
                    // things for macro span.

                    let (new_content, arguments_consumed_length) = result?;
                    let call_site_length = cs.len() + arguments_consumed_length + 1;
                    self.span_stack
                        .add(new_content, original_content, call_site_length);

                    self.content = new_content;
                    return self.parse();
                }

                self.handle_primitive(cs)?
            }
            Token::Character(c) => self.handle_char_token(c)?,
        };

        // 2. Check for scripts, to complete the atom.
        if self.state.skip_scripts {
            return Ok(None);
        }

        if self.state.allow_script_modifiers {
            if let Some(limits) = lex::limit_modifiers(&mut self.content) {
                if limits {
                    self.state.script_position = ScriptPosition::AboveBelow;
                } else {
                    self.state.script_position = ScriptPosition::Right;
                }
            }
        }

        self.content = self.content.trim_start();
        let subscript_first = match self.content.chars().next() {
            Some('^') => false,
            Some('_') => true,
            _ => return Ok(None),
        };
        self.content = &self.content[1..];

        let first_script_start = self.buffer.len();
        let arg = lex::argument(&mut self.content)?;
        self.handle_argument(arg)?;
        let second_script_start = self.buffer.len();
        let next_char = self.content.chars().next();
        if (next_char == Some('_') && !subscript_first)
            || (next_char == Some('^') && subscript_first)
        {
            self.content = &self.content[1..];
            let arg = lex::argument(&mut self.content)?;
            self.handle_argument(arg)?;
        } else if next_char == Some('_') || next_char == Some('^') {
            return Err(if subscript_first {
                ErrorKind::DoubleSubscript
            } else {
                ErrorKind::DoubleSuperscript
            });
        }
        let second_script_end = self.buffer.len();

        Ok(Some(if second_script_start == second_script_end {
            if subscript_first {
                (
                    Event::Script {
                        ty: ScriptType::Subscript,
                        position: self.state.script_position,
                    },
                    ScriptDescriptor {
                        subscript_start: first_script_start,
                        superscript_start: second_script_start,
                    },
                )
            } else {
                (
                    Event::Script {
                        ty: ScriptType::Superscript,
                        position: self.state.script_position,
                    },
                    ScriptDescriptor {
                        subscript_start: second_script_start,
                        superscript_start: first_script_start,
                    },
                )
            }
        } else {
            (
                Event::Script {
                    ty: ScriptType::SubSuperscript,
                    position: self.state.script_position,
                },
                if subscript_first {
                    ScriptDescriptor {
                        subscript_start: first_script_start,
                        superscript_start: second_script_start,
                    }
                } else {
                    ScriptDescriptor {
                        subscript_start: second_script_start,
                        superscript_start: first_script_start,
                    }
                },
            )
        }))
    }

    fn parse_next(
        mut self,
    ) -> (
        InnerResult<Option<(Event<'store>, ScriptDescriptor)>>,
        &'store str,
    ) {
        (self.parse(), self.content)
    }
}

struct ScriptDescriptor {
    subscript_start: usize,
    superscript_start: usize,
}

#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub(crate) enum Token<'a> {
    ControlSequence(&'a str),
    Character(CharToken<'a>),
}

#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub(crate) struct CharToken<'a> {
    char: &'a str,
}

/// A verified character that retains the string context.
impl<'a> CharToken<'a> {
    fn from_str(s: &'a str) -> Self {
        debug_assert!(
            s.chars().next().is_some(),
            "CharToken must be constructed from a non-empty string"
        );
        Self { char: s }
    }

    fn as_str(&self) -> &'a str {
        self.char
    }
}

impl From<CharToken<'_>> for char {
    fn from(token: CharToken) -> char {
        token.char.chars().next().unwrap()
    }
}

#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
enum Argument<'a> {
    Token(Token<'a>),
    Group(&'a str),
}

#[derive(Debug, Clone)]
enum Instruction<'a> {
    /// Send the event
    Event(Event<'a>),
    /// Parse the substring
    SubGroup {
        content: &'a str,
        allowed_alignment_count: Option<AlignmentCount>,
    },
}

#[derive(Debug, Clone)]
struct AlignmentCount {
    count: u16,
    max: u16,
}

impl AlignmentCount {
    fn new(max: u16) -> Self {
        Self { count: 0, max }
    }

    fn reset(&mut self) {
        self.count = 0;
    }

    fn increment(&mut self) {
        self.count += 1;
    }

    fn can_increment(&self) -> bool {
        self.count < self.max
    }
}

/// For error reporting purposes.
///
/// Stores the context in which the parser is currently if an error were to arise.
#[derive(Debug, Clone)]
struct SpanStack<'store> {
    /// The original input given to the parser.
    input: &'store str,
    /// Expansions of macros.
    expansions: Vec<ExpansionSpan<'store>>,
}

impl<'store> SpanStack<'store> {
    fn from_input(input: &'store str) -> Self {
        Self {
            input,
            expansions: Vec::new(),
        }
    }

    fn add(&mut self, full_expansion: &'store str, call_site: &str, call_site_length: usize) {
        let call_site_start = self.reach_original_call_site(call_site.as_ptr());
        let expansion_length = (call_site_length as isize
            - (call_site.len() as isize - full_expansion.len() as isize))
            as usize;

        self.expansions.push(ExpansionSpan {
            full_expansion,
            expansion_length,
            call_site_in_origin: call_site_start..call_site_start + call_site_length,
        });
    }

    /// Navigate down the stack until we reach the original span for the given substring. Returns
    /// the index of the beginning of the call-site in the top-most span in the stack.
    fn reach_original_call_site(&mut self, substr_start: *const u8) -> usize {
        let mut ptr_val = substr_start as isize;

        while let Some(expansion) = self.expansions.last() {
            let expansion_ptr = expansion.full_expansion.as_ptr() as isize;

            if ptr_val >= expansion_ptr
                && ptr_val <= expansion_ptr + expansion.full_expansion.len() as isize
            {
                let index = if ptr_val <= expansion_ptr + expansion.expansion_length as isize {
                    (ptr_val - expansion_ptr) as usize
                } else {
                    let distance_from_effective_stop =
                        ptr_val - expansion_ptr - expansion.expansion_length as isize;
                    self.expansions.pop();
                    ptr_val = self
                        .expansions
                        .last()
                        .map(|exp| exp.full_expansion)
                        .unwrap_or(self.input)
                        .as_ptr() as isize
                        + distance_from_effective_stop;
                    continue;
                };
                return index;
            }
            self.expansions.pop();
        }
        let input_start = self.input.as_ptr() as isize;

        assert!(ptr_val > input_start && ptr_val <= input_start + self.input.len() as isize);
        (ptr_val - input_start) as usize
    }
}

/// A span of the input string. Used for error reporting.
/// ```text
///         full_expansion: [ -- Expanded --- | -- Rest -- ]
///                        /                   \ < effective_expansion_stop
///        [ -- Before -- | ---- Call Site ---- | -- Rest -- ]
///                       ^---------------------^
///                        declaration_in_origin
/// ```
#[derive(Debug, Clone)]
struct ExpansionSpan<'a> {
    /// The fully expaned string which is allocated in storage.
    ///
    /// This includes the expanded part and the included remaining.
    full_expansion: &'a str,
    /// The index where the expanded part ends and where the rest is equivalent to the rest of the
    /// original string.
    expansion_length: usize,
    /// What the expansion replaces in the original string (where the macro invocation is in the
    /// original string).
    ///
    /// The original string is the string coming before itself in the expansion stack.
    call_site_in_origin: Range<usize>,
}

#[cfg(test)]
mod tests {
    use crate::event::{Content, Visual};

    use super::*;

    #[test]
    fn substr_instructions() {
        let store = Storage::new();
        let parser = Parser::new("\\bar{y}", &store);

        let events = parser.collect::<Result<Vec<_>, ParserError>>().unwrap();

        assert_eq!(
            events,
            vec![
                Event::Script {
                    ty: ScriptType::Superscript,
                    position: ScriptPosition::AboveBelow
                },
                Event::Begin(Grouping::Normal),
                Event::Content(Content::Ordinary {
                    content: 'y',
                    stretchy: false
                }),
                Event::End,
                Event::Content(Content::Ordinary {
                    content: '‾',
                    stretchy: false,
                }),
            ]
        );
    }

    #[test]
    fn subsuperscript() {
        let store = Storage::new();
        let parser = Parser::new(r"a^{1+3}_2", &store);
        let events = parser
            .inspect(|e| println!("{:?}", e))
            .collect::<Result<Vec<_>, ParserError>>()
            .unwrap();

        assert_eq!(
            events,
            vec![
                Event::Script {
                    ty: ScriptType::SubSuperscript,
                    position: ScriptPosition::Right
                },
                Event::Content(Content::Ordinary {
                    content: 'a',
                    stretchy: false,
                }),
                Event::Content(Content::Number("2")),
                Event::Begin(Grouping::Normal),
                Event::Content(Content::Number("1")),
                Event::Content(Content::BinaryOp {
                    content: '+',
                    small: false
                }),
                Event::Content(Content::Number("3")),
                Event::End,
            ]
        );
    }
    #[test]
    fn subscript_torture() {
        let store = Storage::new();
        let parser = Parser::new(r"a_{5_{5_{5_{5_{5_{5_{5_{5_{5_{5_{5_5}}}}}}}}}}}", &store);
        let events = parser.collect::<Result<Vec<_>, ParserError>>().unwrap();

        assert_eq!(
            events,
            vec![
                Event::Script {
                    ty: ScriptType::Subscript,
                    position: ScriptPosition::Right
                },
                Event::Content(Content::Ordinary {
                    content: 'a',
                    stretchy: false,
                }),
                Event::Begin(Grouping::Normal),
                Event::Script {
                    ty: ScriptType::Subscript,
                    position: ScriptPosition::Right
                },
                Event::Content(Content::Number("5")),
                Event::Begin(Grouping::Normal),
                Event::Script {
                    ty: ScriptType::Subscript,
                    position: ScriptPosition::Right
                },
                Event::Content(Content::Number("5")),
                Event::Begin(Grouping::Normal),
                Event::Script {
                    ty: ScriptType::Subscript,
                    position: ScriptPosition::Right
                },
                Event::Content(Content::Number("5")),
                Event::Begin(Grouping::Normal),
                Event::Script {
                    ty: ScriptType::Subscript,
                    position: ScriptPosition::Right
                },
                Event::Content(Content::Number("5")),
                Event::Begin(Grouping::Normal),
                Event::Script {
                    ty: ScriptType::Subscript,
                    position: ScriptPosition::Right
                },
                Event::Content(Content::Number("5")),
                Event::Begin(Grouping::Normal),
                Event::Script {
                    ty: ScriptType::Subscript,
                    position: ScriptPosition::Right
                },
                Event::Content(Content::Number("5")),
                Event::Begin(Grouping::Normal),
                Event::Script {
                    ty: ScriptType::Subscript,
                    position: ScriptPosition::Right
                },
                Event::Content(Content::Number("5")),
                Event::Begin(Grouping::Normal),
                Event::Script {
                    ty: ScriptType::Subscript,
                    position: ScriptPosition::Right
                },
                Event::Content(Content::Number("5")),
                Event::Begin(Grouping::Normal),
                Event::Script {
                    ty: ScriptType::Subscript,
                    position: ScriptPosition::Right
                },
                Event::Content(Content::Number("5")),
                Event::Begin(Grouping::Normal),
                Event::Script {
                    ty: ScriptType::Subscript,
                    position: ScriptPosition::Right
                },
                Event::Content(Content::Number("5")),
                Event::Begin(Grouping::Normal),
                Event::Script {
                    ty: ScriptType::Subscript,
                    position: ScriptPosition::Right
                },
                Event::Content(Content::Number("5")),
                Event::Content(Content::Number("5")),
                Event::End,
                Event::End,
                Event::End,
                Event::End,
                Event::End,
                Event::End,
                Event::End,
                Event::End,
                Event::End,
                Event::End,
                Event::End,
            ]
        )
    }

    #[test]
    fn fraction() {
        let store = Storage::new();
        let parser = Parser::new(r"\frac{1}{2}_2^4", &store);
        let events = parser.collect::<Result<Vec<_>, ParserError>>().unwrap();

        assert_eq!(
            events,
            vec![
                Event::Script {
                    ty: ScriptType::SubSuperscript,
                    position: ScriptPosition::Right
                },
                Event::Visual(Visual::Fraction(None)),
                Event::Begin(Grouping::Normal),
                Event::Content(Content::Number("1")),
                Event::End,
                Event::Begin(Grouping::Normal),
                Event::Content(Content::Number("2")),
                Event::End,
                Event::Content(Content::Number("2")),
                Event::Content(Content::Number("4")),
            ]
        );
    }

    #[test]
    fn multidigit_number() {
        let store = Storage::new();
        let parser = Parser::new("123", &store);
        let events = parser.collect::<Result<Vec<_>, ParserError>>().unwrap();

        assert_eq!(events, vec![Event::Content(Content::Number("123"))]);
    }

    #[test]
    fn error() {
        let store = Storage::new();
        let parser = Parser::new(r"\def\blah#1#2{\fra#1#2} \def\abc#1{\blah{a}#1} \abc{b}", &store);
        let events = parser.collect::<Vec<_>>();

        assert!(events[0].is_err());
    }
}

// Token parsing procedure, as per TeXbook p. 46-47.
//
// This is roughly what the lexer implementation will look like for text mode.
//
// 1. Trim any trailing whitespace from a line.
//
// 2. If '\' (escape character) is encountered, parse the next token.
//  '\n' => _The name is empty_???
//  'is_ascii_alphabetic' => parse until an non ASCII alphabetic, and the name is the token
//  'otherwise' => parse next character, and the name is the symbol.
//
//  Go to SkipBlanks mode if the token is a word or a space symbol.
//  Otherwise, go to MidLine mode.
//
// 3. If `^^` is found:
//  - If the following are two characters of type ASCII lowercase letter or digit,
//  then `^^__` is converted to the correspoding ascii value.
//  - If the following is a single ASCII character, then `^^_` is converted to the corresponding ASCII
//  value with the formula: if `c` is the character, then `c + 64` if `c` if the character has code
//  between 0 and 63, and `c - 64` if the character has code between 64 and 127.
//
//  __Note__: This rule takes precedence over escape character parsing. If such a sequence is found
//  in an escape sequence, it is converted to the corresponding ASCII value.
//
// 4. If the token is a single character, go to MidLine mode.
//
// 5. If the token is an end of line, go to the next line. If nothing was on the line (were in NewLine state), then the
//  `par` token is emitted, meaning that a new paragraph should be started.
//  If the state was MidLine, then the newline is transformed into a space.
//  If the state was SkipBlanks, then the newline is ignored.
//
// 6. Ignore characters from the `Ignore` category.
//
// 7. If the token is a space and the mode is MidLine, the space is transformed into a space token.
//
// 8. If the token is a comment, ignore the rest of the line, and go to the next line.
//
// 9. Go to newlines on the next line.