1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
//! Provide a method to determine whether an unsigned integer is a prime number through the `IsPrime` Trait.
//!
//! In the current implementation, this crate uses the Miller-Rabin primality test.  
//! The Miller-Rabin primality test is known to have witnesses that can conclusively determine unsigned integers of at most 64 bits.  
//! In this crate, the following information is used to select the witnesses.  
//!
//! [Deterministic variants of the Miller-Rabin primality test](https://miller-rabin.appspot.com/)

mod montgomery;

use montgomery::Montgomery;

pub trait IsPrime {
    fn is_prime(&self) -> bool;
}

macro_rules! impl_is_prime {
    ( $t:ty, $witness_ty:ty, [ $( $witness:expr ),* ] ) => {
        impl IsPrime for $t {
            /// Determine an unsigned integer is prime number or not.
            ///
            /// # Examples
            /// ```rust
            /// use primality_test::IsPrime;
            ///
            /// assert!(998244353u32.is_prime());
            /// assert!(!561u16.is_prime());
            ///
            /// let primes = (1..20u16).filter(IsPrime::is_prime).collect::<Vec<_>>();
            /// assert_eq!(primes, vec![2, 3, 5, 7, 11, 13, 17, 19]);
            /// ```
            fn is_prime(&self) -> bool {
                let p = *self as $witness_ty;

                if p == 1 || p & 1 == 0 {
                    return p == 2;
                }

                let mont = Montgomery::<$witness_ty>::new(p);

                let s = (p - 1).trailing_zeros();
                let t = (p - 1) >> s;

                [$( $witness ),*]
                    .iter()
                    .map(|&a| a % p)
                    .filter(|&a| a != 0)
                    .all(|a| {
                        let a = mont.convert(a);
                        let at = mont.pow(a, t);
                        // a^t = 1 (mod p) or a^t = -1 (mod p)
                        if at == mont.r || at == p - mont.r {
                            return true;
                        }

                        // found i satisfying a^((2^i)*t) = -1 (mod p)
                        (1..s)
                            .scan(at, |at, _| {
                                *at = mont.multiply(*at, *at);
                                Some(*at)
                            })
                            .any(|at| at == p - mont.r)
                    })
            }
        }
    };
}

impl_is_prime!(u8, u8, [2, 7, 61]);
impl_is_prime!(u16, u16, [2, 7, 61]);
impl_is_prime!(u32, u32, [2, 7, 61]);
impl_is_prime!(u64, u64, [2, 325, 9375, 28178, 450775, 9780504, 1795265022]);
#[cfg(target_pointer_width = "64")]
impl_is_prime!(
    usize,
    u64,
    [2, 325, 9375, 28178, 450775, 9780504, 1795265022]
);
#[cfg(target_pointer_width = "32")]
impl_is_prime!(usize, u32, [2, 7, 61]);

#[cfg(test)]
mod tests {
    use super::*;

    #[rustfmt::skip]
    const PRIME: &[u64] = &[
        2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 47, 53, 59, 61, 67, 73, 79, 83, 89, 97,
        998244353, 1000000007,
    ];

    const NO_PRIME: &[u64] = &[
        1,
        57,
        5329,
        49141,
        4759123141,
        1122004669633,
        21652684502221,
        31858317218647,
        47636622961201,
        55245642489451,
        3071837692357849,
        3770579582154547,
        7999252175582851,
        585226005592931977,
    ];

    #[rustfmt::skip]
    const CARMICHAEL: &[u64] = &[
        561, 1105, 1729, 2465, 2821, 6601, 8911, 10585, 15841, 29341, 41041, 46657, 52633, 62745,
        63973, 75361, 101101, 115921, 126217, 162401, 172081, 188461, 252601, 278545, 294409,
        314821, 334153, 340561, 399001, 410041, 449065, 488881, 512461,
    ];

    #[test]
    fn primality_test() {
        for &p in PRIME {
            if p <= u8::MAX as u64 {
                assert!((p as u8).is_prime());
            }
            if p <= u16::MAX as u64 {
                assert!((p as u16).is_prime());
            }
            if p <= u32::MAX as u64 {
                assert!((p as u32).is_prime());
            }
            assert!(p.is_prime());
        }
    }

    #[test]
    fn non_primality_test() {
        for &p in NO_PRIME {
            if p <= u8::MAX as u64 {
                assert!(!(p as u8).is_prime());
            }
            if p <= u16::MAX as u64 {
                assert!(!(p as u16).is_prime());
            }
            if p <= u32::MAX as u64 {
                assert!(!(p as u32).is_prime());
            }
            assert!(!p.is_prime());
        }

        for &p in CARMICHAEL {
            if p <= u8::MAX as u64 {
                assert!(!(p as u8).is_prime());
            }
            if p <= u16::MAX as u64 {
                assert!(!(p as u16).is_prime());
            }
            if p <= u32::MAX as u64 {
                assert!(!(p as u32).is_prime());
            }
            assert!(!p.is_prime());
        }
    }
}