pour 0.2.1

Optionally consed radix tries for fast set operations
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
/*!
# pour
[![crates.io](https://img.shields.io/crates/v/pour)](https://crates.io/crates/pour)
[![Downloads](https://img.shields.io/crates/d/pour)](https://crates.io/crates/pour)
[![Documentation](https://docs.rs/pour/badge.svg)](https://docs.rs/pour/)
[![Pipeline status](https://gitlab.com/tekne/pour/badges/master/pipeline.svg)](https://gitlab.com/tekne/pour)
[![codecov](https://codecov.io/gl/tekne/pour/branch/\x6d6173746572/graph/badge.svg?token=N7O4T3PAFA)](https://codecov.io/gl/tekne/pour/)
[![License: MIT](https://img.shields.io/badge/License-MIT-blue.svg)](https://opensource.org/licenses/MIT)

`pour` is an implementation of an immutable `IdMap`: it maps bitvector IDs to values using a radix trie.

Since these `IdMap`s are immutable, they can share a *lot* of data between them, and hash-consing can be used to increase the
degree of sharing between `IdMap`s. More interestingly, this data structure is designed to support asymptotically fast set operations
on hash-consed `IdMaps`, including:
- Unions, intersections, (symmetric) differences, and complements
- Subset/superset checks

The best part is, the more memory shared, the faster these operations become in the general case (though the specialized `ptr`
variants of these operations may return *incorrect* values on non hash-consed, i.e. maximally shared, inputs!) To allow user
customized hash-consing strategies, the internal `Arc`s behind this data structure can be exposed as opaque objects which the
user may manipulate using the `ConsCtx` trait. Alternatively, `()` implements `SetCtx` with no consing, and there are helpers
to perform set operations without consing.

There are also some nice implementation details (which *may change*), including:
- `IdMap<K, V>` and hence `IdSet<K>` are the size of a pointer.
- `NonEmptyIdMap<K, V>` and hence `NonEmptyIdSet<K>` are the size of a pointer
*and* null-pointer optimized, i.e. `Option<NonEmptySet<T>>` is also the size of a pointer.

Right now, the feature-set is deliberately kept somewhat minimal, as `pour` has a particular use case (the `rain` intermediate
representation). But if I have time and/or anyone wants to contribute, all kinds of things can be added! Examples of potential
**future** features include
- Map not just from integer keys but from integer ranges, with similar efficiency
- Union maps of different types

`pour` is currently implemented without any `unsafe`, though that may change. We do, however use the non-standard `elysees` `Arc`
implementation (a fork of Servo's `triomphe` by the author) to avoid weak reference counts.

NOTE: "levels" are currently not yet supported! Returning a level number greater than 0 will cause a panic!

Contributions, questions, and issues are welcome! Please file issues at https://gitlab.com/tekne/pour, and contact the author at
jad.ghalayini@gtc.ox.ac.uk for any other queries.
*/
#![forbid(unsafe_code, missing_debug_implementations, missing_docs)]
use elysees::Arc;
use num_traits::{int::PrimInt, AsPrimitive, ToPrimitive};
use ref_cast::RefCast;
use std::borrow::Borrow;
use std::cmp::Ordering;
use std::fmt::Debug;
use std::hash::{Hash, Hasher};
use std::iter::FromIterator;

mod inner;
mod map_impls;
mod util;

pub use inner::{IdMapIntoIter, IdMapIter, InnerMap};
pub use util::*;

pub mod map_ctx;
pub mod mutation;
use mutation::*;

/// An immutable, optionally hash-consed pointer-sized map from small integer keys to arbitrary data
#[derive(Debug, Clone)]
#[repr(transparent)]
pub struct IdMap<K: RadixKey, V: Clone>(Option<Arc<InnerMap<K, V>>>);

/// An immutable, optionally hash-consed pointer-sized set of small integer keys
pub type IdSet<K> = IdMap<K, ()>;

impl<K: RadixKey, V: Clone> IdMap<K, V> {
    /// A constant representing an empty map
    pub const EMPTY: IdMap<K, V> = IdMap(None);
    /// Create a new, empty map
    ///
    /// # Example
    /// ```rust
    /// # use pour::IdMap;
    /// let empty = IdMap::<u64, u64>::new();
    /// assert!(empty.is_empty());
    /// assert_eq!(empty.len(), 0);
    /// assert_eq!(empty, IdMap::new());
    /// ```
    pub fn new() -> IdMap<K, V> {
        IdMap(None)
    }
    /// Clear this map, returning it's `InnerMap` if it was nonempty
    pub fn clear(&mut self) -> Option<Arc<InnerMap<K, V>>> {
        let mut result = None;
        std::mem::swap(&mut self.0, &mut result);
        result
    }
    /// Create a new mapping containing a single element in a given context
    ///
    /// # Example
    /// ```rust
    /// # use pour::IdMap;
    /// # use pour::map_ctx::MapCtx;
    /// let mut ctx1 = MapCtx::<u64, u64>::default();
    /// let mut ctx2 = MapCtx::<u64, u64>::default();
    /// let x = IdMap::singleton_in(5, 7, &mut ctx1);
    /// let y = IdMap::singleton_in(5, 7, &mut ctx2);
    /// let z = IdMap::singleton_in(5, 7, &mut ctx1);
    /// assert_eq!(x, y);
    /// assert_eq!(x, z);
    /// assert_ne!(x.as_ptr(), y.as_ptr());
    /// assert_eq!(x.as_ptr(), z.as_ptr());
    /// ```
    pub fn singleton_in<C: ConsCtx<K, V>>(key: K, value: V, ctx: &mut C) -> IdMap<K, V> {
        IdMap(Some(ctx.cons(InnerMap::singleton(key, value))))
    }
    /// Get the pointer underlying this map
    ///
    /// This pointer is guaranteed to be null if and only if the map is empty
    ///
    /// # Example
    /// ```rust
    /// # use pour::IdMap;
    /// let mut x = IdMap::new();
    /// assert_eq!(x.as_ptr(), std::ptr::null());
    /// x.try_insert(3, 5);
    /// assert_ne!(x.as_ptr(), std::ptr::null());
    /// let mut y = IdMap::singleton(3, 5);
    /// assert_ne!(y.as_ptr(), std::ptr::null());
    /// assert_ne!(x.as_ptr(), y.as_ptr());
    /// assert_eq!(x, y);
    /// ```
    pub fn as_ptr(&self) -> *const InnerMap<K, V> {
        self.0.as_ref().map(Arc::as_ptr).unwrap_or(std::ptr::null())
    }
    /// Check whether two `IdMap`s are pointer-equal, i.e. point to the same data
    pub fn ptr_eq(&self, other: &Self) -> bool {
        self.as_ptr() == other.as_ptr()
    }
    /// Create a new mapping containing a single element
    ///
    /// # Example
    /// ```rust
    /// # use pour::IdMap;
    /// let x = IdMap::singleton(3, "Hello");
    /// assert_eq!(x.len(), 1);
    /// assert_eq!(x.get(&3), Some(&"Hello"));
    /// assert_eq!(x.get(&2), None);
    /// ```
    pub fn singleton(key: K, value: V) -> IdMap<K, V> {
        Self::singleton_in(key, value, &mut ())
    }
    /// Check whether this map is empty
    ///
    /// # Example
    /// ```rust
    /// # use pour::IdMap;
    /// let mut x = IdMap::new();
    /// assert!(x.is_empty());
    /// x.try_insert(5, 33);
    /// assert!(!x.is_empty());
    /// x.remove(&5);
    /// assert!(x.is_empty());
    /// ```
    pub fn is_empty(&self) -> bool {
        self.0.is_none()
    }
    /// Get the number of entries in this map
    ///
    /// # Example
    /// ```rust
    /// # use pour::IdMap;
    /// let mut x = IdMap::new();
    /// assert_eq!(x.len(), 0);
    /// x.try_insert(7, 3);
    /// assert_eq!(x.len(), 1);
    /// x.try_insert(3, 2);
    /// assert_eq!(x.len(), 2);
    /// x.try_insert(2, 1);
    /// assert_eq!(x.len(), 3);
    /// x.remove(&2);
    /// assert_eq!(x.len(), 2);
    /// ```
    pub fn len(&self) -> usize {
        self.0.as_ref().map(|inner| inner.len()).unwrap_or(0)
    }
    /// Iterate over the entries in this map
    ///
    /// # Example
    /// ```rust
    /// # use pour::IdMap;
    /// let mut x = IdMap::new();
    /// x.try_insert(5, "what");
    /// x.try_insert(3, "buy");
    /// x.try_insert(7, "sell");
    /// let mut v: Vec<_> = x.iter().collect();
    /// v.sort_unstable();
    /// assert_eq!(&v[..], &[
    ///     (&3, &"buy"),
    ///     (&5, &"what"),
    ///     (&7, &"sell"),
    /// ])
    /// ```
    pub fn iter(&self) -> IdMapIter<K, V> {
        let mut result = IdMapIter::empty();
        if let Some(inner) = &self.0 {
            result.root(inner)
        }
        result
    }
    /// Lookup and mutate an entry of an `IdMap` in a given context. Return a new map if any changes were made.
    ///
    /// If it exists, the value is passed to the callback. If not, `None` is passed in it's place.
    /// The mutation returned from the callback is returned, along with the other result.
    pub fn mutate_in<B, M, R, C>(&self, key: B, action: M, ctx: &mut C) -> (Option<IdMap<K, V>>, R)
    where
        B: Borrow<K>,
        M: FnOnce(B, Option<&V>) -> (Mutation<K, V>, R),
        C: ConsCtx<K, V>,
    {
        if let Some(inner) = &self.0 {
            let (try_inner, result) = inner.mutate(inner, key, action, ctx);
            if let Some(inner) = try_inner {
                (Some(inner.into_idmap_in(ctx)), result)
            } else {
                (None, result)
            }
        } else {
            let (mutation, result) = action(key, None);
            let new_map = match mutation {
                Mutation::Null => None,
                Mutation::Remove => None,
                Mutation::Update(_) => None,
                Mutation::Insert(key, value) => Some(IdMap::singleton(key, value)),
            };
            (new_map, result)
        }
    }
    /// Lookup and mutate an entry of an `IdMap`. Return a new map if any changes were made.
    ///
    /// If it exists, the value is passed to the callback. If not, `None` is passed in it's place.
    /// The mutation returned from the callback is returned, along with the other result.
    pub fn mutate<B, M, R>(&self, key: B, action: M) -> (Option<IdMap<K, V>>, R)
    where
        B: Borrow<K>,
        M: FnOnce(B, Option<&V>) -> (Mutation<K, V>, R),
    {
        self.mutate_in(key, action, &mut ())
    }
    /// Remove an entry from an `IdMap` in a given context: return a new map if any changes were made
    ///
    /// # Example
    /// ```rust
    /// # use pour::IdMap;
    /// let x = IdMap::singleton(3, 5);
    /// assert_eq!(x.removed_in(&3, &mut ()), Some(IdMap::new()));
    /// assert_eq!(x.removed_in(&5, &mut ()), None);
    /// ```
    pub fn removed_in<C: ConsCtx<K, V>>(&self, key: &K, ctx: &mut C) -> Option<IdMap<K, V>> {
        self.mutate_in(key, |_key, _value| (Mutation::Remove, ()), ctx)
            .0
    }
    /// Remove an entry from an `IdMap`: return a new map if any changes were made
    ///
    /// # Example
    /// ```rust
    /// # use pour::IdMap;
    /// let x = IdMap::singleton(3, 5);
    /// assert_eq!(x.removed(&3), Some(IdMap::new()));
    /// assert_eq!(x.removed(&5), None);
    /// ```
    pub fn removed(&self, key: &K) -> Option<IdMap<K, V>> {
        self.removed_in(key, &mut ())
    }
    /// Remove an entry from an `IdMap` in a given context, *keeping the old value* if one was already there.
    /// Return whether any changes were made
    ///
    /// # Example
    /// ```rust
    /// # use pour::IdMap;
    /// let mut x = IdMap::singleton(3, 5);
    /// let y = x.clone();
    /// assert!(!x.remove_in(&5, &mut ()));
    /// assert_eq!(x, y);
    /// assert!(x.remove_in(&3, &mut ()));
    /// assert_eq!(x, IdMap::new());
    /// ```
    pub fn remove_in<C: ConsCtx<K, V>>(&mut self, key: &K, ctx: &mut C) -> bool {
        if let Some(removed) = self.removed_in(key, ctx) {
            *self = removed;
            true
        } else {
            false
        }
    }
    /// Remove an entry from an `IdMap`, *keeping the old value* if one was already there.
    /// Return whether any changes were made
    ///  
    /// # Example
    /// ```rust
    /// # use pour::IdMap;
    /// let mut x = IdMap::singleton(3, 5);
    /// let y = x.clone();
    /// assert!(!x.remove(&5));
    /// assert_eq!(x, y);
    /// assert!(x.remove(&3));
    /// assert_eq!(x, IdMap::new());
    /// ```
    pub fn remove(&mut self, key: &K) -> bool {
        if let Some(removed) = self.removed(key) {
            *self = removed;
            true
        } else {
            false
        }
    }
    /// Insert an entry into an `IdMap` in a given context, *replacing the old value* if one was already there.
    /// Return a new map if any changes were made
    ///
    /// # Example
    /// ```rust
    /// # use pour::IdMap;
    /// let x = IdMap::singleton(3, 2);
    /// assert_eq!(
    ///     x.inserted_in(3, 5, &mut ()),
    ///     Some(IdMap::singleton(3, 5))
    /// );
    /// let y = x.inserted_in(4, 5, &mut ()).unwrap();
    /// assert_ne!(x, y);
    /// assert_eq!(x.get(&3), Some(&2));
    /// assert_eq!(x.get(&4), None);
    /// assert_eq!(y.get(&3), Some(&2));
    /// assert_eq!(y.get(&4), Some(&5));
    pub fn inserted_in<C: ConsCtx<K, V>>(
        &self,
        key: K,
        value: V,
        ctx: &mut C,
    ) -> Option<IdMap<K, V>> {
        self.mutate_in(
            key,
            |key, old_value| {
                (
                    if old_value.is_none() {
                        Mutation::Insert(key, value)
                    } else {
                        Mutation::Update(value)
                    },
                    (),
                )
            },
            ctx,
        )
        .0
    }
    /// Insert an entry into an `IdMap`, *replacing the old value* if one was already there.
    /// Return a new map if any changes were made
    ///
    /// # Example
    /// ```rust
    /// # use pour::IdMap;
    /// let x = IdMap::singleton(3, 2);
    /// assert_eq!(
    ///     x.inserted(3, 5),
    ///     Some(IdMap::singleton(3, 5))
    /// );
    /// let y = x.inserted(4, 5).unwrap();
    /// assert_ne!(x, y);
    /// assert_eq!(x.get(&3), Some(&2));
    /// assert_eq!(x.get(&4), None);
    /// assert_eq!(y.get(&3), Some(&2));
    /// assert_eq!(y.get(&4), Some(&5));
    /// ```
    pub fn inserted(&self, key: K, value: V) -> Option<IdMap<K, V>> {
        self.inserted_in(key, value, &mut ())
    }
    /// Insert an entry into an `IdMap` in a given context, *replacing the old value* if one was already there.
    /// Return whether any changes were made
    ///
    /// # Example
    /// ```rust
    /// # use pour::IdMap;
    /// let mut x = IdMap::new();
    /// assert!(x.insert_in(3, 2, &mut ()));
    /// assert_eq!(x.get(&3), Some(&2));
    /// assert!(x.insert_in(3, 5, &mut ()));
    /// assert_eq!(x.get(&3), Some(&5));
    /// ```
    pub fn insert_in<C: ConsCtx<K, V>>(&mut self, key: K, value: V, ctx: &mut C) -> bool {
        if let Some(inserted) = self.inserted_in(key, value, ctx) {
            *self = inserted;
            true
        } else {
            false
        }
    }
    /// Insert an entry into an `IdMap`, *replacing the old value* if one was already there.
    /// Return whether any changes were made
    ///
    /// # Example
    /// ```rust
    /// # use pour::IdMap;
    /// let mut x = IdMap::new();
    /// assert!(x.insert(3, 2));
    /// assert_eq!(x.get(&3), Some(&2));
    /// assert!(x.insert(3, 5));
    /// assert_eq!(x.get(&3), Some(&5));
    /// ```
    pub fn insert(&mut self, key: K, value: V) -> bool {
        if let Some(inserted) = self.inserted(key, value) {
            *self = inserted;
            true
        } else {
            false
        }
    }
    /// Insert an entry into an `IdMap` in a given context, *keeping the old value* if one was already there.
    /// Return a new map if any changes were made
    ///
    /// # Example
    /// ```rust
    /// # use pour::IdMap;
    /// let x = IdMap::singleton(3, 2);
    /// assert_eq!(x.try_inserted_in(3, 5, &mut ()), None);
    /// let y = x.try_inserted_in(4, 5, &mut ()).unwrap();
    /// assert_ne!(x, y);
    /// assert_eq!(x.get(&3), Some(&2));
    /// assert_eq!(x.get(&4), None);
    /// assert_eq!(y.get(&3), Some(&2));
    /// assert_eq!(y.get(&4), Some(&5));
    pub fn try_inserted_in<C: ConsCtx<K, V>>(
        &self,
        key: K,
        value: V,
        ctx: &mut C,
    ) -> Option<IdMap<K, V>> {
        self.mutate_in(key, |key, _value| (Mutation::Insert(key, value), ()), ctx)
            .0
    }
    /// Insert an entry into an `IdMap`, *keeping the old value* if one was already there.
    /// Return a new map if any changes were made
    ///
    /// # Example
    /// ```rust
    /// # use pour::IdMap;
    /// let x = IdMap::singleton(3, 2);
    /// assert_eq!(x.try_inserted(3, 5), None);
    /// let y = x.try_inserted(4, 5).unwrap();
    /// assert_ne!(x, y);
    /// assert_eq!(x.get(&3), Some(&2));
    /// assert_eq!(x.get(&4), None);
    /// assert_eq!(y.get(&3), Some(&2));
    /// assert_eq!(y.get(&4), Some(&5));
    /// ```
    pub fn try_inserted(&self, key: K, value: V) -> Option<IdMap<K, V>> {
        self.try_inserted_in(key, value, &mut ())
    }
    /// Insert an entry into an `IdMap` in a given context, *keeping the old value* if one was already there.
    /// Return whether any changes were made
    ///
    /// # Example
    /// ```rust
    /// # use pour::IdMap;
    /// let mut x = IdMap::new();
    /// assert!(x.try_insert_in(3, 2, &mut ()));
    /// assert_eq!(x.get(&3), Some(&2));
    /// assert!(!x.try_insert_in(3, 5, &mut ()));
    /// assert_eq!(x.get(&3), Some(&2));
    /// ```
    pub fn try_insert_in<C: ConsCtx<K, V>>(&mut self, key: K, value: V, ctx: &mut C) -> bool {
        if let Some(inserted) = self.try_inserted_in(key, value, ctx) {
            *self = inserted;
            true
        } else {
            false
        }
    }
    /// Insert an entry into an `IdMap`, *keeping the old value* if one was already there.
    /// Return whether any changes were made
    ///
    /// # Example
    /// ```rust
    /// # use pour::IdMap;
    /// let mut x = IdMap::new();
    /// assert!(x.try_insert(3, 2));
    /// assert_eq!(x.get(&3), Some(&2));
    /// assert!(!x.try_insert(3, 5));
    /// assert_eq!(x.get(&3), Some(&2));
    /// ```
    pub fn try_insert(&mut self, key: K, value: V) -> bool {
        if let Some(inserted) = self.try_inserted(key, value) {
            *self = inserted;
            true
        } else {
            false
        }
    }
    /// Lookup an entry of an `IdMap`, returning the value associated with it, if any
    ///
    /// # Example
    /// ```rust
    /// # use pour::IdMap;
    /// let mut x = IdMap::singleton(3, 5);
    /// assert_eq!(x.get(&3), Some(&5));
    /// assert_eq!(x.get(&2), None);
    /// x.try_insert(2, 4);
    /// assert_eq!(x.get(&2), Some(&4));
    /// x.insert_conservative(2, 2);
    /// assert_eq!(x.get(&2), Some(&2));
    /// ```
    pub fn get(&self, key: &K) -> Option<&V> {
        if let Some(inner) = &self.0 {
            inner.get(key)
        } else {
            None
        }
    }
    /// Lookup whether an item is contained in an `IdMap`.
    ///
    /// # Example
    /// ```rust
    /// # use pour::IdMap;
    /// let x = IdMap::singleton(7, 3);
    /// assert!(x.contains(&7));
    /// assert!(!x.contains(&3));
    /// ```
    pub fn contains(&self, key: &K) -> bool {
        self.get(key).is_some()
    }
    /// Mutate the values of a map in a given context. Return `Some` if something changed.
    ///
    /// # Example
    /// ```rust
    /// # use pour::{IdMap, mutation::FilterMap};
    /// let x = IdMap::singleton(3, 5);
    /// let mut mutator = FilterMap::new(
    ///     |key, value| if key == value { None } else { Some(key * value) }
    /// );
    /// let y = x.mutated_vals_in(&mut mutator, &mut ());
    /// assert_eq!(y, Some(IdMap::singleton(3, 15)));
    /// ```
    pub fn mutated_vals_in<M, C>(&self, mutator: &mut M, ctx: &mut C) -> Option<IdMap<K, V>>
    where
        M: UnaryMutator<K, V>,
        C: ConsCtx<K, V>,
    {
        match (mutator.kind(), &self.0) {
            (UnaryMutatorKind::Null, _) => None,
            (_, None) => None,
            (UnaryMutatorKind::Delete, Some(_)) => Some(IdMap::new()),
            (UnaryMutatorKind::General, Some(inner)) => {
                let inner = inner.mutate_vals_in(mutator, ctx)?;
                Some(inner.into_idmap_in(ctx))
            }
        }
    }
    /// Mutate the values of a map. Return `Some` if something changed.
    #[inline]
    pub fn mutated_vals<M>(&self, mutator: &mut M) -> Option<IdMap<K, V>>
    where
        M: UnaryMutator<K, V>,
    {
        self.mutated_vals_in(mutator, &mut ())
    }
    /// Mutate the values of a map. Return if something changed.
    #[inline]
    pub fn mutate_vals_in<M, C>(&mut self, mutator: &mut M, ctx: &mut C) -> bool
    where
        M: UnaryMutator<K, V>,
        C: ConsCtx<K, V>,
    {
        if let Some(mutated) = self.mutated_vals_in(mutator, ctx) {
            *self = mutated;
            true
        } else {
            false
        }
    }
    /// Mutate the values of a map. Return if something changed.
    ///
    /// # Examples
    /// ```rust
    /// # use pour::IdMap;
    /// # use pour::mutation::{NullMutator, DeleteMutator, FilterMap};
    /// let mut x = IdMap::new();
    /// for i in 0..100 {
    ///     x.try_insert(i, 3);
    /// }
    ///
    /// let mut y = x.clone();
    /// assert!(!y.mutate_vals(&mut NullMutator));
    /// assert_eq!(x.as_ptr(), y.as_ptr());
    ///
    /// let mut mutator = FilterMap::new(
    ///     |key, value| if *key < 30 { None } else { Some(*key * *value) }
    /// );
    /// assert!(y.mutate_vals(&mut mutator));
    /// assert_ne!(x, y);
    /// assert_eq!(y.len(), 70);
    /// assert_eq!(x.get(&4), Some(&3));
    /// assert_eq!(y.get(&4), None);
    /// assert_eq!(x.get(&40), Some(&3));
    /// assert_eq!(y.get(&40), Some(&120));
    ///
    /// assert!(x.mutate_vals(&mut mutator));
    /// assert_ne!(x.as_ptr(), y.as_ptr());
    /// assert_eq!(x, y);
    ///
    /// assert!(y.mutate_vals(&mut DeleteMutator));
    /// assert!(y.is_empty());
    /// ```
    #[inline]
    pub fn mutate_vals<M>(&mut self, mutator: &mut M) -> bool
    where
        M: UnaryMutator<K, V>,
    {
        if let Some(mutated) = self.mutated_vals_in(mutator, &mut ()) {
            *self = mutated;
            true
        } else {
            false
        }
    }
    /*
    /// Transform the values of a map in a given context.
    pub fn transformed_vals_in<T, O, C>(&self, transformer: &mut T, ctx: &mut C) -> IdMap<K, O>
    where
        O: Clone,
        T: UnaryTransformer<K, V, O>,
        C: ConsCtx<K, O>,
    {
        if let Some(inner) = &self.0 {
            unimplemented!("Inner transformation @ {:p}", inner)
        } else {
            // No keys to transform!
            IdMap::new()
        }
    }
    */
    /// Join-mutate two maps by applying a binary mutator to their key intersection and unary
    /// mutators to their left and right intersection. If `cons` is true, the maps are assumed to
    /// be consistently hash-consed (i.e. an `InnerMap` in one map is `rec_eq` to one in another map
    /// if and only if they are pointer-equal, i.e. compare equal with `==`), which can provide
    /// additional speedup. Return `Some` if something changed.
    pub fn join_mutate_in<IM, LM, RM, C>(
        &self,
        other: &Self,
        intersection_mutator: &mut IM,
        left_mutator: &mut LM,
        right_mutator: &mut RM,
        ctx: &mut C,
    ) -> BinaryResult<IdMap<K, V>>
    where
        IM: BinaryMutator<K, V>,
        LM: UnaryMutator<K, V>,
        RM: UnaryMutator<K, V>,
        C: ConsCtx<K, V>,
    {
        let (this, other) = match (&self.0, &other.0) {
            (_, None) => return BinaryResult::or_left(self.mutated_vals_in(left_mutator, ctx)),
            (None, _) => return BinaryResult::or_right(other.mutated_vals_in(right_mutator, ctx)),
            (Some(this), Some(other)) => (this, other),
        };
        this.join_mutate_in(
            other,
            intersection_mutator,
            left_mutator,
            right_mutator,
            ctx,
        )
        .map(|inner| inner.into_idmap_in(ctx))
    }
    /// Take the union of two maps: if any keys are shared between two maps, always take the left value
    pub fn left_union_in<C: ConsCtx<K, V>>(
        &self,
        other: &IdMap<K, V>,
        ctx: &mut C,
    ) -> BinaryResult<IdMap<K, V>> {
        self.join_mutate_in(
            other,
            &mut LeftMutator,
            &mut NullMutator,
            &mut NullMutator,
            ctx,
        )
    }
    /// Take the intersection of two maps, taking the left value in case of conflict
    pub fn left_intersect_in<C: ConsCtx<K, V>>(
        &self,
        other: &IdMap<K, V>,
        ctx: &mut C,
    ) -> BinaryResult<IdMap<K, V>> {
        self.join_mutate_in(
            other,
            &mut LeftMutator,
            &mut DeleteMutator,
            &mut DeleteMutator,
            ctx,
        )
    }
    /// Take the union of two maps: if any keys are shared between two maps, always take the left value
    pub fn left_union(&self, other: &IdMap<K, V>) -> BinaryResult<IdMap<K, V>> {
        self.join_mutate_in(
            other,
            &mut LeftMutator,
            &mut NullMutator,
            &mut NullMutator,
            &mut (),
        )
    }
    /// Take the intersection of two maps, taking the left value in case of conflict
    pub fn left_intersect(&self, other: &IdMap<K, V>) -> BinaryResult<IdMap<K, V>> {
        self.join_mutate_in(
            other,
            &mut LeftMutator,
            &mut DeleteMutator,
            &mut DeleteMutator,
            &mut (),
        )
    }
    /// Take the union of two maps: if any keys are shared between two maps, always take the right value
    pub fn right_union_in<C: ConsCtx<K, V>>(
        &self,
        other: &IdMap<K, V>,
        ctx: &mut C,
    ) -> BinaryResult<IdMap<K, V>> {
        self.join_mutate_in(
            other,
            &mut RightMutator,
            &mut NullMutator,
            &mut NullMutator,
            ctx,
        )
    }
    /// Take the intersection of two maps, taking the right value in case of conflict
    pub fn right_intersect_in<C: ConsCtx<K, V>>(
        &self,
        other: &IdMap<K, V>,
        ctx: &mut C,
    ) -> BinaryResult<IdMap<K, V>> {
        self.join_mutate_in(
            other,
            &mut RightMutator,
            &mut DeleteMutator,
            &mut DeleteMutator,
            ctx,
        )
    }
    /// Take the union of two maps: if any keys are shared between two maps, always take the right value
    pub fn right_union(&self, other: &IdMap<K, V>) -> BinaryResult<IdMap<K, V>> {
        self.join_mutate_in(
            other,
            &mut RightMutator,
            &mut NullMutator,
            &mut NullMutator,
            &mut (),
        )
    }
    /// Take the intersection of two maps, taking the left value in case of conflict
    pub fn right_intersect(&self, other: &IdMap<K, V>) -> BinaryResult<IdMap<K, V>> {
        self.join_mutate_in(
            other,
            &mut RightMutator,
            &mut DeleteMutator,
            &mut DeleteMutator,
            &mut (),
        )
    }
    /// Take the union of two maps: if any keys are shared between two maps, it is unspecified which of the two values is in the result
    pub fn union_in<C: ConsCtx<K, V>>(
        &self,
        other: &IdMap<K, V>,
        ctx: &mut C,
    ) -> BinaryResult<IdMap<K, V>> {
        self.join_mutate_in(
            other,
            &mut AmbiMutator,
            &mut NullMutator,
            &mut NullMutator,
            ctx,
        )
    }
    /// Take the intersection of two maps, taking an unspecified value in case of conflict
    pub fn intersect_in<C: ConsCtx<K, V>>(
        &self,
        other: &IdMap<K, V>,
        ctx: &mut C,
    ) -> BinaryResult<IdMap<K, V>> {
        self.join_mutate_in(
            other,
            &mut AmbiMutator,
            &mut DeleteMutator,
            &mut DeleteMutator,
            ctx,
        )
    }
    /// Take the symmetric difference of two maps
    pub fn sym_diff_in<C: ConsCtx<K, V>>(
        &self,
        other: &IdMap<K, V>,
        ctx: &mut C,
    ) -> BinaryResult<IdMap<K, V>> {
        self.join_mutate_in(
            other,
            &mut DeleteMutator,
            &mut NullMutator,
            &mut NullMutator,
            ctx,
        )
    }
    /// Take the complement of this map's *entries* with respect to another's *keys*
    pub fn left_complement_in<C: ConsCtx<K, V>>(
        &self,
        other: &IdMap<K, V>,
        ctx: &mut C,
    ) -> BinaryResult<IdMap<K, V>> {
        self.join_mutate_in(
            other,
            &mut LeftMutator,
            &mut NullMutator,
            &mut DeleteMutator,
            ctx,
        )
    }
    /// Take the complement of this map's *keys* with respect to another's *entries*
    pub fn right_complement_in<C: ConsCtx<K, V>>(
        &self,
        other: &IdMap<K, V>,
        ctx: &mut C,
    ) -> BinaryResult<IdMap<K, V>> {
        self.join_mutate_in(
            other,
            &mut RightMutator,
            &mut NullMutator,
            &mut DeleteMutator,
            ctx,
        )
    }
    /// Take the complement of this map' with another, arbitrarily returning this map's or the other's values on the intersection!
    pub fn complement_in<C: ConsCtx<K, V>>(
        &self,
        other: &IdMap<K, V>,
        ctx: &mut C,
    ) -> BinaryResult<IdMap<K, V>> {
        self.join_mutate_in(
            other,
            &mut AmbiMutator,
            &mut NullMutator,
            &mut DeleteMutator,
            ctx,
        )
    }
    /// Take the union of two maps: if any keys are shared between two maps, it is unspecified which of the two values is in the result
    pub fn union(&self, other: &IdMap<K, V>) -> BinaryResult<IdMap<K, V>> {
        self.join_mutate_in(
            other,
            &mut AmbiMutator,
            &mut NullMutator,
            &mut NullMutator,
            &mut (),
        )
    }
    /// Take the intersection of two maps, taking an unspecified value in case of conflict
    pub fn intersect(&self, other: &IdMap<K, V>) -> BinaryResult<IdMap<K, V>> {
        self.join_mutate_in(
            other,
            &mut AmbiMutator,
            &mut DeleteMutator,
            &mut DeleteMutator,
            &mut (),
        )
    }
    /// Take the symmetric difference of two maps
    pub fn sym_diff(&self, other: &IdMap<K, V>) -> BinaryResult<IdMap<K, V>> {
        self.join_mutate_in(
            other,
            &mut DeleteMutator,
            &mut NullMutator,
            &mut NullMutator,
            &mut (),
        )
    }
    /// Take the complement of this map's *entries* with respect to another's *keys*
    pub fn left_complement(&self, other: &IdMap<K, V>) -> BinaryResult<IdMap<K, V>> {
        self.join_mutate_in(
            other,
            &mut LeftMutator,
            &mut NullMutator,
            &mut DeleteMutator,
            &mut (),
        )
    }
    /// Take the complement of this map's *keys* with respect to another's *entries*
    pub fn right_complement(&self, other: &IdMap<K, V>) -> BinaryResult<IdMap<K, V>> {
        self.join_mutate_in(
            other,
            &mut RightMutator,
            &mut NullMutator,
            &mut DeleteMutator,
            &mut (),
        )
    }
    /// Take the complement of this map' with another, arbitrarily returning this map's or the other's values on the intersection!
    pub fn complement(&self, other: &IdMap<K, V>) -> BinaryResult<IdMap<K, V>> {
        self.join_mutate_in(
            other,
            &mut AmbiMutator,
            &mut NullMutator,
            &mut DeleteMutator,
            &mut (),
        )
    }
    /// Take the union of two maps: if any keys are shared between two maps, always take the left value
    pub fn left_unioned_in<C: ConsCtx<K, V>>(
        &self,
        other: &IdMap<K, V>,
        ctx: &mut C,
    ) -> IdMap<K, V> {
        self.left_union_in(other, ctx).unwrap_or_clone(self, other)
    }
    /// Take the intersection of two maps, taking the left value in case of conflict
    pub fn left_intersected_in<C: ConsCtx<K, V>>(
        &self,
        other: &IdMap<K, V>,
        ctx: &mut C,
    ) -> IdMap<K, V> {
        self.left_intersect_in(other, ctx)
            .unwrap_or_clone(self, other)
    }
    /// Take the union of two maps: if any keys are shared between two maps, always take the left value
    pub fn left_unioned(&self, other: &IdMap<K, V>) -> IdMap<K, V> {
        self.left_union(other).unwrap_or_clone(self, other)
    }
    /// Take the intersection of two maps, taking the left value in case of conflict
    pub fn left_intersected(&self, other: &IdMap<K, V>) -> IdMap<K, V> {
        self.left_intersect(other).unwrap_or_clone(self, other)
    }
    /// Take the union of two maps: if any keys are shared between two maps, always take the left value
    pub fn right_unioned_in<C: ConsCtx<K, V>>(
        &self,
        other: &IdMap<K, V>,
        ctx: &mut C,
    ) -> IdMap<K, V> {
        self.right_union_in(other, ctx).unwrap_or_clone(self, other)
    }
    /// Take the intersection of two maps, taking the left value in case of conflict
    pub fn right_intersected_in<C: ConsCtx<K, V>>(
        &self,
        other: &IdMap<K, V>,
        ctx: &mut C,
    ) -> IdMap<K, V> {
        self.right_intersect_in(other, ctx)
            .unwrap_or_clone(self, other)
    }
    /// Take the union of two maps: if any keys are shared between two maps, always take the left value
    pub fn right_unioned(&self, other: &IdMap<K, V>) -> IdMap<K, V> {
        self.right_union(other).unwrap_or_clone(self, other)
    }
    /// Take the intersection of two maps, taking the left value in case of conflict
    pub fn right_intersected(&self, other: &IdMap<K, V>) -> IdMap<K, V> {
        self.right_intersect(other).unwrap_or_clone(self, other)
    }
    /// Take the union of two maps: if any keys are shared between two maps, it is unspecified which of the two values is in the result
    pub fn unioned_in<C: ConsCtx<K, V>>(&self, other: &IdMap<K, V>, ctx: &mut C) -> IdMap<K, V> {
        self.union_in(other, ctx).unwrap_or_clone(self, other)
    }
    /// Take the intersection of two maps, taking an unspecified value in case of conflict
    pub fn intersected_in<C: ConsCtx<K, V>>(
        &self,
        other: &IdMap<K, V>,
        ctx: &mut C,
    ) -> IdMap<K, V> {
        self.intersect_in(other, ctx).unwrap_or_clone(self, other)
    }
    /// Take the symmetric difference of two maps
    pub fn sym_diffed_in<C: ConsCtx<K, V>>(&self, other: &IdMap<K, V>, ctx: &mut C) -> IdMap<K, V> {
        self.sym_diff_in(other, ctx).unwrap_or_clone(self, other)
    }
    /// Take the symmetric difference of two maps
    pub fn left_complemented_in<C: ConsCtx<K, V>>(
        &self,
        other: &IdMap<K, V>,
        ctx: &mut C,
    ) -> IdMap<K, V> {
        self.left_complement_in(other, ctx)
            .unwrap_or_clone(self, other)
    }
    /// Take the symmetric difference of two maps
    pub fn right_complemented_in<C: ConsCtx<K, V>>(
        &self,
        other: &IdMap<K, V>,
        ctx: &mut C,
    ) -> IdMap<K, V> {
        self.right_complement_in(other, ctx)
            .unwrap_or_clone(self, other)
    }
    /// Take the symmetric difference of two maps
    pub fn complemented_in<C: ConsCtx<K, V>>(
        &self,
        other: &IdMap<K, V>,
        ctx: &mut C,
    ) -> IdMap<K, V> {
        self.complement_in(other, ctx).unwrap_or_clone(self, other)
    }
    /// Take the union of two maps: if any keys are shared between two maps, it is unspecified which of the two values is in the result
    pub fn unioned(&self, other: &IdMap<K, V>) -> IdMap<K, V> {
        self.union(other).unwrap_or_clone(self, other)
    }
    /// Take the intersection of two maps, taking an unspecified value in case of conflict
    pub fn intersected(&self, other: &IdMap<K, V>) -> IdMap<K, V> {
        self.intersect(other).unwrap_or_clone(self, other)
    }
    /// Take the symmetric difference of two maps
    pub fn sym_diffed(&self, other: &IdMap<K, V>) -> IdMap<K, V> {
        self.sym_diff(other).unwrap_or_clone(self, other)
    }
    /// Take the complement of this map's *entries* with respect to another's *keys*
    pub fn left_complemented(&self, other: &IdMap<K, V>) -> IdMap<K, V> {
        self.left_complement(other).unwrap_or_clone(self, other)
    }
    /// Take the complement of this map's *entries* with respect to another's *keys*
    pub fn complemented(&self, other: &IdMap<K, V>) -> IdMap<K, V> {
        self.complement(other).unwrap_or_clone(self, other)
    }
    /*
    /// Join-transform two maps by applying a binary transformer to their key intersection and
    /// unary transformers to their left and right intersection.
    pub fn join_transform_in<R, O, IT, LT, RT, C>(
        &self,
        other: &IdMap<K, R>,
        intersection_transformer: &mut IT,
        left_transformer: &mut LT,
        right_transformer: &mut RT,
        ctx: &mut C,
    ) -> IdMap<K, O>
    where
        O: Clone,
        R: Clone + Eq,
        IT: BinaryTransformer<K, V, R, O>,
        LT: UnaryTransformer<K, V, O>,
        RT: UnaryTransformer<K, R, O>,
        C: ConsCtx<K, O>,
    {
        let (this, other) = match (&self.0, &other.0) {
            (_, None) => return self.transformed_vals_in(left_transformer, ctx),
            (None, _) => return other.transformed_vals_in(right_transformer, ctx),
            (Some(this), Some(other)) => (this, other),
        };
        unimplemented!(
            "General transformation for this@{:p}, other@{:p}",
            this,
            other
        )
    }
    */
}

impl<K: RadixKey, V: Clone + Eq> IdMap<K, V> {
    /// Insert an entry of an `IdMap` in a given context, *updating the old value* if one was already there.
    /// Return a new map if any changes were made
    pub fn inserted_conservative_in<C: ConsCtx<K, V>>(
        &self,
        key: K,
        value: V,
        ctx: &mut C,
    ) -> Option<IdMap<K, V>> {
        self.mutate_in(
            key,
            |key, entry_value| {
                let mutation = match entry_value {
                    Some(entry_value) if *entry_value != value => Mutation::Update(value),
                    Some(_) => Mutation::Null,
                    None => Mutation::Insert(key, value),
                };
                (mutation, ())
            },
            ctx,
        )
        .0
    }
    /// Insert an entry of an `IdMap`, *updating the old value* if one was already there.
    /// Return a new map if any changes were made
    pub fn inserted_conservative(&self, key: K, value: V) -> Option<IdMap<K, V>> {
        self.inserted_conservative_in(key, value, &mut ())
    }
    /// Insert an entry into an `IdMap` in a given context, *updating the old value* if one was already there.
    /// Return whether any changes were made
    pub fn insert_conservative_in<C: ConsCtx<K, V>>(
        &mut self,
        key: K,
        value: V,
        ctx: &mut C,
    ) -> bool {
        if let Some(inserted_conservative) = self.inserted_conservative_in(key, value, ctx) {
            *self = inserted_conservative;
            true
        } else {
            false
        }
    }
    /// Insert an entry into an `IdMap`, *updating the old value* if one was already there.
    /// Return whether any changes were made
    pub fn insert_conservative(&mut self, key: K, value: V) -> bool {
        if let Some(inserted_conservative) = self.inserted_conservative(key, value) {
            *self = inserted_conservative;
            true
        } else {
            false
        }
    }
    /// Check whether this map is a submap of another. A map is considered to be a submap of itself.
    ///
    /// If `cons` is true, this map is assumed to be hash-consed with the other
    pub fn is_submap(&self, other: &IdMap<K, V>, cons: bool) -> bool {
        match (&self.0, &other.0) {
            (Some(this), Some(other)) => {
                if Arc::ptr_eq(this, other) {
                    true
                } else if cons && this.len() == other.len() {
                    false
                } else {
                    this.is_submap(other, cons)
                }
            }
            (Some(_), None) => false,
            (None, Some(_)) => true,
            (None, None) => true,
        }
    }
    /// Check whether this map's domain is a subset of another's.
    pub fn domain_is_subset<U: Clone + Eq>(&self, other: &IdMap<K, U>) -> bool {
        match (&self.0, &other.0) {
            (Some(this), Some(other)) => this.domain_is_subset(other),
            (Some(_), None) => false,
            (None, Some(_)) => true,
            (None, None) => true,
        }
    }
    /// Check whether this map's domain has a nonempty intersection with another map's
    ///
    /// # Example
    ///
    /// ```rust
    /// # use pour::{IdSet, IdMap};
    /// let mut a = IdSet::new();
    /// for i in 0..10 {
    ///     a.try_insert(i, ());
    /// }
    /// let mut b = IdSet::new();
    /// for i in 5..20 {
    ///     b.try_insert(i, ());
    /// }
    /// let mut c = IdMap::new();
    /// for i in 10..20 {
    ///     c.try_insert(i, 3*i);
    /// }
    /// assert!(a.domains_intersect(&a));
    /// assert!(b.domains_intersect(&b));
    /// assert!(c.domains_intersect(&c));
    /// assert!(a.domains_intersect(&b));
    /// assert!(b.domains_intersect(&a));
    /// assert!(b.domains_intersect(&c));
    /// assert!(c.domains_intersect(&b));
    /// assert!(!a.domains_intersect(&c));
    /// assert!(!c.domains_intersect(&a));
    /// ```
    pub fn domains_intersect<U: Clone + Eq>(&self, other: &IdMap<K, U>) -> bool {
        match (&self.0, &other.0) {
            (Some(this), Some(other)) => this.domains_intersect(other),
            _ => false,
        }
    }
    /// Check whether two maps have disjoint domains
    ///
    /// # Example
    ///
    /// ```rust
    /// # use pour::{IdSet, IdMap};
    /// let mut a = IdSet::new();
    /// for i in 100..1000 {
    ///     a.try_insert(i, ());
    /// }
    /// let mut b = IdMap::new();
    /// for i in 50..2000 {
    ///     b.try_insert(i, 2*i);
    /// }
    /// let mut c = IdSet::new();
    /// for i in 1500..2500 {
    ///     c.try_insert(i, ());
    /// }
    /// assert!(!a.domains_disjoint(&a));
    /// assert!(!b.domains_disjoint(&b));
    /// assert!(!c.domains_disjoint(&c));
    /// assert!(!a.domains_disjoint(&b));
    /// assert!(!b.domains_disjoint(&a));
    /// assert!(!b.domains_disjoint(&c));
    /// assert!(!c.domains_disjoint(&b));
    /// assert!(a.domains_disjoint(&c));
    /// assert!(c.domains_disjoint(&a));
    /// ```
    pub fn domains_disjoint<U: Clone + Eq>(&self, other: &IdMap<K, U>) -> bool {
        !self.domains_intersect(other)
    }
    /// Partially order maps based off the submap relation
    pub fn map_cmp(&self, other: &IdMap<K, V>, cons: bool) -> Option<Ordering> {
        use Ordering::*;
        match self.len().cmp(&other.len()) {
            Less if self.is_submap(other, cons) => Some(Less),
            Equal if !cons && self == other => Some(Equal),
            Equal if cons && self.ptr_eq(other) => Some(Equal),
            Greater if other.is_submap(self, cons) => Some(Greater),
            _ => None,
        }
    }
    /// Partially order the domains of maps based off the subset relation
    pub fn domain_cmp(&self, other: &IdMap<K, V>) -> Option<Ordering> {
        use Ordering::*;
        match self.len().cmp(&other.len()) {
            Greater if other.domain_is_subset(self) => Some(Greater),
            ord if self.domain_is_subset(other) => Some(ord),
            _ => None,
        }
    }
}

/// A trait implemented by objects which can perform hash-consing on a map's internal data
pub trait ConsCtx<K: RadixKey, V: Clone> {
    /// Return an `Arc<InnerMap>` with the same contents as the provided `Arc`
    ///
    /// # Correctness
    /// The resulting `Arc` should compare equal to `inner` if they are comparable.
    /// If not, being the result of `clone` is fine.
    fn cons_arc(&mut self, inner: &Arc<InnerMap<K, V>>) -> Arc<InnerMap<K, V>>;
    /// Return an `Arc<InnerMap>` with the same contents as the provided object.
    ///
    /// # Correctness
    /// The resulting `Arc` should compare equal to `inner` if they are comparable.
    /// If not, being the result of `new` is fine.
    fn cons(&mut self, inner: InnerMap<K, V>) -> Arc<InnerMap<K, V>>;
    /// Return an `Arc<InnerMap>` with the same contents as the provided `Arc`
    ///
    /// Note: this is provided as a separate function from `cons_arc` to allow the user the choice as
    /// to whether to perform deep or shallow hash-consing of mutated values: if shallow hash-consing
    /// is desired, this method should just clone the input `Arc`, whereas if deep hash-consing is
    /// desired, this method should return another, potentially hash-consed `Arc`. Deep hash-consing
    /// is the default, so `cons_arc` is called by the default implementation.
    ///
    /// # Correctness
    /// The resulting `Arc` should compare equal to `inner` if they are comparable.
    /// If not, being the result of `clone` is fine.
    fn cons_recursive(&mut self, inner: &Arc<InnerMap<K, V>>) -> Arc<InnerMap<K, V>> {
        self.cons_arc(inner)
    }
}

/// A key which can be used in a radix trie
pub trait RadixKey: Eq + Clone {
    /// The pattern type of this radix key
    type PatternType: Pattern<Self::DepthType>;
    /// The depth type of this radix key
    ///
    /// We assume this can be losslessly `as_` casted into `usize`, with all valid values casting back from usize
    type DepthType: PrimInt + Hash + AsPrimitive<usize>;
    /// A function to get the pattern of data for this key corresponding to a given bitdepth.
    fn pattern(&self, depth: Self::DepthType) -> Self::PatternType;
    /// Get the pattern number of a given bitdepth
    ///
    /// NOTE: "levels" are currently not yet supported! Returning a pattern number greater than 0 will cause a panic!
    fn pattern_no(depth: Self::DepthType) -> usize {
        let depth: usize = depth.as_();
        depth / Self::PatternType::MAX_BITS
    }
}

/// An n-bit pattern
pub trait Pattern<D>: Eq + Hash + Copy + Clone + Default {
    /// Get the maximum bitdepth of this pattern
    const MAX_BITS: usize;
    /// Get this pattern's max bits as a depth type
    fn max_bits() -> D;
    /// Get the nth byte of this pattern at a given bitdepth
    fn byte(self, n: D) -> u8;
    /// Get the bit difference between this pattern and another
    fn diff(self, other: Self) -> D;
}

#[cfg(test)]
mod test {
    use super::*;
    use map_ctx::*;

    fn ordered_map_construction_in_ctx<C: ConsCtx<u64, u64>>(
        n: u64,
        ctx: &mut C,
    ) -> IdMap<u64, u64> {
        let mut x = IdMap::new();
        let mut v = Vec::with_capacity(n as usize);
        for i in 0..n {
            assert_eq!(
                x.get(&i),
                None,
                "{} has not already been inserted into {:#?}",
                i,
                x
            );
            assert!(
                x.try_insert_in(i, 2 * i, ctx),
                "{} has not already been inserted into {:#?}",
                i,
                x
            );
            assert_eq!(
                x.get(&i),
                Some(&(2 * i)),
                "{} has already been inserted into {:#?}",
                i,
                x
            );
            assert!(
                !x.try_insert_in(i, 3 * i, ctx),
                "{} has already had a value set in {:#?}",
                i,
                x
            );
            assert_eq!(
                x.get(&i),
                Some(&(2 * i)),
                "{} has already been inserted into {:#?}",
                i,
                x
            );
            assert!(
                x.insert_conservative_in(i, 3 * i, ctx) || i == 0,
                "{} can be inserted_conservative in {:#?}",
                i,
                x
            );
            assert_eq!(
                x.get(&i),
                Some(&(3 * i)),
                "{} has already been inserted into {:#?}",
                i,
                x
            );
            v.push((i, 3 * i));
        }
        let mut xv: Vec<_> = x.iter().map(|(k, v)| (*k, *v)).collect();
        xv.sort_unstable();
        assert_eq!(xv, v);
        xv = x.clone().into_iter().collect();
        xv.sort_unstable();
        assert_eq!(xv, v);
        x
    }

    #[test]
    fn medium_map_construction() {
        let x = ordered_map_construction_in_ctx(1000, &mut ());
        let y = ordered_map_construction_in_ctx(1000, &mut ());
        assert_ne!(x.as_ptr(), y.as_ptr());
        assert_eq!(x, y);
    }

    #[test]
    fn medium_map_construction_in_ctx() {
        let mut ctx = MapCtx::new();
        let x = ordered_map_construction_in_ctx(1000, &mut ctx);
        let y = ordered_map_construction_in_ctx(1000, &mut ctx);
        assert_eq!(x, y);
        assert_eq!(x.as_ptr(), y.as_ptr());
    }

    #[test]
    fn small_non_consed_map_set_ops() {
        let mut x = IdMap::new();
        x.try_insert(3, 6);
        x.try_insert(5, 7);
        x.try_insert(9, 2);
        let mut y = IdMap::new();
        y.try_insert(3, 5);
        y.try_insert(2, 42);
        y.try_insert(134, 23);
        let z = match x.left_union(&y) {
            BinaryResult::New(z) => z,
            r => panic!("New map not returned, got result {:?}", r),
        };
        assert_eq!(z, x.left_unioned(&y));
        assert_eq!(z.get(&2), Some(&42));
        assert_eq!(z.get(&3), Some(&6));
        assert_eq!(z.get(&4), None);
        assert_eq!(z.get(&5), Some(&7));
        assert_eq!(z.get(&134), Some(&23));
        assert_eq!(z.len(), 5);
        let w = match x.left_intersect(&y) {
            BinaryResult::New(w) => w,
            r => panic!("New map not returned, got result {:?}", r),
        };
        assert_eq!(w.get(&3), Some(&6));
        assert_eq!(w.len(), 1);
    }

    #[test]
    fn small_consed_set_ops() {
        let mut ctx = MapCtx::new();
        let mut x = IdMap::new();
        x.try_insert_in(3, 6, &mut ctx);
        x.try_insert_in(5, 7, &mut ctx);
        x.try_insert_in(9, 2, &mut ctx);
        let mut y = IdMap::new();
        y.try_insert_in(3, 5, &mut ctx);
        y.try_insert_in(2, 42, &mut ctx);
        y.try_insert_in(134, 23, &mut ctx);
        let z = match x.left_union_in(&y, &mut ctx) {
            BinaryResult::New(z) => z,
            r => panic!("New map not returned, got result {:?}", r),
        };
        assert_eq!(z.as_ptr(), x.left_unioned_in(&y, &mut ctx).as_ptr());
        assert_eq!(z, x.left_unioned(&y));
        assert_eq!(z.get(&2), Some(&42));
        assert_eq!(z.get(&3), Some(&6));
        assert_eq!(z.get(&4), None);
        assert_eq!(z.get(&5), Some(&7));
        assert_eq!(z.get(&134), Some(&23));
        assert_eq!(z.len(), 5);
        let w = match x.left_intersect_in(&y, &mut ctx) {
            BinaryResult::New(w) => w,
            r => panic!("New map not returned, got result {:?}", r),
        };
        assert_eq!(w.get(&3), Some(&6));
        assert_eq!(w.len(), 1);
    }

    #[test]
    fn mapping_set_op() {
        let mut x = IdMap::new();
        x.try_insert(3, 4);
        x.try_insert(4, 2);
        x.try_insert(6, 31);
        x.try_insert(9, 2);
        let mut y = IdMap::new();
        y.try_insert(1, 24);
        y.try_insert(3, 1);
        y.try_insert(7, 2);
        y.try_insert(8, 31);
        y.try_insert(9, 3);
        let j = x
            .join_mutate_in(
                &y,
                &mut LeftMutator,
                &mut FilterMap::new(|_key, value| {
                    if value % 2 == 0 {
                        Some(7 * value)
                    } else {
                        None
                    }
                }),
                &mut NullMutator,
                &mut (),
            )
            .unwrap();
        let mut jr = IdMap::new();
        jr.try_insert(1, 24);
        jr.try_insert(3, 4);
        jr.try_insert(4, 2 * 7);
        jr.try_insert(7, 2);
        jr.try_insert(8, 31);
        jr.try_insert(9, 2);
        assert_eq!(j, jr);
    }

    #[test]
    fn small_usize_insert() {
        let mut map = IdMap::<usize, String>::new();
        let ix = 3;
        map.insert(ix, "Hello".to_string());
        assert_eq!(map.get(&ix).unwrap(), "Hello");
        eprintln!("Inner = {:#?}", map.0);
        map.insert(ix, "Goodbye".to_string());
        eprintln!("Inner = {:#?}", map.0);
        assert_eq!(map.get(&ix).unwrap(), "Goodbye");
    }

    #[test]
    fn big_usize_insert() {
        let mut map = IdMap::<usize, String>::new();
        let ix = 140220213234856;
        map.insert(ix, "Hello".to_string());
        assert_eq!(map.get(&ix).unwrap(), "Hello");
        eprintln!("Inner = {:#?}", map.0);
        map.insert(ix, "Goodbye".to_string());
        eprintln!("Inner = {:#?}", map.0);
        assert_eq!(map.get(&ix).unwrap(), "Goodbye");
    }
}