pred_recdec/lib.rs
1//! # Predicated Recursive Descent
2//!
3//! aka pred recdec
4//!
5//! It is **VERY HIGHLY RECOMMENDED** that you use the mimalloc crate (or some other high-performance memory allocator) if you use this library:
6//!
7//! ```
8//! use mimalloc::MiMalloc;
9//! #[global_allocator]
10//! static GLOBAL: MiMalloc = MiMalloc;
11//! ```
12//!
13//! You want:
14//! - [bnf::bnf_to_grammar]
15//! - [bnf::Grammar]
16//! - [bnf::tokenize]
17//! - [bnf::Token]
18//! - [ast::ASTNode]
19//! - [ast::parse]
20//!
21//! This library provides a way to write and run [BNF](https://en.wikipedia.org/wiki/Backus–Naur_form) grammars with annotations that make them behave like a handwritten recursive descent parser.
22//!
23//! The structure of the BNF corresponds to the structure of the resulting ASTs. Tokenization is handled automatically; you do not need to write a lexical grammar. The tokenizer handles comments, whitespace, maximal munch, and even regex tests. Unless you're trying to do something silly like how Lua uses context-sensitive long brackets for comments, that's all you need.
24//!
25//! The resulting parser is scannerful but tolerant of soft keywords. It performs no memoization or backtracking. Impure hooks are safe. There's no lookahead generation or guessing: the parser only does exactly what you specify in the BNF, in order.
26//!
27//! This is strong enough to parse C. Yes, the language with the super horrible grammar that needs arbitrary lookahead and state munging to parse correctly.
28//!
29//! This is *not* a PEG or packrat thing.
30//!
31//! Performance: varies between 50% and 400% slower than a native machine code handwritten parser. For more complex grammars, the performance loss is less. Totally usable!
32//!
33//! Simple example (totally not lisp), capable of parsing the input `(a b (q x)kfwaiei i 9 (af0f1a) () () )`:
34//!
35//! ```text
36//! S ::= @peek(0, "(") parenexpr
37//! parenexpr ::=
38//! @peek(1, ")") "(" ")"
39//! | "(" itemlist ")"
40//! itemlist ::=
41//! @peek(0, ")") #end of list
42//! | item $become itemlist
43//! item ::=
44//! @peek(0, "(") parenexpr
45//! | @auto r`[a-zA-Z_][a-zA-Z_0-9]*|[0-9\.]*`r
46//! ```
47//!
48//! ## Example usage
49//!
50//! ```
51//! # {} /*
52//! let mut g = bnf_to_grammar(&grammar_source).unwrap();
53//! let tokens = tokenize(&mut g, &test_source);
54//! let tokens = tokens.unwrap();
55//!
56//! use std::rc::Rc;
57//! let ast = parse(&g,
58//! "S", // Name of your root-most rule
59//! &tokens[..],
60//! Rc::new(<_>::default()), // guards (see test in `src/c.rs` for a detailed usage example)
61//! Rc::new(<_>::default()) // hooks (same)
62//! );
63//!
64//! if let Ok(ast) = &ast
65//! {
66//! print_ast_pred_recdec(ast, &g.string_cache_inv, 0);
67//! }
68//! drop(ast.unwrap());
69//! # */
70//! ```
71//!
72//! ## BNF Extensions
73//!
74//! Mini glossary: nonterminal = "call of another rule", terminal = "immediate match of a token's contents".
75//!
76//! Common EBNF syntax like `[]` or `()?` is not supported. Don't worry, you can make flat lists just fine.
77//!
78//! Extensions from pure BNF are:
79//!
80//! `\` - End-of-line escaping with `\`, so you can write multiline regexes.
81//!
82//! `#` - Comments until the end of the line, outside of strings/regexes.
83//!
84//! `"...` - Terms starting with `"` are inline strings. They register with the tokenizer and check the entire body of a token. (Strings are interned, so this is O(1).)
85//!
86//! Terms starting with ```r`...```, ```R`...```, or ```A`...``` are inline regexes:
87//! - ```r`...`r``` registers with the tokenizer and does a full token match (i.e. it's given an implicit trailing `\z` during token matching).
88//! - ```R`...`r``` DOES NOT register with the tokenizer, but does a full token match (i.e. it's given an implicit trailing `\z`). This is provided as an optimization: sometimes you want to combine tokenizer regexes into a single regex for performance reasons, which should be done manually.
89//! - ```A`...`r``` DOES NOT register with the tokenizer, and only checks against the start of the token. This is only provided as an optimization: ```R``r``` is strictly more powerful.
90//!
91//! Regex results are cached, so checking them is amortized O(1).
92//!
93//! Terms beginning with `!` currently only have one kind:
94//! - `!hook`, e.g. `!hook(fix_infix_expr)`, are calls to user-provided code. This is **allowed to be impure**, e.g. management of **typedef symbol tables**.
95//!
96//! Terms beginning with `@` are guards/predicates. They determine, at the start of a given alternation/production, whether it is valid. If true, that production is taken, and none of the others will be attempted (at this location). Remember, there's no backtracking or magic.
97//! - `@peek(N, STRING)` - Checks if, relative to the parse position, the given token contains the given text.
98//! - `@peekr(N, REGEX)` - Same, but only for regexes.
99//! - `@auto item` - Desugars to `@peek(0, item) item` or `@peekr(0, item) item` automatically.
100//! - `@guard(name)` - Calls user-provided code to determine if the production is accepted. This is allowed to be impure, but you should be careful with it, since a path hasn't been committed yet.
101//! - `@recover` - Pseudo-guard, is never attempted. Instead, it tells the associated grammar rule that if it fails, it's allowed to recover (into a poisoned state) by seeking for a particular set of tokens.
102//! - `@recover_before` - Same, but stops right before accepting any seek token instead of consuming it.
103//!
104//! Terms starting with `$` are directives:
105//!- `$become nonterminal` performs a tail call, keeping the current AST node name. This can be used to build lists without smashing the stack.
106//!- `$become_as nonterminal` performs a tail call, replacing the current AST node's name with that of the target.
107//!- `$any` matches and includes any one token as a terminal.
108//!- `$pruned` specifies that this particular production doesn't generate AST nodes for bare terminals. This is useful for reducing AST bloat. For example, `@peek(1, ")") "(" ")" $pruned` is a non-empty production but produces zero AST nodes.
109//!- `$hoist` deletes the most recent child and moves its children into the current AST node's child list.
110//!- `$hoist_unit` does the same, but only if the child has exactly one child.
111//!- `$drop` deletes the most recent child.
112//!- `$drop_empty` does the same, but only if the child has exactly zero children.
113//!- `$rename nonterminal` renames the current AST node, giving it the same name as `nonterminal` but does NOT invoke a run of parsing `nonterminal` (i.e. it's skipped over).
114//!
115//! You'll note that there's no "negative rule-match-check predicate" extension (e.g. no "parse A, but only if it doesn't also parse B"). This is by design. Rule-level negation is way too powerful, and requires an extremely sophisticated parser generator (e.g. packrat) to handle both correctly and cheaply. For any reasonably simple implementation, it would be incompatible with impure hooks. `__RESERVED_WORDS`, described below, is the only exception, because it's easy to define in a sane way.
116//!
117//! For negative token predicates (peeks), you can refactor the grammar slightly, or if it's a particularly complicated peek, write a custom guard. So this isn't a limitation.
118//!
119//! ## Magic pseudo-rules
120//!
121//! The following magic pseudo rule names are available (e.g. `__COMMENTS ::= //`):
122//!
123//! - `__BRACKET_PAIRS` e.g. `::= ( ) | { }` - Tell the tokenizer to pair-up these tokens with each other so that hooks can skip over their contents in O(1) time.
124//! - `__COMMENTS` e.g. `::= "//" | "#"` -- Tell the tokenizer that this is a kind of single-line comment.
125//! - `__COMMENT_PAIRS` e.g. `::= /* */` - Tell the tokenizer that this is a kind of pair-based comment.
126//! - `__COMMENT_PAIRS_NESTED` - Same, but nesting, like in Rust.
127//! - `__COMMENT_REGEXES` - Same, but formed as a regex. These are slower than the above, because the Rust `regex` crate doesn't have a JIT.
128//! - `__RESERVED_WORDS` - e.g. `::= auto break case` - Specifies a list of token contents that are not allowed to be "accepted" by regex terminals like ```r`[a-zA-Z_]+`r```
129
130pub mod bnf;
131pub mod ast;
132mod json;
133
134// Thing
135pub (crate) use rustc_hash::FxBuildHasher as HashBuilder;
136
137#[cfg(test)]
138mod test {
139 #[test]
140 fn test_lib() {
141 use crate::*;
142 pub use bnf::*;
143 pub use ast::*;
144
145 let grammar_source = r#"
146 __BRACKET_PAIRS ::= ( )
147 S ::= @peek(0, "(") parenexpr $become EOF
148 EOF ::= @eof
149 parenexpr ::=
150 @peek(1, ")") "(" ")" $pruned
151 | "(" $become itemlist $pruned
152 itemlist ::=
153 @peek(0, ")") $pruned ")"
154 | @peek(0, "(") parenexpr $become itemlist
155 | @auto r`[a-zA-Z_][a-zA-Z_0-9]*|[0-9\.]*`r $become itemlist
156 "#;
157
158 let test_source = r#"
159 (a b (q x)kfwaiei i 9 (af0f1a) () () )
160 "#;
161
162 let mut g = bnf_to_grammar(&grammar_source).unwrap();
163 let tokens = tokenize(&mut g, &test_source);
164 let tokens = tokens.unwrap();
165
166 use std::rc::Rc;
167 let ast = parse(&g, "S", &tokens[..], Rc::new(<_>::default()), Rc::new(<_>::default()));
168
169 if let Ok(ast) = &ast
170 {
171 print_ast_pred_recdec(ast, &g.string_cache_inv, 0);
172 }
173 drop(ast.unwrap());
174
175
176
177 let test_source = r#"
178 ( a ) a
179 "#;
180
181 let tokens = tokenize(&mut g, &test_source);
182 let tokens = tokens.unwrap();
183 let ast = parse(&g, "S", &tokens[..], Rc::new(<_>::default()), Rc::new(<_>::default()));
184 //println!("{:?}", ast);
185 let ast = ast.unwrap_err();
186 assert_eq!(ast.token_index, 3);
187 assert_eq!(ast.rule, 2);
188 assert_eq!(ast.in_alt, 0);
189 assert_eq!(ast.alt_progress, Some(1));
190 assert_eq!(ast.on_behalf_of_rule, 1);
191
192
193
194 let test_source = r#" ( a ) ) "#;
195
196 let tokens = tokenize(&mut g, &test_source);
197 let tokens = tokens.unwrap_err();
198 //println!("{:?}", tokens);
199 assert_eq!(tokens.produced, 3);
200 assert_eq!(tokens.location, 10);
201 assert_eq!(tokens.pairing_error, Some((")".to_string(), false)));
202
203
204
205 let grammar_source = r#"
206 S ::= NUL a2 a $drop a a $hoist a $drop_empty NUL $drop_empty a2 a $hoist_unit a2 $hoist_unit EOF $drop
207 EOF ::= @eof
208 NUL ::=
209 a ::= "a"
210 a2 ::= "a" "a" $rename ax
211 ax ::= #dummy
212 "#;
213 let mut g = bnf_to_grammar(&grammar_source).unwrap();
214
215 let test_source = r#"aaa a a aa a aaa"#;
216
217 let tokens = tokenize(&mut g, &test_source);
218 let tokens = tokens.unwrap();
219 let ast = parse(&g, "S", &tokens[..], Rc::new(<_>::default()), Rc::new(<_>::default()));
220 let ast = ast.unwrap();
221 print_ast_pred_recdec(&ast, &g.string_cache_inv, 0);
222 let s = ast_to_shape_string(&ast);
223 println!("{}", s);
224 assert_eq!(s, "++-+..-+.-.+..-.-");
225
226 assert_eq!(*g.string_cache_inv[ast.children.unwrap()[1].text as usize], "ax");
227 }
228}