1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
use super::*;
#[derive(Clone, Copy)]
pub struct Bool(());
#[derive(Clone, Copy)]
pub struct Tr(());
#[derive(Clone, Copy)]
pub struct Fa(());
pub fn bool_ty() -> Ty<Bool, Type<Z>> {unimplemented!()}
pub fn bool_is_const() -> IsConst<Bool> {unimplemented!()}
pub fn tr_ty() -> Ty<Tr, Bool> {unimplemented!()}
pub fn tr_is_const() -> IsConst<Tr> {unimplemented!()}
pub fn fa_ty() -> Ty<Fa, Bool> {unimplemented!()}
pub fn fa_is_const() -> IsConst<Fa> {unimplemented!()}
pub fn bool_values<A: Prop>(_ty_a: Ty<A, Bool>) -> Or<Eq<A, Tr>, Eq<A, Fa>> {unimplemented!()}
pub fn para_eq_tr_fa(_: Eq<Tr, Fa>) -> False {unimplemented!()}
pub fn bool1_exists<X: Prop>(
_case_fa: Exists<Ty<Fa, Bool>, X>,
_case_tr: Exists<Ty<Tr, Bool>, X>,
) -> X {unimplemented!()}
pub fn bool2_exists<X: Prop>(
_case_fa_fa: Exists<Ty<Tup<Fa, Fa>, Tup<Bool, Bool>>, X>,
_case_fa_tr: Exists<Ty<Tup<Fa, Tr>, Tup<Bool, Bool>>, X>,
_case_tr_fa: Exists<Ty<Tup<Tr, Fa>, Tup<Bool, Bool>>, X>,
_case_tr_tr: Exists<Ty<Tup<Tr, Tr>, Tup<Bool, Bool>>, X>,
) -> X {unimplemented!()}
pub fn bool1_fun_ext<F: Prop, G: Prop>(
ty_f: Ty<F, Pow<Bool, Bool>>,
ty_g: Ty<G, Pow<Bool, Bool>>,
case_tr: Tauto<Eq<App<F, Tr>, App<G, Tr>>>,
case_fa: Tauto<Eq<App<F, Fa>, App<G, Fa>>>
) -> Eq<F, G> {
bool1_exists(app_fun_ext(ty_f.clone(), ty_g.clone(), hooo::tr().trans(case_fa)),
app_fun_ext(ty_f, ty_g, hooo::tr().trans(case_tr)))
}
pub fn bool2_fun_ext<F: Prop, G: Prop>(
ty_f: Ty<F, Pow<Bool, Tup<Bool, Bool>>>,
ty_g: Ty<G, Pow<Bool, Tup<Bool, Bool>>>,
case_fa_fa: Tauto<Eq<App<F, Tup<Fa, Fa>>, App<G, Tup<Fa, Fa>>>>,
case_fa_tr: Tauto<Eq<App<F, Tup<Fa, Tr>>, App<G, Tup<Fa, Tr>>>>,
case_tr_fa: Tauto<Eq<App<F, Tup<Tr, Fa>>, App<G, Tup<Tr, Fa>>>>,
case_tr_tr: Tauto<Eq<App<F, Tup<Tr, Tr>>, App<G, Tup<Tr, Tr>>>>,
) -> Eq<F, G> {
bool2_exists(app_fun_ext(ty_f.clone(), ty_g.clone(), hooo::tr().trans(case_fa_fa)),
app_fun_ext(ty_f.clone(), ty_g.clone(), hooo::tr().trans(case_fa_tr)),
app_fun_ext(ty_f.clone(), ty_g.clone(), hooo::tr().trans(case_tr_fa)),
app_fun_ext(ty_f, ty_g, hooo::tr().trans(case_tr_tr)))
}
pub fn bool1_cover<A: Prop, X: Prop>(
ty_a: Ty<A, Bool>,
pow_x_eq_a_tr: Pow<X, Eq<A, Tr>>,
pow_x_eq_a_fa: Pow<X, Eq<A, Fa>>,
) -> X {cover(ty_a, bool_values, pow_x_eq_a_tr, pow_x_eq_a_fa)}
#[derive(Clone, Copy)]
pub struct FFalse1(());
pub fn false1_ty() -> Ty<FFalse1, Pow<Bool, Bool>> {unimplemented!()}
pub fn false1_is_const() -> IsConst<FFalse1> {unimplemented!()}
pub fn false1_def<A: Prop>(_: Ty<A, Bool>) -> Eq<App<FFalse1, A>, Tr> {unimplemented!()}
pub fn para_inv_false1<F: Prop>(x: Q<Inv<FFalse1>, F>) -> False {
let y0 = inv_val(x.clone(), false1_def(fa_ty()));
let y1 = inv_val(x, false1_def(tr_ty()));
para_eq_tr_fa(eq::transitivity(eq::symmetry(y1), y0))
}
pub fn eq_norm1_by_false1<F: Prop>(
ty_f: Tauto<Ty<F, Pow<Bool, Bool>>>
) -> Eq<SymNorm1<F, FFalse1>, FFalse1> {
fn case<F: Prop, A: Prop>((ty_f, ty_a): And<Ty<F, Pow<Bool, Bool>>, Ty<A, Bool>>) ->
Eq<App<SymNorm1<F, FFalse1>, A>, App<FFalse1, A>> {
eq::in_right_arg(eq::in_left_arg(false1_def(app_fun_ty(ty_f, app_fun_ty(inv_ty(false1_ty()),
ty_a.clone()))), eq_app_norm1()), eq::symmetry(false1_def(ty_a)))
}
bool1_fun_ext(
sym_norm1_ty(ty_f(True), false1_ty()),
false1_ty(),
hooo::hooo_rev_and((ty_f, tauto!(tr_ty()))).trans(case),
hooo::hooo_rev_and((ty_f, tauto!(fa_ty()))).trans(case),
)
}
pub type FIdb = App<FId, Bool>;
pub type Idb<A> = App<FIdb, A>;
pub fn idb_ty() -> Ty<FIdb, Pow<Bool, Bool>> {id_ty()}
pub fn idb_is_const() -> IsConst<FIdb> {id_is_const(bool_is_const())}
pub fn idb_def<A: Prop>(ty_a: Ty<A, Bool>) -> Eq<Idb<A>, A> {
id_def(bool_ty(), ty_a)
}
#[derive(Clone, Copy)]
pub struct FNot(());
pub fn not_ty() -> Ty<FNot, Pow<Bool, Bool>> {unimplemented!()}
pub fn not_is_const() -> IsConst<FNot> {unimplemented!()}
pub fn not_fa() -> Eq<App<FNot, Fa>, Tr> {unimplemented!()}
pub fn not_tr() -> Eq<App<FNot, Tr>, Fa> {unimplemented!()}
pub fn not_q() -> Q<Inv<FNot>, FNot> {unimplemented!()}
pub fn eq_not_not_idb() -> Eq<Comp<FNot, FNot>, FIdb> {
self_inv_to_eq_id(not_ty(), quality::to_eq(not_q()))
}
pub fn eq_norm1_not_not() -> Eq<SymNorm1<FNot, FNot>, FNot> {
(Rc::new(move |x| comp_id_left(not_ty()).0(comp_in_left_arg(comp_in_right_arg(x.0,
quality::to_eq(not_q())), eq_not_not_idb()))),
Rc::new(move |x| Norm1(comp_in_right_arg(comp_in_left_arg(comp_id_left(not_ty()).1(x),
eq::symmetry(eq_not_not_idb())), eq::symmetry(quality::to_eq(not_q()))))))
}
pub fn eq_not_not<X: Prop>(ty_x: Ty<X, Bool>) -> Eq<App<FNot, App<FNot, X>>, X> {
use eq::transitivity as trans;
trans(eq_app_comp(), trans(app_map_eq(eq_not_not_idb()), id_def(bool_ty(), ty_x)))
}
#[derive(Clone, Copy)]
pub struct FTrue1(());
pub fn true1_ty() -> Ty<FTrue1, Pow<Bool, Bool>> {unimplemented!()}
pub fn true1_is_const() -> IsConst<FTrue1> {unimplemented!()}
pub fn true1_def<A: Prop>(_: Ty<A, Bool>) -> Eq<App<FTrue1, A>, Tr> {unimplemented!()}
pub fn para_inv_true1<F: Prop>(x: Q<Inv<FTrue1>, F>) -> False {
let y0 = inv_val(x.clone(), true1_def(fa_ty()));
let y1 = inv_val(x, true1_def(tr_ty()));
para_eq_tr_fa(eq::transitivity(eq::symmetry(y1), y0))
}
pub fn eq_norm1_by_true1<F: Prop>(
ty_f: Tauto<Ty<F, Pow<Bool, Bool>>>
) -> Eq<SymNorm1<F, FTrue1>, FTrue1> {
fn case<F: Prop, A: Prop>((ty_f, ty_a): And<Ty<F, Pow<Bool, Bool>>, Ty<A, Bool>>) ->
Eq<App<SymNorm1<F, FTrue1>, A>, App<FTrue1, A>> {
eq::in_right_arg(eq::in_left_arg(true1_def(app_fun_ty(ty_f, app_fun_ty(inv_ty(true1_ty()),
ty_a.clone()))), eq_app_norm1()), eq::symmetry(true1_def(ty_a)))
}
bool1_fun_ext(
sym_norm1_ty(ty_f(True), true1_ty()),
true1_ty(),
hooo::hooo_rev_and((ty_f, tauto!(tr_ty()))).trans(case),
hooo::hooo_rev_and((ty_f, tauto!(fa_ty()))).trans(case),
)
}
#[derive(Copy, Clone)]
pub struct FAnd(());
pub fn and_ty() -> Ty<FAnd, Pow<Bool, Tup<Bool, Bool>>> {unimplemented!()}
pub fn and_is_const() -> IsConst<FAnd> {unimplemented!()}
pub fn and_tr<A: Prop>(_ty_a: Ty<A, Bool>) -> Eq<App<FAnd, Tup<Tr, A>>, A> {unimplemented!()}
pub fn and_fa<A: Prop>(_ty_a: Ty<A, Bool>) -> Eq<App<FAnd, Tup<Fa, A>>, Fa> {unimplemented!()}
pub fn para_inv_and<F: Prop>(x: Q<Inv<FAnd>, F>) -> False {
let y0 = inv_val(x.clone(), and_fa(tr_ty()));
let y1 = inv_val(x.clone(), and_fa(fa_ty()));
let y2: Eq<Tup<Fa, Fa>, Tup<Fa, Tr>> = eq::transitivity(eq::symmetry(y1), y0);
para_eq_tr_fa(tup_rev_eq_snd(fa_ty(), eq::symmetry(y2)))
}
pub fn eq_norm2_and_not_or() -> Eq<SymNorm2<FAnd, FNot>, FOr> {
fn bridge<A: Prop, B: Prop, C: Prop, D: Prop, E: Prop>(
eq_a_c: Eq<A, C>, eq_b_d: Eq<B, D>,
x: Eq<App<SymNorm2<FAnd, FNot>, Tup<C, D>>, E>, or_c_d: Eq<App<FOr, Tup<C, D>>, E>,
) -> Eq<App<SymNorm2<FAnd, FNot>, Tup<A, B>>, App<FOr, Tup<A, B>>> {
let y: Eq<Tup<A, B>, Tup<C, D>> = tup_eq(eq_a_c, eq_b_d);
eq::in_right_arg(eq::in_right_arg(app_eq(y.clone()),
eq::in_right_arg(x, eq::symmetry(or_c_d))), eq::symmetry(app_eq(y)))
}
fn case<A: Prop, B: Prop>(ty_a: Ty<A, Bool>, ty_b: Ty<B, Bool>) ->
Eq<App<SymNorm2<FAnd, FNot>, Tup<A, B>>, App<FOr, Tup<A, B>>> {
match (bool_values(ty_a), bool_values(ty_b)) {
(Right(eq_a_fa), Right(eq_b_fa)) => bridge(eq_a_fa, eq_b_fa, sym_norm2_app(
not_q(), not_tr(), not_tr(), and_tr(tr_ty()), not_tr()), or_fa(fa_ty())),
(Right(eq_a_fa), Left(eq_b_tr)) => bridge(eq_a_fa, eq_b_tr, sym_norm2_app(
not_q(), not_tr(), not_fa(), and_tr(fa_ty()), not_fa()), or_fa(tr_ty())),
(Left(eq_a_tr), Right(eq_b_fa)) => bridge(eq_a_tr, eq_b_fa, sym_norm2_app(
not_q(), not_fa(), not_tr(), and_fa(tr_ty()), not_fa()), or_tr(fa_ty())),
(Left(eq_a_tr), Left(eq_b_tr)) => bridge(eq_a_tr, eq_b_tr, sym_norm2_app(
not_q(), not_fa(), not_fa(), and_fa(fa_ty()), not_fa()), or_tr(tr_ty())),
}
}
bool2_fun_ext(sym_norm2_ty(and_ty(), not_ty()), or_ty(),
tauto!(case(fa_ty(), fa_ty())), tauto!(case(fa_ty(), tr_ty())),
tauto!(case(tr_ty(), fa_ty())), tauto!(case(tr_ty(), tr_ty())))
}
#[derive(Copy, Clone)]
pub struct FOr(());
pub fn or_ty() -> Ty<FOr, Pow<Bool, Tup<Bool, Bool>>> {unimplemented!()}
pub fn or_is_const() -> IsConst<FOr> {unimplemented!()}
pub fn or_tr<A: Prop>(_ty_a: Ty<A, Bool>) -> Eq<App<FOr, Tup<Tr, A>>, Tr> {unimplemented!()}
pub fn or_fa<A: Prop>(_ty_a: Ty<A, Bool>) -> Eq<App<FOr, Tup<Fa, A>>, A> {unimplemented!()}
pub fn para_inv_or<F: Prop>(x: Q<Inv<FOr>, F>) -> False {
let y0 = inv_val(x.clone(), or_tr(tr_ty()));
let y1 = inv_val(x.clone(), or_tr(fa_ty()));
para_eq_tr_fa(tup_rev_eq_snd(tr_ty(), eq::transitivity(eq::symmetry(y0), y1)))
}
pub fn eq_norm2_or_not_and() -> Eq<SymNorm2<FOr, FNot>, FAnd> {
fn bridge<A: Prop, B: Prop, C: Prop, D: Prop, E: Prop>(
eq_a_c: Eq<A, C>, eq_b_d: Eq<B, D>,
x: Eq<App<SymNorm2<FOr, FNot>, Tup<C, D>>, E>, or_c_d: Eq<App<FAnd, Tup<C, D>>, E>,
) -> Eq<App<SymNorm2<FOr, FNot>, Tup<A, B>>, App<FAnd, Tup<A, B>>> {
let y: Eq<Tup<A, B>, Tup<C, D>> = tup_eq(eq_a_c, eq_b_d);
eq::in_right_arg(eq::in_right_arg(app_eq(y.clone()),
eq::in_right_arg(x, eq::symmetry(or_c_d))), eq::symmetry(app_eq(y)))
}
fn case<A: Prop, B: Prop>(ty_a: Ty<A, Bool>, ty_b: Ty<B, Bool>) ->
Eq<App<SymNorm2<FOr, FNot>, Tup<A, B>>, App<FAnd, Tup<A, B>>> {
match (bool_values(ty_a), bool_values(ty_b)) {
(Right(eq_a_fa), Right(eq_b_fa)) => bridge(eq_a_fa, eq_b_fa, sym_norm2_app(
not_q(), not_tr(), not_tr(), or_tr(tr_ty()), not_tr()), and_fa(fa_ty())),
(Right(eq_a_fa), Left(eq_b_tr)) => bridge(eq_a_fa, eq_b_tr, sym_norm2_app(
not_q(), not_tr(), not_fa(), or_tr(fa_ty()), not_tr()), and_fa(tr_ty())),
(Left(eq_a_tr), Right(eq_b_fa)) => bridge(eq_a_tr, eq_b_fa, sym_norm2_app(
not_q(), not_fa(), not_tr(), or_fa(tr_ty()), not_tr()), and_tr(fa_ty())),
(Left(eq_a_tr), Left(eq_b_tr)) => bridge(eq_a_tr, eq_b_tr, sym_norm2_app(
not_q(), not_fa(), not_fa(), or_fa(fa_ty()), not_fa()), and_tr(tr_ty())),
}
}
bool2_fun_ext(sym_norm2_ty(or_ty(), not_ty()), and_ty(),
tauto!(case(fa_ty(), fa_ty())), tauto!(case(fa_ty(), tr_ty())),
tauto!(case(tr_ty(), fa_ty())), tauto!(case(tr_ty(), tr_ty())))
}
pub type FEqb = App<FEq, Bool>;
pub type Eqb<A, B> = App<FEqb, Tup<A, B>>;
pub fn eqb_ty() -> Ty<FEqb, Pow<Bool, Tup<Bool, Bool>>> {equal_ty(bool_ty())}
pub fn eqb_fa_fa() -> Eq<Eqb<Fa, Fa>, Tr> {equal_refl(fa_ty())}
pub fn eqb_tr_fa() -> Eq<Eqb<Tr, Fa>, Fa> {equal_from_para_eq(tr_ty(), fa_ty(), para_eq_tr_fa)}
pub fn eqb_fa_tr() -> Eq<Eqb<Fa, Tr>, Fa> {
equal_from_para_eq(fa_ty(), tr_ty(), hooo::pow_transitivity(eq::symmetry, para_eq_tr_fa))
}
pub fn eqb_tr_tr() -> Eq<Eqb<Tr, Tr>, Tr> {equal_refl(tr_ty())}
pub fn eqb_tr<A: Prop>(ty_a: Ty<A, Bool>) -> Eq<Eqb<Tr, A>, A> {
match bool_values(ty_a) {
Left(eq_a_tr) =>
eq::trans3(app_eq(tup_eq_snd(eq_a_tr.clone())), eqb_tr_tr(), eq::symmetry(eq_a_tr)),
Right(eq_a_fa) =>
eq::trans3(app_eq(tup_eq_snd(eq_a_fa.clone())), eqb_tr_fa(), eq::symmetry(eq_a_fa)),
}
}
pub fn eqb_fa<A: Prop>(ty_a: Ty<A, Bool>) -> Eq<Eqb<Fa, A>, App<FNot, A>> {
match bool_values(ty_a) {
Left(eq_a_tr) => eq::trans4(app_eq(tup_eq_snd(eq_a_tr.clone())), eqb_fa_tr(),
eq::symmetry(not_tr()), app_eq(eq::symmetry(eq_a_tr))),
Right(eq_a_fa) => eq::trans4(app_eq(tup_eq_snd(eq_a_fa.clone())), eqb_fa_fa(),
eq::symmetry(not_fa()), app_eq(eq::symmetry(eq_a_fa))),
}
}
#[derive(Copy, Clone)]
pub struct FNand(pub Comp<FNot, FAnd>);
pub fn nand_def() -> Eq<FNand, Comp<FNot, FAnd>> {eqx!(def FNand)}
pub fn nand_ty() -> Ty<FNand, Pow<Bool, Tup<Bool, Bool>>> {
eqx!(comp_ty(and_ty(), not_ty()), nand_def, tyl)
}
pub fn nand_is_const() -> IsConst<FNand> {
eqx!(comp_is_const(and_is_const(), not_is_const()), nand_def, co)
}
pub fn nand_tr<A: Prop>(ty_a: Ty<A, Bool>) -> Eq<App<FNand, Tup<Tr, A>>, App<FNot, A>> {
eqx!(eq::in_left_arg(app_eq(and_tr(ty_a)), eq_app_comp()), nand_def, am, l)
}
pub fn nand_fa<A: Prop>(ty_a: Ty<A, Bool>) -> Eq<App<FNand, Tup<Fa, A>>, Tr> {
let x = eq::transitivity(eq::in_left_arg(app_eq(and_fa(ty_a)), eq_app_comp()), not_fa());
eqx!(x, nand_def, am, l)
}
#[derive(Copy, Clone)]
pub struct FImply(pub Comp<FOr, Par<FNot, FIdb>>);
pub fn imply_def() -> Eq<FImply, Comp<FOr, Par<FNot, FIdb>>> {eqx!(def FImply)}
pub fn imply_ty() -> Ty<FImply, Pow<Bool, Tup<Bool, Bool>>> {
eqx!(comp_ty(par_tup_fun_ty(not_ty(), id_ty()), or_ty()), imply_def, tyl)
}
pub fn imply_is_const() -> IsConst<FImply> {
let x = comp_is_const(par_tup_app_is_const(not_is_const(), idb_is_const()), or_is_const());
eqx!(x, imply_def, co)
}
pub fn imply_tr<A: Prop>(ty_a: Ty<A, Bool>) -> Eq<App<FImply, Tup<Tr, A>>, A> {
eqx!(eq::symmetry(eq::in_left_arg(eq::in_left_arg(eq_app_comp(), app_eq(
par_tup_def(not_tr(), id_def(bool_ty(), ty_a.clone())))), or_fa(ty_a))), imply_def, am, l)
}
pub fn imply_fa<A: Prop>(ty_a: Ty<A, Bool>) -> Eq<App<FImply, Tup<Fa, A>>, Tr> {
eqx!(eq::symmetry(eq::in_left_arg(eq::in_left_arg(eq_app_comp(), app_eq(
par_tup_def(not_fa(), id_def(bool_ty(), ty_a.clone())))), or_tr(ty_a))), imply_def, am, l)
}
#[derive(Copy, Clone)]
pub struct FXor(pub Comp<FNot, FEqb>);
pub type Xor<A, B> = App<FXor, Tup<A, B>>;
pub fn xor_def() -> Eq<FXor, Comp<FNot, FEqb>> {eqx!(def FXor)}
pub fn xor_ty() -> Ty<FXor, Pow<Bool, Tup<Bool, Bool>>> {
eqx!(comp_ty(eqb_ty(), not_ty()), xor_def, tyl)
}
pub fn xor_tr<A: Prop>(ty_a: Ty<A, Bool>) -> Eq<Xor<Tr, A>, App<FNot, A>> {
eqx!(eq::transitivity(eq::symmetry(eq_app_comp()), app_eq(eqb_tr(ty_a))), xor_def, am, l)
}
pub fn xor_fa<A: Prop>(ty_a: Ty<A, Bool>) -> Eq<Xor<Fa, A>, A> {
eqx!(eq::trans5(eq::symmetry(eq_app_comp()), app_eq(eqb_fa(ty_a.clone())), eq_app_comp(),
app_map_eq(eq_not_not_idb()), idb_def(ty_a)), xor_def, am, l)
}
#[derive(Copy, Clone)]
pub struct AndNotEq<F: Prop>(pub Comp<FAnd, Comp<Par<F, Comp<FNot, FEq>>, Dup>>);