prollytree 0.3.0

A prolly (probabilistic) tree for efficient storage, retrieval, and modification of ordered data.
Documentation

ProllyTree

Crates.io Documentation License Downloads

A probabilistic B-tree implementation in Rust that combines B-tree efficiency with Merkle tree cryptographic properties. Designed for distributed systems, version control, and verifiable data structures.

Features

  • High Performance: O(log n) operations with cache-friendly probabilistic balancing
  • Cryptographically Verifiable: Merkle tree properties for data integrity and inclusion proofs
  • Multiple Storage Backends: In-memory, RocksDB, and Git-backed persistence
  • Distributed-Ready: Efficient diff, sync, and three-way merge capabilities
  • Python Bindings: Full API coverage via PyO3 with async support
  • SQL Interface: Query trees with SQL via GlueSQL integration
  • AI Agent Memory: Purpose-built for LLM applications and agent systems

Quick Start

Add to your Cargo.toml:

[dependencies]
prollytree = "0.3.0"

# Optional features
prollytree = { version = "0.3.0", features = ["git", "sql", "rig"] }

Examples

Basic Tree Operations

use prollytree::tree::{ProllyTree, Tree};
use prollytree::storage::InMemoryNodeStorage;

let storage = InMemoryNodeStorage::<32>::new();
let mut tree = ProllyTree::new(storage, Default::default());

// Insert data
tree.insert(b"user:alice".to_vec(), b"Alice Johnson".to_vec());
tree.insert(b"config:timeout".to_vec(), b"30".to_vec());

// Query data - find returns a node, extract the value
if let Some(node) = tree.find(b"user:alice") {
    for (i, key) in node.keys.iter().enumerate() {
        if key == b"user:alice" {
            let value = &node.values[i];
            println!("Found: {}", String::from_utf8(value.clone())?);
            break;
        }
    }
}

// Generate cryptographic proof
let proof = tree.generate_proof(b"user:alice");
let is_valid = tree.verify(proof, b"user:alice", Some(b"Alice Johnson"));

Git-backed Versioned Storage

use prollytree::git::GitVersionedKvStore;
use std::process::Command;
use std::fs;

// Setup: Create a temporary Git repository (in real use, you'd have an existing repo)
let repo_path = "/tmp/demo_git_repo";
fs::create_dir_all(repo_path)?;
Command::new("git").args(&["init"]).current_dir(repo_path).output()?;

// Switch to repo directory and create dataset
std::env::set_current_dir(repo_path)?;
fs::create_dir_all("data")?;
let mut store = GitVersionedKvStore::<32>::init("data")?;

// Now use Git-backed versioned storage
store.insert(b"config/api_key".to_vec(), b"secret123".to_vec())?;
store.commit("Initial config")?;

// Retrieve data
if let Some(value) = store.get(b"config/api_key") {
    println!("Retrieved: {}", String::from_utf8(value)?);
}

// Add more data and commit
store.insert(b"config/timeout".to_vec(), b"30".to_vec())?;
store.commit("Add timeout config")?;

// Create branches for parallel development
store.create_branch("experimental")?;
println!("Git-backed storage with full version control!");

Multiple Storage Backends

use prollytree::tree::{ProllyTree, Tree};
use prollytree::storage::{InMemoryNodeStorage, FileNodeStorage};

// In-memory storage (fast, temporary)
let mem_storage = InMemoryNodeStorage::<32>::new();
let mut mem_tree = ProllyTree::new(mem_storage, Default::default());
mem_tree.insert(b"session:abc123".to_vec(), b"active".to_vec());

// File-based storage (persistent)
let file_storage = FileNodeStorage::<32>::new("./tree_data".into());
let mut file_tree = ProllyTree::new(file_storage, Default::default());
file_tree.insert(b"user:alice".to_vec(), b"Alice Johnson".to_vec());

// Both trees support the same operations
if let Some(node) = mem_tree.find(b"session:abc123") {
    println!("Session found in memory storage");
}

// For SQL functionality, see examples/sql.rs
println!("Multiple storage backends working!");

Feature Flags

[dependencies.prollytree]
version = "0.3.0"
features = [
    "git",              # Git-backed versioned storage
    "sql",              # SQL interface via GlueSQL
    "rig",              # Rig framework integration for AI
    "python",           # Python bindings via PyO3
    "rocksdb_storage",  # RocksDB persistent storage backend
]

Performance

Benchmarks (Apple M3 Pro, 18GB RAM):

  • Insert: ~8-21 µs (scales O(log n))
  • Lookup: ~1-3 µs (sub-linear due to caching)
  • Memory: ~100 bytes per key-value pair
  • Batch operations: ~25% faster than individual ops

Run benchmarks: cargo bench

Documentation & Examples

CLI Tool

# Install git-prolly CLI
cargo install prollytree --features git

# Setup git repository and create dataset
git init my-repo && cd my-repo
mkdir my-data && git-prolly init my-data  # Create dataset directory
cd my-data
git-prolly set "user:alice" "Alice Johnson"
git-prolly commit -m "Add user"
git checkout -b feature/updates  # Use regular git for branching
git-prolly merge main

Contributing

We welcome contributions! See CONTRIBUTING.md for guidelines.

License

Licensed under the Apache License 2.0. See LICENSE.