prodigy 0.2.6

Turn ad-hoc Claude sessions into reproducible development pipelines with parallel AI agents
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
# Prodigy Architecture

## Overview

Prodigy is a workflow orchestration tool that executes Claude commands through structured YAML workflows. It provides session management, state tracking, and supports parallel execution through MapReduce patterns.

## Architectural Pattern: Functional Core, Imperative Shell

Prodigy follows the "Functional Core, Imperative Shell" pattern to achieve:
- **Testability**: Pure functions are easy to test without mocks or complex setup
- **Maintainability**: Clear separation between business logic and I/O operations
- **Predictability**: Pure functions always produce the same output for the same input
- **Composability**: Small, focused functions that combine to create complex behavior

### Functional Core (`src/core/`)

The functional core contains all business logic as pure functions:

- **Pure Functions Only**: No side effects, no I/O operations
- **Data Transformations**: Functions take inputs and return outputs
- **Immutable Data Flow**: Data is transformed, not mutated
- **Easy Testing**: No mocks required, just input/output assertions

#### Core Modules:

- **`src/core/config/`**: Configuration validation and transformation logic
- **`src/core/session/`**: Session state calculations and transitions
- **`src/core/workflow/`**: Workflow parsing and validation logic
- **`src/core/mapreduce/`**: MapReduce work distribution calculations
- **`src/core/validation/`**: Data validation and constraint checking

### Imperative Shell

The imperative shell handles all I/O and side effects, delegating business logic to the core:

- **I/O Operations**: File system, network, database access
- **Side Effects**: Logging, metrics, external system calls
- **Thin Layer**: Minimal logic, primarily orchestration
- **Core Delegation**: Business logic delegated to pure functions

#### Shell Modules:

- **`src/storage/`**: Persistence layer wrapping core data structures
- **`src/worktree/`**: Git operations wrapping core worktree logic
- **`src/cook/execution/`**: Command execution wrapping core workflow logic
- **`src/cli/`**: User interface wrapping core command processing

## Guidelines for Identifying and Refactoring Mixed Functions

### Identifying Mixed Functions

Look for functions that:
1. **Mix I/O with Logic**: File operations interleaved with business rules
2. **Have Multiple Responsibilities**: Both calculating and persisting data
3. **Are Hard to Test**: Require mocks, stubs, or complex test setup
4. **Have Side Effects**: Modify global state, write files, or make network calls
5. **Are Large**: Functions over 20 lines often mix concerns

### Refactoring Strategy

#### Step 1: Extract Pure Logic

```rust
// BEFORE: Mixed function
fn process_workflow(path: &Path) -> Result<()> {
    let content = fs::read_to_string(path)?;  // I/O
    let workflow = serde_yaml::from_str(&content)?;  // Logic

    // Validation logic mixed with I/O
    if workflow.steps.is_empty() {
        log::error!("Empty workflow");  // Side effect
        return Err(anyhow!("Invalid workflow"));
    }

    fs::write("output.json", serde_json::to_string(&workflow)?)?;  // I/O
    Ok(())
}

// AFTER: Separated concerns
// Pure function in src/core/workflow/
pub fn validate_workflow(workflow: &Workflow) -> Result<ValidatedWorkflow> {
    if workflow.steps.is_empty() {
        return Err(ValidationError::EmptyWorkflow);
    }
    Ok(ValidatedWorkflow::from(workflow))
}

// I/O wrapper in src/cook/workflow/
fn process_workflow(path: &Path) -> Result<()> {
    let content = fs::read_to_string(path)?;  // I/O
    let workflow = serde_yaml::from_str(&content)?;

    let validated = core::workflow::validate_workflow(&workflow)?;  // Pure logic

    log::info!("Workflow validated");  // Side effect
    fs::write("output.json", serde_json::to_string(&validated)?)?;  // I/O
    Ok(())
}
```

#### Step 2: Create Data Transformation Pipelines

```rust
// Pure transformation pipeline in core
pub fn transform_session(
    session: Session,
    event: Event
) -> Result<Session> {
    session
        .apply_event(event)
        .and_then(validate_transition)
        .map(calculate_metrics)
        .map(update_timestamps)
}

// I/O shell uses the pipeline
async fn handle_event(event: Event) -> Result<()> {
    let session = storage.load_session()?;  // I/O
    let updated = core::session::transform_session(session, event)?;  // Pure
    storage.save_session(updated)?;  // I/O
    Ok(())
}
```

#### Step 3: Extract Complex Conditionals

```rust
// BEFORE: Complex inline logic
if item.score > 5 && item.category == "critical" &&
   (item.retry_count < 3 || item.override_retry) {
    // process item
}

// AFTER: Named predicate function
fn should_process_item(item: &Item) -> bool {
    is_high_priority(item) && has_retries_available(item)
}

fn is_high_priority(item: &Item) -> bool {
    item.score > 5 && item.category == "critical"
}

fn has_retries_available(item: &Item) -> bool {
    item.retry_count < 3 || item.override_retry
}
```

### Testing Strategy

#### Testing Pure Functions

```rust
#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_validate_workflow() {
        // Simple input/output test, no mocks needed
        let workflow = Workflow { steps: vec![] };
        let result = validate_workflow(&workflow);
        assert!(result.is_err());
    }
}
```

#### Testing I/O Wrappers

```rust
#[cfg(test)]
mod tests {
    use super::*;
    use tempfile::tempdir;

    #[test]
    fn test_process_workflow() {
        let dir = tempdir().unwrap();
        let path = dir.path().join("workflow.yaml");

        // Test only the I/O orchestration
        // Business logic is tested in core module tests
        fs::write(&path, "steps: [test]").unwrap();
        let result = process_workflow(&path);
        assert!(result.is_ok());
    }
}
```

## Core Components

### 1. Unified Session Management (`src/unified_session/`)

The unified session management system provides a single, consolidated approach to handling all session-related functionality across the application. This replaces the previous multi-module session approach with a centralized, consistent model.

#### Key Components:

- **SessionManager** (`manager.rs`): Central interface for all session operations
  - Creates, updates, and manages session lifecycle
  - Direct storage integration (no abstract traits)
  - Handles session persistence and recovery
  - Provides filtering and listing capabilities
  - In-memory cache for active sessions with persistent backing

- **SessionState** (`state.rs`): Session state and metadata
  - `UnifiedSession`: Core session representation for all session types
  - `SessionStatus`: Running, Completed, Failed, Paused, Initializing
  - `SessionType`: Workflow or MapReduce
  - `WorkflowSession`: Workflow-specific data (iterations, files changed, steps)
  - `MapReduceSession`: MapReduce-specific data (items, agents, phases)
  - Support for checkpointing and resumption
  - Built-in timing tracking

- **CookSessionAdapter** (`cook_adapter.rs`): Transitional bridge for cook module
  - Implements cook's existing SessionManager trait
  - Maps cook session operations to unified session operations
  - Handles special metadata keys for incremental updates
  - Maintains backward compatibility during migration

- **Migration** (`migration.rs`): Handles migration from legacy session formats
  - Auto-detects legacy session data
  - One-time migration to new unified format
  - Preserves historical session data
  - Archives old data after successful migration

- **Timing** (`timing.rs`): Performance tracking utilities
  - `TimingTracker`: Tracks iteration and command durations
  - `format_duration`: Human-readable duration formatting

### 2. Cook Module (`src/cook/`)

The cook module handles workflow execution and orchestration.

#### Components:

- **Orchestrator** (`orchestrator.rs`): Main workflow execution engine
  - Manages workflow lifecycle
  - Coordinates between different executors
  - Handles error recovery and retries

- **Workflow** (`workflow/`): Workflow definition and execution
  - `WorkflowExecutor`: Executes workflow steps sequentially
  - Checkpoint support for resumption
  - Validation and error handling

- **MapReduce** (`execution/mapreduce/`): Parallel execution framework
  - Distributes work across multiple agents
  - Handles map phase, reduce phase, and aggregation
  - Dead Letter Queue (DLQ) for failed items

- **Session** (`session/`): Legacy session abstractions (transitional)
  - SessionManager trait definition (being phased out)
  - Session state and status tracking (migrating to unified)
  - Integration via CookSessionAdapter bridge

### 3. Storage (`src/storage/`)

Global storage architecture for persistent data.

#### Features:

- **GlobalStorage**: Centralized storage management
  - Events, state, and DLQ storage
  - Cross-worktree data sharing
  - Efficient deduplication

- **Event Logging**: Comprehensive event tracking
  - Structured event storage
  - Support for querying and filtering
  - Integration with Claude streaming

### 4. Worktree Management (`src/worktree/`)

Git worktree-based isolation for parallel execution.

- Creates isolated environments for each session
- Manages worktree lifecycle
- Handles merge operations back to main branch

### 5. State Management (`src/simple_state/`)

Simple JSON-based state persistence for project metadata.

- Human-readable JSON files
- Git-friendly text format
- Zero configuration required
- Atomic operations for concurrent access

## Data Flow

1. **Session Creation**:
   ```
   User Command → Cook Module → CookSessionAdapter → UnifiedSessionManager → Storage
   ```

2. **Workflow Execution**:
   ```
   Workflow Config → Orchestrator → WorkflowExecutor → Session Updates → Storage
   ```

3. **MapReduce Processing**:
   ```
   MapReduce Config → MapReduceExecutor → Agent Spawning → Parallel Execution → Aggregation
   ```

## Session Architecture

### Unified Session Model

The unified session system consolidates all session management into a single, consistent model that serves both workflow and MapReduce executions:

```rust
UnifiedSession {
    id: SessionId,
    session_type: SessionType (Workflow | MapReduce),
    status: SessionStatus,
    metadata: HashMap<String, Value>,
    started_at: DateTime<Utc>,
    updated_at: DateTime<Utc>,
    completed_at: Option<DateTime<Utc>>,
    checkpoints: Vec<Checkpoint>,
    timings: BTreeMap<String, Duration>,
    error: Option<String>,

    // Type-specific data
    workflow_data: Option<WorkflowSession>,
    mapreduce_data: Option<MapReduceSession>,
}
```

### Session Lifecycle

1. **Initialization**: Session created with type-specific configuration
2. **Running**: Active execution with real-time progress tracking
3. **Updates**: Incremental updates via SessionUpdate enum
4. **Checkpointing**: State snapshots for fault tolerance
5. **Completion**: Final state with success/failure status
6. **Persistence**: Automatic save to GlobalStorage

### Direct Integration Model

The unified session system is now the primary session management layer:

- **Direct Usage**: New code uses `UnifiedSessionManager` directly
- **No Abstract Traits**: Removed `SessionStorage` trait for simplicity
- **Cook Compatibility**: `CookSessionAdapter` provides temporary bridge
- **Single Source of Truth**: All session data flows through unified system
- **Migration Path**: Legacy sessions auto-migrated on first access

### Branch Tracking (Spec 110)

Prodigy tracks the original branch when creating worktrees to enable intelligent merge behavior:

**State Tracking**:
```rust
WorktreeState {
    original_branch: String,  // Branch at worktree creation time
    branch: String,            // Current worktree branch (prodigy-session-*)
    // ... other fields
}
```

**Branch Resolution Logic**:
1. **Capture**: `create_session()` captures current branch via `git rev-parse --abbrev-ref HEAD`
2. **Storage**: Original branch stored in `WorktreeState` for session lifetime
3. **Merge Target**: `get_merge_target()` returns original branch or falls back to default
4. **Fallback**: If original branch deleted, uses default branch (main/master)

**Design Rationale**:
- Supports feature branch workflows where worktrees should merge back to source branch
- Provides safe fallback when original branch is deleted
- Enables flexible merge target selection based on workflow context
- Improves user experience by showing merge target in confirmation prompts

## Storage Architecture

### Directory Structure

```
~/.prodigy/
├── events/
│   └── {repo_name}/
│       └── {job_id}/
│           └── events-{timestamp}.jsonl
├── state/
│   └── {repo_name}/
│       └── sessions/
│           └── {session_id}.json
├── dlq/
│   └── {repo_name}/
│       └── {job_id}/
│           └── failed_items.json
└── worktrees/
    └── {repo_name}/
        └── {session_id}/
```

### Benefits of Unified Architecture

1. **Consistency**: Single source of truth for all session data
2. **Reliability**: Automatic persistence and recovery
3. **Scalability**: Support for parallel execution and cross-worktree coordination
4. **Maintainability**: Clear separation of concerns and modular design
5. **Migration**: Seamless transition from legacy formats
6. **Observability**: Comprehensive event logging and metrics

## Checkpoint Storage Strategy System (Spec 122)

### Overview

The checkpoint storage strategy system provides type-safe, deterministic path resolution for workflow checkpoints using a pure functional approach. This system replaces ad-hoc path logic with an explicit, composable design that supports multiple storage strategies.

### Storage Strategies

The `CheckpointStorage` enum in `src/cook/workflow/checkpoint_path.rs` defines three explicit storage strategies:

#### 1. Local Storage
```rust
CheckpointStorage::Local(PathBuf)
```
- **Purpose**: Project-local checkpoint storage in `.prodigy/checkpoints/`
- **Use Cases**: Testing, backwards compatibility, isolated project workflows
- **Path Resolution**: Uses provided path directly (pure function behavior)
- **Example**: Local checkpoints that stay within project directory

#### 2. Global Storage
```rust
CheckpointStorage::Global { repo_name: String }
```
- **Purpose**: Repository-scoped storage in `~/.prodigy/state/{repo}/checkpoints/`
- **Use Cases**: Repository-level metadata, shared across all sessions
- **Path Resolution**: `~/.prodigy/state/{repo_name}/checkpoints/`
- **Example**: Shared checkpoint data for all sessions of a project

#### 3. Session Storage (Recommended Default)
```rust
CheckpointStorage::Session { session_id: String }
```
- **Purpose**: Session-scoped storage in `~/.prodigy/state/{session_id}/checkpoints/`
- **Use Cases**: Normal workflow checkpoints (recommended for most workflows)
- **Path Resolution**: `~/.prodigy/state/{session_id}/checkpoints/`
- **Benefits**:
  - Isolation between sessions
  - Survives worktree cleanup
  - Clean session-scoped organization

### Pure Function Path Resolution

All path resolution functions follow functional programming principles:

#### Core Pure Functions

1. **`resolve_base_dir() -> Result<PathBuf>`**
   - Pure function: Same inputs always produce same output
   - No side effects (no I/O, no state mutation)
   - Returns base directory based on storage strategy

2. **`checkpoint_file_path(checkpoint_id: &str) -> Result<PathBuf>`**
   - Composes `resolve_base_dir()` with filename construction
   - Deterministic: Same strategy + ID = Same path
   - Pattern: `{base_dir}/{checkpoint_id}.checkpoint.json`

3. **`resolve_global_base_dir() -> Result<PathBuf>`**
   - Helper function for global/session path resolution
   - Returns `~/.prodigy` from system home directory
   - Pure derivation from environment (home directory)

#### Functional Design Principles

1. **Immutability**: `CheckpointStorage` enum is immutable once constructed
2. **Explicit Configuration**: Storage strategy is always explicit, never inferred
3. **Error as Values**: Returns `Result<T>` instead of panicking
4. **Composition**: Small pure functions compose to build complex paths
5. **Determinism**: Property-based tests verify invariants

### Storage Strategy Selection Guidelines

#### When to Use Local Storage
- **Testing environments**: Keep test artifacts in project directory
- **Backwards compatibility**: Existing workflows expecting local paths
- **Isolated workflows**: Project-specific checkpoints that shouldn't be shared
- **Development**: Quick iteration without polluting global storage

#### When to Use Global Storage
- **Repository metadata**: Data shared across all sessions
- **Cross-session analysis**: Aggregating data from multiple workflow runs
- **Persistent state**: Data that should survive project cleanup
- **CI/CD environments**: Shared state across pipeline runs

#### When to Use Session Storage (Default)
- **Normal workflows**: Standard workflow execution (recommended)
- **Parallel execution**: Isolated checkpoints per session
- **Fault tolerance**: Session-specific recovery without conflicts
- **Clean separation**: Clear boundaries between workflow runs

### Path Resolution Examples

```rust
// Local: Direct path usage
let local = CheckpointStorage::Local(PathBuf::from("/tmp/checkpoints"));
let path = local.checkpoint_file_path("cp-1")?;
// Result: /tmp/checkpoints/cp-1.checkpoint.json

// Global: Repository-scoped
let global = CheckpointStorage::Global {
    repo_name: "prodigy".to_string()
};
let path = global.checkpoint_file_path("cp-1")?;
// Result: ~/.prodigy/state/prodigy/checkpoints/cp-1.checkpoint.json

// Session: Session-scoped (recommended)
let session = CheckpointStorage::Session {
    session_id: "session-abc123".to_string()
};
let path = session.checkpoint_file_path("cp-1")?;
// Result: ~/.prodigy/state/session-abc123/checkpoints/cp-1.checkpoint.json
```

### Testing Strategy

The checkpoint path system uses both unit tests and property-based tests:

#### Property-Based Tests (Using proptest)

The system includes comprehensive property-based tests that verify invariants across arbitrary inputs:

1. **Determinism**: Same strategy + ID always produces same path
2. **Isolation**: Different session IDs produce different paths
3. **Conventions**: All paths end with `.checkpoint.json`
4. **ID Preservation**: Checkpoint ID is always in the filename
5. **Scoping**: Storage paths always contain their scope identifier
6. **Pure Function Behavior**: Local storage returns exact path provided

These tests run on randomly generated inputs to verify the system behaves correctly across all possible valid inputs, not just hand-picked test cases.

### Integration with Workflow System

The checkpoint storage strategy integrates with the broader workflow system:

1. **Orchestrator**: Selects storage strategy based on workflow configuration
2. **Checkpointer**: Uses pure path functions to determine checkpoint locations
3. **Recovery**: Reconstructs paths deterministically from session/workflow ID
4. **Migration**: Legacy paths automatically detected and migrated

### Error Handling

All path resolution functions:
- Return `Result<PathBuf>` for error propagation
- Provide context via `anyhow::Context`
- Never panic in production code
- Handle missing home directory gracefully

## Testing Strategy

- **Unit Tests**: Each module has comprehensive unit tests
- **Integration Tests**: Test interaction between components
- **Migration Tests**: Verify legacy data migration
- **Mock Implementations**: Testing abstractions for isolated testing
- **Property-Based Tests**: Verify system invariants across arbitrary inputs using proptest

## Future Enhancements

1. **Distributed Execution**: Support for multi-machine orchestration
2. **Enhanced Monitoring**: Real-time metrics and dashboards
3. **Plugin System**: Extensible command and executor architecture
4. **Cloud Storage**: Optional cloud-based storage backends
5. **Advanced Scheduling**: Cron-based and event-driven workflows