probe-rs 0.13.0

A collection of on chip debugging tools to communicate with microchips.
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
use crate::architecture::arm::sequences::DefaultArmSequence;
use crate::architecture::arm::{ApAddress, DpAddress};
use crate::config::{ChipInfo, MemoryRegion, RegistryError, Target, TargetSelector};
use crate::core::{Architecture, CoreState, SpecificCoreState};
use crate::{
    architecture::{
        arm::{
            ap::{GenericAp, MemoryAp},
            communication_interface::{ArmProbeInterface, MemoryApInformation},
            memory::{Component, CoresightComponent},
            ApInformation, SwoConfig, SwoReader,
        },
        riscv::communication_interface::RiscvCommunicationInterface,
    },
    config::DebugSequence,
};
use crate::{AttachMethod, Core, CoreType, Error, Probe};
use anyhow::anyhow;
use std::{fmt, time::Duration};

/// The `Session` struct represents an active debug session.
///
/// ## Creating a session
/// The session can be created by calling the [Session::auto_attach()] function,
/// which tries to automatically select a probe, and then connect to the target.
///
/// For more control, the [Probe::attach()] and [Probe::attach_under_reset()]
/// methods can be used to open a `Session` from a specific [Probe].
///
/// # Usage
/// The Session is the common handle that gives a user exclusive access to an active probe.
/// You can create and share a session between threads to enable multiple stakeholders (e.g. GDB and RTT) to access the target taking turns, by using  `Arc<Mutex<Session>>.`
///
/// If you do so, make sure that both threads sleep in between tasks such that other stakeholders may take their turn.
///
/// To get access to a single [Core] from the `Session`, the [Session::core()] method can be used.
/// Please see the [Session::core()] method for more usage guidelines.
///
#[derive(Debug)]
pub struct Session {
    target: Target,
    interface: ArchitectureInterface,
    cores: Vec<(SpecificCoreState, CoreState)>,
}

enum ArchitectureInterface {
    Arm(Box<dyn ArmProbeInterface + 'static>),
    Riscv(Box<RiscvCommunicationInterface>),
}

impl fmt::Debug for ArchitectureInterface {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match self {
            ArchitectureInterface::Arm(..) => f.write_str("ArchitectureInterface::Arm(..)"),
            ArchitectureInterface::Riscv(iface) => f
                .debug_tuple("ArchitectureInterface::Riscv")
                .field(iface)
                .finish(),
        }
    }
}

impl From<ArchitectureInterface> for Architecture {
    fn from(value: ArchitectureInterface) -> Self {
        match value {
            ArchitectureInterface::Arm(_) => Architecture::Arm,
            ArchitectureInterface::Riscv(_) => Architecture::Riscv,
        }
    }
}

impl ArchitectureInterface {
    fn attach<'probe, 'target: 'probe>(
        &'probe mut self,
        core: &'probe mut SpecificCoreState,
        core_state: &'probe mut CoreState,
        target: &'target Target,
    ) -> Result<Core<'probe>, Error> {
        match self {
            ArchitectureInterface::Arm(state) => {
                let config = target
                    .cores
                    .get(core_state.id())
                    .ok_or_else(|| Error::CoreNotFound(core_state.id()))?;
                let arm_core_access_options = match &config.core_access_options {
                    probe_rs_target::CoreAccessOptions::Arm(opt) => opt,
                    probe_rs_target::CoreAccessOptions::Riscv(_) => {
                        unreachable!("This should never happen. Please file a bug if it does.")
                    }
                };

                let dp = match arm_core_access_options.psel {
                    0 => DpAddress::Default,
                    x => DpAddress::Multidrop(x),
                };

                let ap = ApAddress {
                    dp,
                    ap: arm_core_access_options.ap,
                };
                let memory = state.memory_interface(MemoryAp::new(ap))?;

                core.attach_arm(core_state, memory, target)
            }
            ArchitectureInterface::Riscv(state) => core.attach_riscv(core_state, state),
        }
    }
}

impl Session {
    /// Open a new session with a given debug target.
    pub(crate) fn new(
        probe: Probe,
        target: TargetSelector,
        attach_method: AttachMethod,
        permissions: Permissions,
    ) -> Result<Self, Error> {
        let (mut probe, target) = get_target_from_selector(target, attach_method, probe)?;

        let cores = target
            .cores
            .iter()
            .enumerate()
            .map(|(id, core)| {
                (
                    SpecificCoreState::from_core_type(core.core_type),
                    Core::create_state(id, core.core_access_options.clone()),
                )
            })
            .collect();

        let mut session = match target.architecture() {
            Architecture::Arm => {
                let config = target.cores[0].clone();
                let arm_core_access_options = match config.core_access_options {
                    probe_rs_target::CoreAccessOptions::Arm(opt) => opt,
                    probe_rs_target::CoreAccessOptions::Riscv(_) => {
                        unreachable!("This should never happen. Please file a bug if it does.")
                    }
                };

                let default_memory_ap = MemoryAp::new(ApAddress {
                    dp: match arm_core_access_options.psel {
                        0 => DpAddress::Default,
                        x => DpAddress::Multidrop(x),
                    },
                    ap: arm_core_access_options.ap,
                });

                let sequence_handle = match &target.debug_sequence {
                    DebugSequence::Arm(sequence) => sequence.clone(),
                    DebugSequence::Riscv(_) => {
                        panic!("Mismatch between architecture and sequence type!")
                    }
                };

                if AttachMethod::UnderReset == attach_method {
                    if let Some(dap_probe) = probe.try_as_dap_probe() {
                        sequence_handle.reset_hardware_assert(dap_probe)?;
                    } else {
                        log::info!(
                            "Custom reset sequences are not supported on {}.",
                            probe.get_name()
                        );
                        log::info!("Falling back to standard probe reset.");
                        probe.target_reset_assert()?;
                    }
                }

                probe.inner_attach()?;

                let interface = probe.try_into_arm_interface().map_err(|(_, err)| err)?;

                let mut interface = interface.initialize(sequence_handle.clone())?;

                // Enable debug mode
                sequence_handle.debug_device_unlock(
                    &mut interface,
                    default_memory_ap,
                    &permissions,
                )?;

                {
                    // For each core, setup debugging
                    for i in 0..target.cores.len() {
                        let config = target.cores[i].clone();
                        let arm_core_access_options = match config.core_access_options {
                            probe_rs_target::CoreAccessOptions::Arm(opt) => opt,
                            probe_rs_target::CoreAccessOptions::Riscv(_) => {
                                unreachable!(
                                    "This should never happen. Please file a bug if it does."
                                )
                            }
                        };

                        let mem_ap = MemoryAp::new(ApAddress {
                            dp: match arm_core_access_options.psel {
                                0 => DpAddress::Default,
                                x => DpAddress::Multidrop(x),
                            },
                            ap: arm_core_access_options.ap,
                        });

                        let mut memory_interface = interface.memory_interface(mem_ap)?;

                        // Enable debug mode
                        sequence_handle.debug_core_start(
                            &mut memory_interface,
                            config.core_type,
                            arm_core_access_options.debug_base,
                            arm_core_access_options.cti_base,
                        )?;
                    }
                }

                let session = if attach_method == AttachMethod::UnderReset {
                    {
                        let mut memory_interface = interface.memory_interface(default_memory_ap)?;
                        // we need to halt the chip here
                        sequence_handle.reset_catch_set(
                            &mut memory_interface,
                            config.core_type,
                            arm_core_access_options.debug_base,
                        )?;
                        sequence_handle.reset_hardware_deassert(&mut memory_interface)?;
                    }

                    let mut session = Session {
                        target,
                        interface: ArchitectureInterface::Arm(interface),
                        cores,
                    };

                    {
                        // Wait for the core to be halted
                        let mut core = session.core(0)?;
                        core.wait_for_core_halted(Duration::from_millis(100))?;
                    }

                    {
                        let interface = session.get_arm_interface()?;
                        let mut memory_interface = interface.memory_interface(default_memory_ap)?;
                        // we need to halt the chip here
                        sequence_handle.reset_catch_clear(
                            &mut memory_interface,
                            config.core_type,
                            arm_core_access_options.debug_base,
                        )?;
                    }

                    {
                        let mut core = session.core(0)?;
                        core.wait_for_core_halted(Duration::from_millis(100))?;
                    }

                    session
                } else {
                    Session {
                        target,
                        interface: ArchitectureInterface::Arm(interface),
                        cores,
                    }
                };

                session
            }
            Architecture::Riscv => {
                // TODO: Handle attach under reset

                let sequence_handle = match &target.debug_sequence {
                    DebugSequence::Riscv(sequence) => sequence.clone(),
                    DebugSequence::Arm(_) => {
                        panic!("Mismatch between architecture and sequence type!")
                    }
                };

                probe.inner_attach()?;

                let interface = probe
                    .try_into_riscv_interface()
                    .map_err(|(_probe, err)| err)?;

                let mut session = Session {
                    target,
                    interface: ArchitectureInterface::Riscv(Box::new(interface)),
                    cores,
                };

                {
                    // Todo: Add multicore support. How to deal with any cores that are not active and won't respond?
                    let mut core = session.core(0)?;

                    core.halt(Duration::from_millis(100))?;
                }

                sequence_handle.on_connect(session.get_riscv_interface()?)?;

                session
            }
        };

        session.clear_all_hw_breakpoints()?;

        Ok(session)
    }

    /// Automatically creates a session with the first connected probe found.
    pub fn auto_attach(
        target: impl Into<TargetSelector>,
        permissions: Permissions,
    ) -> Result<Session, Error> {
        // Get a list of all available debug probes.
        let probes = Probe::list_all();

        // Use the first probe found.
        let probe = probes
            .get(0)
            .ok_or(Error::UnableToOpenProbe("No probe was found"))?
            .open()?;

        // Attach to a chip.
        probe.attach(target, permissions)
    }

    /// Lists the available cores with their number and their type.
    pub fn list_cores(&self) -> Vec<(usize, CoreType)> {
        self.cores
            .iter()
            .map(|(t, _)| t.core_type())
            .enumerate()
            .collect()
    }

    /// Attaches to the core with the given number.
    ///
    /// ## Usage
    /// Everytime you want to perform an operation on the chip, you need to get the Core handle with the [Session::core()] method. This [Core] handle is merely a view into the core and provides a convenient API surface.
    ///
    /// All the state is stored in the [Session] handle.
    ///
    /// The first time you call [Session::core()] for a specific core, it will run the attach/init sequences and return a handle to the [Core].
    ///
    /// Every subsequent call is a no-op. It simply returns the handle for the user to use in further operations without calling any int sequences again.
    ///
    /// It is strongly advised to never store the [Core] handle for any significant duration! Free it as fast as possible such that other stakeholders can have access to the [Core] too.
    ///
    /// The idea behind this is: You need the smallest common denominator which you can share between threads. Since you sometimes need the [Core], sometimes the [Probe] or sometimes the [Target], the [Session] is the only common ground and the only handle you should actively store in your code.
    ///
    pub fn core(&mut self, n: usize) -> Result<Core<'_>, Error> {
        let (core, core_state) = self.cores.get_mut(n).ok_or(Error::CoreNotFound(n))?;
        self.interface.attach(core, core_state, &self.target)
    }

    /// Read available data from the SWO interface without waiting.
    ///
    /// This method is only supported for ARM-based targets, and will
    /// return [Error::ArchitectureRequired] otherwise.
    pub fn read_swo(&mut self) -> Result<Vec<u8>, Error> {
        let interface = self.get_arm_interface()?;
        interface.read_swo()
    }

    /// Returns an implementation of [std::io::Read] that wraps [SwoAccess::read_swo].
    ///
    /// The implementation buffers all available bytes from
    /// [SwoAccess::read_swo] on each [std::io::Read::read],
    /// minimizing the chance of a target-side overflow event on which
    /// trace packets are lost.
    ///
    /// [SwoAccess::read_swo]: crate::architecture::arm::swo::SwoAccess
    pub fn swo_reader(&mut self) -> Result<SwoReader, Error> {
        let interface = self.get_arm_interface()?;
        Ok(SwoReader::new(interface))
    }

    /// Get the Arm probe interface.
    pub fn get_arm_interface(&mut self) -> Result<&mut Box<dyn ArmProbeInterface>, Error> {
        let interface = match &mut self.interface {
            ArchitectureInterface::Arm(state) => state,
            _ => return Err(Error::ArchitectureRequired(&["ARMv7", "ARMv8"])),
        };

        Ok(interface)
    }

    fn get_riscv_interface(&mut self) -> Result<&mut Box<RiscvCommunicationInterface>, Error> {
        let interface = match &mut self.interface {
            ArchitectureInterface::Riscv(interface) => interface,
            _ => return Err(Error::ArchitectureRequired(&["Riscv"])),
        };

        Ok(interface)
    }

    /// Reads all the available ARM CoresightComponents of the currently attached target.
    ///
    /// This will recursively parse the Romtable of the attached target
    /// and create a list of all the contained components.
    pub fn get_arm_components(&mut self) -> Result<Vec<CoresightComponent>, Error> {
        let interface = self.get_arm_interface()?;

        let mut components = Vec::new();

        // TODO
        let dp = DpAddress::Default;

        for ap_index in 0..(interface.num_access_ports(dp)? as u8) {
            let ap_information = interface
                .ap_information(GenericAp::new(ApAddress { dp, ap: ap_index }))?
                .clone();

            let component = match ap_information {
                ApInformation::MemoryAp(MemoryApInformation {
                    debug_base_address: 0,
                    ..
                }) => Err(Error::Other(anyhow!("AP has a base address of 0"))),
                ApInformation::MemoryAp(MemoryApInformation {
                    address,
                    debug_base_address,
                    ..
                }) => {
                    let ap = MemoryAp::new(address);
                    let mut memory = interface.memory_interface(ap)?;
                    let component = Component::try_parse(&mut memory, debug_base_address)
                        .map_err(Error::architecture_specific)?;
                    Ok(CoresightComponent::new(component, ap))
                }
                ApInformation::Other { address } => {
                    // Return an error, only possible to get Component from MemoryAP
                    Err(Error::Other(anyhow!(
                        "AP {:#x?} is not a MemoryAP, unable to get ARM component.",
                        address
                    )))
                }
            };

            match component {
                Ok(component) => {
                    components.push(component);
                }
                Err(e) => {
                    log::info!("Not counting AP {} because of: {}", ap_index, e);
                }
            }
        }

        Ok(components)
    }

    /// Get the target description of the connected target.
    pub fn target(&self) -> &Target {
        &self.target
    }

    /// Configure the target and probe for serial wire view (SWV) tracing.
    pub fn setup_swv(&mut self, core_index: usize, config: &SwoConfig) -> Result<(), Error> {
        // Configure SWO on the probe
        {
            let interface = self.get_arm_interface()?;
            interface.enable_swo(config)?;
        }

        // Enable tracing on the target
        {
            let mut core = self.core(core_index)?;
            crate::architecture::arm::component::enable_tracing(&mut core)?;
        }

        // Configure SWV on the target
        let components = self.get_arm_components()?;
        let interface = self.get_arm_interface()?;
        crate::architecture::arm::component::setup_swv(interface, &components, config)
    }

    /// Configure the target to stop emitting SWV trace data.
    pub fn disable_swv(&mut self, core_index: usize) -> Result<(), Error> {
        crate::architecture::arm::component::disable_swv(&mut self.core(core_index)?)
    }

    /// Begin tracing a memory address over SWV.
    pub fn add_swv_data_trace(&mut self, unit: usize, address: u32) -> Result<(), Error> {
        let components = self.get_arm_components()?;
        let interface = self.get_arm_interface()?;
        crate::architecture::arm::component::add_swv_data_trace(
            interface,
            &components,
            unit,
            address,
        )
    }

    /// Stop tracing from a given SWV unit
    pub fn remove_swv_data_trace(&mut self, unit: usize) -> Result<(), Error> {
        let components = self.get_arm_components()?;
        let interface = self.get_arm_interface()?;
        crate::architecture::arm::component::remove_swv_data_trace(interface, &components, unit)
    }

    /// Returns the memory map of the target.
    #[deprecated = "Use the Session::target function instead"]
    pub fn memory_map(&self) -> &[MemoryRegion] {
        &self.target.memory_map
    }

    /// Return the `Architecture` of the currently connected chip.
    pub fn architecture(&self) -> Architecture {
        match self.interface {
            ArchitectureInterface::Arm(_) => Architecture::Arm,
            ArchitectureInterface::Riscv(_) => Architecture::Riscv,
        }
    }

    /// Clears all hardware breakpoints on all cores
    pub fn clear_all_hw_breakpoints(&mut self) -> Result<(), Error> {
        { 0..self.cores.len() }.try_for_each(|n| {
            self.core(n)
                .and_then(|mut core| core.clear_all_hw_breakpoints())
        })
    }
}

// This test ensures that [Session] is fully [Send] + [Sync].
static_assertions::assert_impl_all!(Session: Send);

// TODO tiwalun: Enable again, after rework of Session::new is done.
impl Drop for Session {
    fn drop(&mut self) {
        if let Err(err) = { 0..self.cores.len() }.try_for_each(|i| {
            self.core(i)
                .and_then(|mut core| core.clear_all_hw_breakpoints())
        }) {
            log::warn!("Could not clear all hardware breakpoints: {:?}", err);
        }

        if let Err(err) = { 0..self.cores.len() }
            .try_for_each(|i| self.core(i).and_then(|mut core| core.on_session_stop()))
        {
            log::warn!("Error during on_session_stop: {:?}", err);
        }

        // Disable tracing for all Cortex-M cores.
        if let Err(err) = { 0..self.cores.len() }.try_for_each(|i| {
            let is_cortex_m = self.core(i)?.core_type().is_cortex_m();

            if is_cortex_m {
                self.disable_swv(i)
            } else {
                Ok(())
            }
        }) {
            log::warn!("Could not stop core tracing: {:?}", err);
        }

        // Call any necessary deconfiguration/shutdown hooks.
        if let DebugSequence::Arm(sequence) = &self.target.debug_sequence {
            let sequence = sequence.clone();

            // Note(unwrap): We already verified we're using an arm debug sequence, so we should
            // always be able to access the arm probe interface.
            let interface = self.get_arm_interface().unwrap();

            if sequence.debug_core_stop(interface).is_err() {
                log::warn!("Failed to deconfigure device during shutdown");
            }
        }
    }
}

/// Determine the [Target] from a [TargetSelector].
///
/// If the selector is [TargetSelector::Unspecified], the target will be looked up in the registry.
/// If it its [TargetSelector::Auto], probe-rs will try to determine the target automatically, based on
/// information read from the chip.
fn get_target_from_selector(
    target: TargetSelector,
    attach_method: AttachMethod,
    probe: Probe,
) -> Result<(Probe, Target), Error> {
    let mut probe = probe;

    let target = match target {
        TargetSelector::Unspecified(name) => crate::config::get_target_by_name(name)?,
        TargetSelector::Specified(target) => target,
        TargetSelector::Auto => {
            let mut found_chip = None;

            // At this point we do not know what the target is, so we cannot use the chip specific reset sequence.
            // Thus, we try just using a normal reset for target detection if we want to do so under reset.
            // This can of course fail, but target detection is a best effort, not a guarantee!
            if AttachMethod::UnderReset == attach_method {
                probe.target_reset_assert()?;
            }
            probe.inner_attach()?;

            if probe.has_arm_interface() {
                match probe.try_into_arm_interface() {
                    Ok(interface) => {
                        let mut interface = interface.initialize(DefaultArmSequence::create())?;

                        // TODO:
                        let dp = DpAddress::Default;

                        let found_arm_chip = interface
                            .read_chip_info_from_rom_table(dp)
                            .unwrap_or_else(|e| {
                                log::info!("Error during auto-detection of ARM chips: {}", e);
                                None
                            });

                        found_chip = found_arm_chip.map(ChipInfo::from);

                        probe = interface.close();
                    }
                    Err((returned_probe, err)) => {
                        probe = returned_probe;
                        log::debug!("Error using ARM interface: {}", err);
                    }
                }
            } else {
                log::debug!("No ARM interface was present. Skipping Riscv autodetect.");
            }

            if found_chip.is_none() && probe.has_riscv_interface() {
                match probe.try_into_riscv_interface() {
                    Ok(mut interface) => {
                        let idcode = interface.read_idcode();

                        log::debug!("ID Code read over JTAG: {:x?}", idcode);

                        probe = interface.close();
                    }
                    Err((returned_probe, err)) => {
                        log::debug!("Error during autodetection of RISCV chips: {}", err);
                        probe = returned_probe;
                    }
                }
            } else {
                log::debug!("No RISCV interface was present. Skipping Riscv autodetect.");
            }

            // Now we can deassert reset in case we asserted it before. This is always okay.
            probe.target_reset_deassert()?;

            if let Some(chip) = found_chip {
                crate::config::get_target_by_chip_info(chip)?
            } else {
                return Err(Error::ChipNotFound(RegistryError::ChipAutodetectFailed));
            }
        }
    };

    Ok((probe, target))
}

/// The `Permissions` struct represents what a [Session] is allowed to do with a target.
/// Some operations can be irreversable, so need to be explicitly allowed by the user.
///
/// # Example
///
/// ```
/// use probe_rs::Permissions;
///
/// let permissions = Permissions::new().allow_erase_all();
/// ```
#[non_exhaustive]
#[derive(Debug, Clone, Default)]
pub struct Permissions {
    /// When set to true, all memory of the chip may be erased or reset to factory default
    erase_all: bool,
}

impl Permissions {
    /// Constructs a new permissions object with the default values
    pub fn new() -> Self {
        Self::default()
    }

    /// Allow the session to erase all memory of the chip or reset it to factory default.
    ///
    /// # Warning
    /// This may irreversibly remove otherwise read-protected data from the device like security keys and 3rd party firmware.
    /// What happens exactly may differ per device and per probe-rs version.
    #[must_use]
    pub fn allow_erase_all(self) -> Self {
        Self {
            erase_all: true,
            ..self
        }
    }

    pub(crate) fn erase_all(&self) -> Result<(), crate::Error> {
        if self.erase_all {
            Ok(())
        } else {
            Err(crate::Error::MissingPermissions("erase_all".into()))
        }
    }
}